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Abstract— For linear switched ordinary differential equations
with asymptotically stable constituent systems, it is well known
that commutativity of the coefficient matrices implies asymp-
totic stability of the switched system under arbitrary switching.
This result is generalized to linear switched differential alge-
braic equations (DAEs). Although the solutions of a switched
DAE can exhibit jumps it turns out that it suffices to check
commutativity of the “flow” matrices. As in the ODE case
we are also able to construct a common quadratic Lyapunov
function.

I. INTRODUCTION

In this paper we study switched differential algebraic
equations (switched DAEs) of the form

Eσẋ = Aσx, (1)

where σ : R→ {1, 2, . . . ,p}, p ∈ N, is the switching signal,
and Ep, Ap ∈ Rn×n, n ∈ N, are constant matrices for each
parameter p ∈ {1, 2, . . . ,p}. For this system class we will
show that stability for the constituent systems Epẋ = Apx,
p ∈ {1, 2, . . . ,p} and commutativity of the associated “flow
matrices”, which describe the dynamic part of the system, is
sufficient for the existence of a common quadratic Lyapunov
function. This implies in particular uniform exponential
stability with respect to arbitrary switching signals.

To compare the situation with the case of linear ordinary
differential equations ([1], see also [2], [3]), recall that for

ẋ = Aσx ,

where σ is the switching signal as above and Ap ∈ Rn×n is
Hurwitz for p = 1, . . . ,p, the commutativity condition

[Ap, Aq] := ApAq −AqAp = 0 , ∀ p, q (2)

implies asymptotic stability of the switched ODE for arbi-
trary measurable switching signals. Since a multiplication of
a DAE from the left with an invertible matrix doesn’t change
the solution behavior but does change the commutativity
property it is obvious that the condition (2) is not appropriate
for the switched DAE (1). In fact, Example 6 shows that even
for commuting A-matrices and stable constituent systems the
switched DAE can have unstable solutions.

Switched linear DAEs occur for instance in the modeling
of electrical circuits. For such systems it is natural that
switching occurs, so that a deeper analysis of switched DAEs
is desirable.
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There are only a few recent papers which study stability
of switched DAEs in the general form (1) (see e.g. [4], [5]).
In [6] the positive realness of transfer functions associated to
DAEs are studied and a characterization of the existence of
a common quadratic Lyapunov function for a pair of DAEs
with a rank-one difference are obtain. Commutativity and the
switched DAE (1), but with constant E-matrix, are studied in
[7], [8], however, the authors do not discuss possible jumps
in the state trajectories.

It is well known that all solutions of each individual DAE
Epẋ = Apx, p ∈ {1, . . . ,p}, evolve within a so-called
consistency space, which is a linear subspace of Rn. In
general, at a switching time t ∈ R there does not exist a
continuous extension of the solution into the future, because
the value x(t−) need not be within the consistency space
corresponding to the DAE after the switch. Therefore, it
is necessary to allow for solutions with jumps. However,
this leads to difficulties in evaluating the derivative of the
solutions. To resolve this problem we adopt the distributional
framework introduced in [9], [10], i.e. as solutions of the
switched DAE (1) distributions (generalized functions), in
particular Dirac impulses, are considered. For this, we have
to assume that the switching signal has only a locally finite
set of switching times. Furthermore, to ensure existence and
uniqueness of solutions we have to assume that each matrix
pair (Ep, Ap) is regular, i.e. the polynomial det(Eps−Ap)
is not identically zero. Finally, we will make one more
assumption which ensures that no impulses1 occur in the
solutions of the switched DAE (1); for details see Section III
and Theorem 5. A consequence of these assumptions is that
although a distributional solution framework is necessary as
a theoretical basis for treating switched DAEs of the form
(1), the only solutions that arise in this paper are piecewise-
smooth functions with locally finitely many discontinuities.

Because of the existence of jumps, the generalization of
the commutativity results is not straightforward, as it is not
immediately clear how the jumps have to be incorporated. It
is shown in [4] that the jumps play an essential role for the
overall stability of the switched DAE (1). Surprisingly, it is
sufficient to assume commutativity of the “flow matrices” for
the stability of the switched DAE, given that the constituent
systems are asymptotically stable. In this situation the jumps
induced by the consistency projectors need not be checked.

The paper is organized as follows. In Section II we recall
the solution theory for linear DAEs, define asymptotic stabil-
ity for such systems and provide the solution theory for linear
switched DAEs with respect to piece-wise constant switching
signals. In Section III we discuss commutativity for DAEs

1With impulses we mean Dirac impulses or derivatives thereof, hence
impulse freeness of solutions does not exclude jumps in the solution.
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and show that commutativity of the flow matrices implies
asymptotic stability by a direct commutativity argument. In
Section IV we strengthen this result by showing that in
the case of commuting flow matrices it is even possible to
construct a common quadratic Lyapunov function.

The following notation is used throughout the paper.
N,Z,R,C are the natural numbers, integers, real and com-
plex numbers, respectively. For a matrix M ∈ Rn×m,
n,m ∈ N, the kernel (null space) of M is kerM , the image
(range, column space) of M is imM , and the transpose of
M is M> ∈ Rm×n. The image of a set S ⊂ Rn under M
is MS := { Mx ∈ Rn | x ∈ S } and the pre-image of S
under M is M−1S := { x ∈ Rn | ∃y ∈ S : Mx = y }. The
identity matrix is denoted by I . For a piecewise-continuous
function f : R→ R the left-sided evaluation limε↘0 f(t−ε)
at t ∈ R is denoted by f(t−).

II. PRELIMINARIES

A. Consistency and differential projectors

In this section we consider the non-switched (i.e. time-
invariant) DAE

Eẋ = Ax

with E,A ∈ Rn×n and classical (i.e. differentiable) solutions
x : R → Rn. We assume that the matrix pair (E,A) is
regular. The following result goes back to Weierstrass [11]
and is useful for the rest of the paper:

Theorem 1 (Quasi-Weierstrass form): A pair (E,A) ∈
Rn×n×Rn×n is regular, if and only if there exist invertible
transformation matrices S, T ∈ Rn×n which put (E,A) into
quasi Weierstrass form

(SET, SAT ) = ([ I 0
0 N ] , [ J 0

0 I ]) , (3)

where N ∈ Rn2×n2 , 0 ≤ n2 ≤ n, is a nilpotent matrix and
J ∈ Rn1×n1 , n1 := n− n2. �

We call (3) quasi Weierstrass form because we do not
assume that J and N are in Jordan canonical form. In [12]
(see also [13]) it is shown that the transformation matrices S
and T in (3) can be easily obtained using the Wong sequences
[14]2:

V0 := Rn, Vi+1 = A−1(EVi), i ∈ N,
W0 := {0}, Wi+1 = E−1(AWi), i ∈ N.

It is straightforward that (Vi)i∈N is a decreasing and (Wi)i∈N
is an increasing sequence of subspaces. As the dimension of
Rn is finite, the sequences become stationary after finitely
many steps and reach the limits

V∗ :=
⋂
i∈N
Vi and W∗ :=

⋃
i∈N
Wi .

It is known that both sequences become stationary after
exactly the same number of steps [12]. With the choice of any
full rank matrices V,W with imV = V∗ and imW =W∗,

2To the best knowledge of the authors, Wong was the first who explicitly
considered these sequences for studying matrix pencils. Dieudonné [15]
also considered similar sequences in the context of matrix pairs, however
his main focus was only on the first sequence and the second sequence does
not appear explicitly.

the transformation matrices may be represented as T =
[V,W ] and S = [EV,AW ], which then leads to (3).

Definition 2 (Consistency and differential projector):
Consider a regular matrix pair (E,A) with transformation
matrices S, T which put (E,A) into a quasi Weierstrass
form (3). The consistency projector Π(E,A) of (E,A) is
given by

Π(E,A) := T [ I 0
0 0 ]T−1, (4)

where the block sizes correspond to the block sizes in the
quasi Weierstrass form (3). The differential projector Πdiff

(E,A)

of (E,A) is given by

Πdiff
(E,A) := T [ I 0

0 0 ]S

and the flow matrix Adiff is given by

Adiff := Πdiff
(E,A)A = T [ J 0

0 0 ]T−1. (5)
�

Note that, due the special structure of the consistency
projector Π(E,A) and Adiff,

AdiffΠ(E,A) = Adiff = Π(E,A)A
diff (6)

The consistency projector only plays a role when consid-
ering inconsistent initial values as they occur when switching
between different DAEs, see the next section. Note that the
differential projector is not a projector in the usual sense,
because it is not idempotent, but due the similarity to the
definition of the consistency projector the matrix Πdiff

(E,A) is
also called a “projector”. The importance of the differential
projector (and the flow matrix) becomes clear with the next
result.

Lemma 3 (Role of the differential projector, [16]):
Consider the regular matrix pair (E,A) and the
corresponding flow matrix Adiff, then a classical solution x
of Eẋ = Ax also solves

ẋ = Adiffx. �
Note furthermore, that in the ODE-case (i.e. when E is

invertible) it is easy to see that Adiff = E−1A. In particular,
for the classical ODE formulation (i.e. E = I) it follows that
Adiff = A.

B. Asymptotic stability of time-invariant DAEs

The time-invariant DAE Eẋ = Ax is called asymptotically
stable, if all (classical) solutions tend to zero as t → ∞.
Note that for linear DAEs with classical solutions attractivity
already implies stability in the sense of Lyapunov (which
is actually a direct consequence of the next result). The
following result characterizes asymptotic stability of the
DAE Eẋ = Ax and is an easy corollary of Theorem 1
together with the observation that the DAE Nẇ = w for
nilpotent N only has the trivial solution.

Corollary 4 (Asymptotic stability of a DAE): Consider a
regular matrix pair (E,A) with quasi Weierstrass form (3).
Then the DAE Eẋ = Ax is asymptotically stable, if and
only if the underlying ODE ẋ = Jx is asymptotically
stable. In particular, asymptotic stability of Eẋ = Ax implies
invertibility of A. �
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C. Solutions of switched DAEs

As motivated in the introduction we will make the follow-
ing assumptions throughout the remainder of this note.
A1 Switching signals σ : R → {1, . . . ,p} are piecewise

constant (with a locally finite set of discontinuities) and
right-continuous.

A2 Each matrix pair (Ep, Ap), p ∈ {1, . . . ,p}, is regular,
i.e. det(sEp −Ap) ∈ R[s] is not the zero polynomial.

A3 For the consistency projectors Πp := Π(Ep,Ap), p ∈
{1, . . . ,p}, corresponding to the regular matrix pairs
(Ep, Ap) from (1), it holds that

Ep(I −Πp)Πq = 0 , ∀p, q ∈ {1, . . . ,p}.

The set of all switching signals, i.e. all functions satisfying
A1, is denoted by Σ. Under these assumptions, the following
result is known.

Theorem 5 ([10, Thms. 4.2.13&4.2.8]): Consider the
switched DAE (1) satisfying Assumptions A1, A2 and A3.
Then every distributional solution of (1) is impulse free and
is represented by a piecewise-smooth function x : R→ Rn.
Furthermore, for all solutions x : R→ Rn,

∀t ∈ R : x(t) = Πσ(t)x(t−)

and all solutions are uniquely determined by x(0−). �
Following [4], we call the switched DAE (1) asymptoti-

cally stable with respect to a fixed switching signal σ ∈ Σ,
if all distributional solutions of (1) are impulse free and
each solution x : R → Rn fulfills x(t) → 0 as t → ∞.
Note that Assumption A3 actually is a necessary condition
for impulse freeness under arbitrary switching; hence A3
is also necessary for asymptotic stability of the switched
DAE (1) under arbitrary switching. We call (1) uniformly
exponentially stable with respect to Σ, if for all σ ∈ Σ
solutions are impulse free, and if there are constants M,β >
0 such that for all σ ∈ Σ and all corresponding solutions
x : R→ Rn

‖x(t)‖ ≤Me−βt‖x(0−)‖ , ∀t ≥ 0 . (7)

III. COMMUTATIVITY OF DAES

In this section we introduce a concept of commutativity
for switched DAEs. We start with an example which shows
that a naive generalization from the ODE case to the DAE
case is not working.

Example 6 (Commuting A-matrices): Consider the
switched DAE (1) with matrix pairs:

(E1, A1) =
(
[ 0 0
0 1 ] ,

[
1 −1
0 −1

])
(E2, A2) =

(
[ 0 0
1 1 ] ,

[−1 0
0 −1

])
Clearly, the A-matrices commute and both constituent sys-
tems are asymptotically stable. However, the solution behav-
ior of the corresponding switched DAE is identical to the
solution behavior of Example 1 in [4], hence sufficiently fast
switching yields unbounded solutions. �

For ODEs it is known that two matrices A,B ∈ Rn×n
commute if and only if the evolution operators eAt, eBs

commute for all s, t ∈ R. To get an analogous statement for

DAEs we need a representation of the evolution operators.
Therefor, note that Lemma 3 gives

x(t) = eA
diff
p (t−t0)x(t0), t ∈ [t0, t1)

for all solutions x of the switched DAE (1) where σ
∣∣
[t0,t1)

is constantly p. Furthermore, Theorem 5 yields that

x(t0) = Πpx(t0−),

hence the desired evolution operator of the p-th constituent
system is given by

Φp(t) := eA
diff
p tΠp, t ≥ 0. (8)

Despite the presence of the consistency projectors in the
evolution operators it turns out that commutativity of the flow
matrices Adiff

p is sufficient and necessary for commutativity
of the evolution operator, provided the original A-matrices
are invertible.

Theorem 7 (Commuting evolution operators and Adiff):
Consider the switched DAE (1) satisfying A1-A3 with
corresponding matrices Adiff

p , consistency projectors Πp and
evolution operators Φp(·). Assume that Ap is invertible for
all p ∈ {1, . . . ,p}. Then, for all p, q ∈ {1, . . . ,p},

[Φp(t),Φq(s)] = 0 ∀s, t ≥ 0 ⇔ [Adiff
p , Adiff

q ] = 0. �
Before proving Theorem 7 we formulate the important

consequence for the stability of the switched DAE (1).
Corollary 8 (Commutativity and asymptotic stability):

Consider the switched DAE (1) satisfying A1-A3. Assume
that each constituent system Epẋ = Apx, p ∈ {1, . . . ,p}, is
asymptotically stable. Then

[Adiff
p , Adiff

q ] = 0 , ∀ p, q ∈ {1, . . . ,p}

implies that (1) is asymptotically stable under arbitrary
switching. �

Proof of Corollary 8: Let t0 < t1 < t2 < . . . be the
switching times of σ, then, for t ≥ t0,

x(t) = Φpk(t− tk)Φpk−1
(tk − tk−1)

· · ·Φp1(t2 − t1)Φp0(t1 − t0)x(t0−), (9)

where k ∈ N is such that t ∈ [tk, tk+1) and σ(ti) = pi
for 0 ≤ i ≤ k. Due to Corollary 4 each matrix Ap
is invertible and Theorem 7 implies commutativity of the
evolution operators. Note that Φp(t + s) = Φp(t)Φp(s) for
all s, t ≥ 0 and all p ∈ {1, . . . ,p} because of (6) and the
representation of the exponential as a power series. We obtain
from (9) by commutativity

x(t) = Φ0(∆t0)Φ1(∆t1) · · ·Φp(∆tp),

with ∆tp → ∞ as t → 0 for at least one p ∈ {1, . . . ,p}.
This yields x(t)→ 0 as t→∞.

The sufficiency and necessity part of the proof of The-
orem 7 are each direct consequences of the following two
lemmas.

Lemma 9 (Sufficiency): Consider two regular matrix pairs
(E1, A1) and (E2, A2) with corresponding flow matrices
Adiff

1 , Adiff
2 and consistency projectors Π1, Π2. If A1, A2 are
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invertible and Adiff
1 , Adiff

2 commute, then

[Π1, A
diff
2 ] = [Π1,Π2] = [Π2, A

diff
1 ] = 0.

In particular, [eA
diff
1 sΠ1, e

Adiff
2 tΠ2] = 0 for all s, t ≥ 0. �

Proof: From [Adiff
1 , Adiff

2 ] = 0 it follows that

T1

[
J1 0
0 0

]
T−1

1 T2

[
J2 0
0 0

]
T−1

2 = T2

[
J2 0
0 0

]
T−1

2 T1

[
J1 0
0 0

]
T−1

1 .

Hence, with T−1
1 T2

[
J2 0
0 0

]
T−1

2 T1 =:
[
M11 M12

M21 M22

]
,[

J1 0
0 0

] [
M11 M12

M21 M22

]
=
[
M11 M12

M21 M22

] [
J1 0
0 0

]
.

In particular,

J1M12 = 0 and M21J1 = 0.

By (3) invertibility of A1 implies invertibility of J1, so that
M12 = 0 and M21 = 0. Therefore

[ I 0
0 0 ]

[
M11 M12

M21 M22

]
=
[
M11 M12

M21 M22

]
[ I 0
0 0 ] ,

which is equivalent to

Π1A
diff
2 = Adiff

2 Π1 or [Π1, A
diff
2 ] = 0.

Interchanging the indices yields [Π2, A
diff
1 ] = 0, finally,

repeating the above argument with the starting point
[Adiff

1 ,Π2] = 0 (i.e. replacing J2 by I), it also follows that
[Π1,Π2] = 0.

Lemma 10 (Necessity): Consider two regular matrix pairs
(E1, A1) and (E2, A2) with corresponding flow matrices
Adiff

1 , Adiff
2 , consistency projectors Π1, Π2 and evolution

operators Φ1(·), Φ2(·) as in (8). Then [Φ1(s),Φ2(t)] = 0
for all s, t ≥ 0 implies

[Adiff
1 , Adiff

2 ] = 0. �
Proof: Commutativity of the evolution operators im-

plies (setting t = 0 and/or s = 0)

[Π1,Π2] = [Φ1(s),Π2] = [Π1,Φ2(t)] = 0.

Hence, for all s > 0 and t > 0,[
Φ1(s)−Π1

s , Φ2(t)−Π2

t

]
= 0.

Since, for i = 1, 2,

lim
t↘0

Φi(t)−Πi
t = Φ′i(0) = Adiff

i Πi
(6)
= Adiff

i

the claim follows.
Remark 11: If the assumption on the invertibility of the

A-matrices does not hold only the necessity part of The-
orem 7 remains true in general. This can be seen when
considering a variation of Example 6 where we set J1 = 0
in the quasi-Weierstrass form of (E1, A1). Consequently,
Adiff

1 = 0 and the commutativity condition [Adiff
1 , Adiff

2 ]
trivially holds. But the consistency projectors are the same
as before and do not commute, hence the evolution operators
cannot commute either. �

IV. CONSTRUCTION OF A COMMON QUADRATIC
LYAPUNOV FUNCTION

In this section we carry the stability analysis of commuting
DAEs a step further and show that it is possible to con-
struct quadratic Lyapunov functions for commuting DAEs

with asymptotically stable constituent systems. The common
Lyapunov function will have the form, for some l ∈ N,

V (x) := x>T−> diag(P1, P2, . . . , Pl)T
−1x.

Here the invertible matrix T is chosen such that it si-
multaneously block-diagonalizes the flow matrices Adiff

p ,
i.e. T−1Adiff

p T = diag(Ap1, Ap2, . . . , Apl) for all p ∈
{1, 2, . . . ,p}. Using some specific properties of the blocks
Apk, the positive definite matrices Pk, k = 1, . . . , l, can be
chosen as common solutions of the Lyapunov inequalities
A>pkPk + PkApk < −αkPk unless Apk = 0.

In order to show that such a construction of a common
quadratic Lyapunov function is possible we recall the fol-
lowing facts about commuting matrices. Proofs are included
for the convenience of the reader.

Lemma 12 (Commutativity and block-diagonal matrices):
Consider A,B ∈ Rn×n with [A,B] = 0. Assume there is
an invertible transformation matrix T ∈ Rn×n such that for
certain Ai ∈ Rni×ni , i = 1, 2, n1 + n2 = n we have

T−1AT =
[
A1 0
0 A2

]
with specA1 ∩ specA2 = ∅.

Then
T−1BT =

[
B1 0
0 B2

]
,

where Bi has the same size as Ai, i = 1, 2. �
Proof: For any eigenvalue λ ∈ C of A and any x ∈ Cn

and k ∈ N we have by commutativity that

(A−λI)kx = 0 ⇒ (A−λI)kBx = B(A−λI)kx = 0,

which implies that the generalized eigenspace corresponding
to any eigenvalue λ of A is B-invariant. Let T = [T1 T2]
where T1 ∈ Rn×n1 and T2 ∈ Rn×n2 . Then T1 spans
the sum of the generalized eigenspaces of the eigenvalues
of A in specA1 and T2 spans the sum of the remaining
generalized eigenspaces. Hence imT1 and imT2 are B-
invariant. In particular, there exists B1 ∈ Rn1×n1 and B2 ∈
R(n−n1)×(n−n1) such that

BT1 = T1B1 and BT2 = T2B2,

which is an equivalent formulation of the claim.
An important consequence of this result is the following

lemma which shows that a set of commuting matrices can
be simultaneously transformed to a certain block-diagonal
form.

Lemma 13 (Simultaneous block-diagonalization):
Consider a set {A1, A2, . . . , Aν} of commuting matrices, i.e.
[Ai, Aj ] = 0 for all i, j ∈ {1, 2, . . . , ν} and assume existence
of an invertible Ti such that, for all i ∈ {1, 2, . . . , ν},

T−1
i AiTi =

[
Ji 0
0 0

]
with invertible Ji.

Then there exists a single invertible matrix T ∈ Rn×n and
l ∈ N such that

T−1AiT = diag(Ai1, Ai2, . . . , Ail) ∀i ∈ {1, 2, . . . , ν}

with Aik ∈ Rnk×nk , nk ∈ N, n1 + n2 + . . .+ nl = n, and,
for all i ∈ {1, 2, . . . , ν} and all k ∈ {1, 2, . . . , l},

Aik = 0 or Aik is invertible.
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Proof: By assumption

T−1
1 A1T1 =

[
Â11 0

0 0

]
and invertibility of Â11 = J1 allows us to use Lemma 12 to
obtain, for i = 2, 3, . . . , ν

T−1
1 AiT1 =

[
Âi1 0

0 Âi2

]
.

Proceeding inductively, assume that for ν̂ < ν there exists
invertible T̂ and l̂ such that

T̂−1AiT̂ = diag(Âi1, Âi2, . . . , Âil̂) ∀i ∈ {1, 2, . . . , ν}

and such that for all j = 1, 2, . . . , ν̂, either Âjk = 0 or Âjk
is invertible for each k ∈ {1, 2, . . . , l̂}.

From the assumption that T−1
ν̂+1Aν̂+1Tν̂+1 =

[
Jν̂+1 0

0 0

]
with Jν̂+1 invertible it follows that the algebraic and
geometric multiplicity of the eigenvalue zero of Aν̂+1

are the same. This property is inherited by the matrices
Âν̂+1,1, Âν̂+1,2, . . . , Âν̂+1,l̂, hence we find invertible matri-
ces S1, S2, . . . , Sl̂ such that, for k = 1, 2, . . . , l̂.

S−1
k Âν̂+1,kSk =

[
Ãν̂+1,2k−1 0

0 0

]
,

with Ãν̂+1,2k−1 invertible. Commutativity of Ai and Aj
imply commutativity of each pair (Âik, Âjk) for all i, j ∈
{1, 2, . . . , ν} and k ∈ {1, 2, . . . , l̂}. Now Lemma 12 implies,
for all i = 1, 2, . . . , ν and all k ∈ {1, 2, . . . , l̂},

S−1
k Âi,kSk =

[
Ãi,2k−1 0

0 Ãi,2k

]
,

where, for i ≤ ν̂, either Ãi,2k−1 and Ãi,2k both are zero
or both are invertible. With T̃ = T̂ diag(S1, S2, . . . , Sl̂) and
l̃ := 2l̂ we obtain

T̃−1AiT̃ = diag(Ãi1, Ãi2, . . . , Ãil̃) ∀i ∈ {1, 2, . . . , ν}

and, for all j = 1, 2, . . . , ν̂ + 1, either Ãjk = 0 or Ãjk is
invertible for all k ∈ {1, 2, . . . , l̃}. This concludes the proof.

We are now able to construct a common quadratic Lya-
punov function for the switched DAE (1) with asymptotically
stable constituent systems and commuting flow matrices
Adiff
p = Tp

[
Jp 0
0 0

]
T−1
p , where Jp is Hurwitz for all p =

1, 2, . . . ,p. To this end, invoking Lemma 13, we choose an
invertible matrix T and l ∈ N such that

T−1Adiff
p T = diag(Ap1, Ap2, . . . , Apl) ∀p ∈ {1, 2, . . . ,p}

with Apk ∈ Rnk×nk , nk ∈ N, n1 + n2 + . . .+ nl = n, and
either Apk = 0 or Apk is invertible for p ∈ {1, 2, . . . ,p}
and k ∈ {1, 2, . . . , l}. Note that specApk ⊆ spec Jp, if Apk
is invertible. Hence any invertible Apk is actually Hurwitz.
Additionally, [Adiff

i , Adiff
j ] = 0 implies [Aik, Ajk] = 0. It

is well known [1] that a finite commuting set of Hurwitz
matrices admit a common quadratic Lyapunov function.
Hence for each k ∈ {1, 2, . . . , l} there exists a symmetric,
positive definite Pk ∈ Rnk×nk and an αk > 0 such that

A>pkPk + PkApk < −αkPk ∀p : Apk 6= 0 . (10)

In case that the set of indices p such that Apk 6= 0 is empty
for some k ∈ {1, 2, . . . , l} we set Pk := I and αk :=∞. In
the sequel we denote

α := min
k
αk > 0 . (11)

We now claim that

V (x) := x>T−> diag(P1, P2, . . . , Pl)T
−1x (12)

is a common quadratic Lyapunov function for the switched
DAE (1).

Theorem 14: Consider the switched DAE (1) satisfying
A1-A3 and with flow matrices Adiff

p as in Definition 2.
Assume that each constituent system Epẋ = Apx, p ∈
{1, . . . ,p}, is asymptotically stable and that the commuta-
tivity condition

[Adiff
p , Adiff

q ] = 0 , ∀ p, q ∈ {1, . . . ,p}

is satisfied. Then V as defined in (12) is a common quadratic
Lyapunov function for the switched DAE (1) in the sense of
[4, Thm. 9], i.e. V is a quadratic Lyapunov function for each
constituent system of (1) and, in addition, V satisfies

V (Πpx) ≤ V (x) ∀p ∈ {1, 2, . . . ,p} ∀x ∈ Rn,

where Πp is the consistency projector of the constituent
system (Ep, Ap). �

Proof: Note that V is positive definite, hence it remains
to show that V̇ (x) < 0, to this end we adopt the approach
from [17].

Step 1: We show existence of F : Rn × Rn → R such
that ∇V (x)z = F (x,Epz) for all x, z ∈ im Πp. From
T−1Adiff

p T = diag(Ap1, . . . , Apl) and T−1
p Adiff

p Tp =
[
Jp 0
0 0

]
it follows that, for Hp := T−1

p T ,[
Jp 0
0 0

]
= Hp diag(Ap1, . . . , Apl)H

−1
p .

Rewriting z ∈ im Πp as z = Πv for some v ∈ Rn we obtain

∇V (x)z = 2x>T−> diag(P1, . . . , Pl)T
−1Πpv

and
Πp = Tp [ I 0

0 N ] [ I 0
0 0 ]T−1

p

= TpSpEpTp [ I 0
0 0 ]T−1

p = TpSpEpΠp.

This shows the claim with

F (x,w) = 2x>T−> diag(P1, . . . , Pl)T
−1TpSpw.

Step 2: We show that V̇ (x) = F (x,Apx) < −αV (x).
First, note that with Adiff

p
+

= Tp

[
J−1
p 0

0 0

]
T−1
p we have

T−1Adiff
p

+
T = diag(A+

p1, A
+
2p, . . . , A

+
pl),

where A+
pk = A−1

pk , if Apk is invertible and A+
pk = 0, if

Apk = 0. Hence

T−1Πp = T−1Tp [ I 0
0 0 ]T−1

p

= T−1Tp

[
J−1
p 0

0 0

] [
Jp 0
0 0

]
T−1
p = T−1Adiff

p

+
Adiff
p

= diag(A+
p1, . . . , A

+
pl) diag(Ap1, . . . , Apl)T

−1

421



and, therefore,

T−1Πp = diag(Πp1, . . . ,Πpl)T
−1 , (13)

with Πpk ∈ Rnk×nk and Πpk = Ink , if Apk is invertible and
Πpk = 0, if Apk = 0. Fix x ∈ im Πp; then we obtain

F (x,Apx) = 2x>T−> diag(P1, . . . , Pp)T
−1TpSpApx.

As Πpx = x we have

TpSpApx = TpSpApΠpx

= Tp
[
Jp 0
0 I

]
T−1
p Tp [ I 0

0 0 ]T−1
p x

= Tp
[
Jp 0
0 0

]
T−1
p x = Adiff

p x

= T diag(Ap1, . . . , Apl)T
−1x.

Invoking (10) and (13), it follows that

F (x,Apx) = 2x>T−T diag(P1Ap1, . . . , PlApl)T
−1x

< x>T−> diag(−αΠp1P1Πp1, . . . ,−αΠplPlΠpl)T
−1x

= −αx>Π>p T
−> diag(P1, . . . , Pl)T

−1Πpx,

= −αV (Πpx) = −αV (x),

which shows V̇ (x) = F (x,Apx) < −αV (x) for all x ∈
im Πp \ {0}.

Step 3: We show V (Πpx) ≤ V (x).
Due to (13) we have

V (Πpx) = x>Π>p T
−> diag(P1, . . . , Pl)T

−1Πpx

= x>T−> diag(Πp1P1Πp1, . . . ,ΠplPlΠpl)T
−1x

≤ x>T−> diag(P1, . . . , Pl)T
−1x = V (x)

where the last inequality follows from positive definiteness
of each Pk and because Πpk is the identity or 0.

We note the following obvious consequence. In the state-
ment we denote with slight abuse of notation the maximal
and minimal eigenvalue of the symmetric positive definite
matrix defining V in (12) by λmax(V ), resp. λmin(V ).

Corollary 15: Under the assumptions of Theorem 14, let
α be defined by (11) and V be given by (12). Then for all
σ ∈ Σ and all solutions x : R→ Rn of (1) we have

‖x(t)‖ ≤ λmax(V )1/2

λmin(V )1/2
e−(α/2)t‖x(t−)‖ . (14)

In particular, the switched DAE (1) is uniformly exponen-
tially stable. �

Proof: The proof of Theorem 14 shows that V̇ (x) ≤
−αV (x) along the differential part of any trajectory x and
V (x(t)) ≤ V (x(t−)) for all t ≥ 0. It follows by a standard
argument that

V (x(t)) ≤ e−αtV (x(0−)) ,

for all σ ∈ Σ, t ≥ 0. The claim now follows by the usual
comparison of V (x) with the Euclidean norm. See, e.g., [18,
Prop. 5.5.33].

Remark 16 (Orthogonality of consistency spaces): Under
the assumptions of Theorem 14 define the inner product

〈x, y〉
V

:= x>T−> diag(P1, P2, . . . , Pl)T
−1y

with induced norm ‖x‖
V

=
√
〈x, x〉

V
=
√
V (x). Since, for

p ∈ {1, . . . ,p}, V (Πpx) ≤ V (x) for all x ∈ Rn it follows

that
‖Πp‖V ≤ 1 ∀p ∈ {1, . . . ,p},

where ‖ · ‖
V

denotes the induced matrix norm. Hence each
consistency projector Πp is in fact an orthogonal projector
with respect to the inner product 〈·, ·〉

V
. Under the assump-

tion of commutativity of the projection operators it follows
that all consistency spaces are orthogonal to each other
(modulo the intersections) with respect to the inner product
induced by V .
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[15] J. Dieudonné, “Sur la réduction canonique des couples des matrices,”
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