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Abstract— This paper is devoted to a synthesis problem
of a multi-modal and 2-dimensional piecewise affine system
that generates a desired stable limit cycle. By using the
proposed synthesis method, we can obtain a multi-modal and
2-dimensional piecewise affine system from given data on a
desired limit cycle trajectory. In addition, the existence and the
uniqueness of desired stable limit cycle for the obtained system
can be proven. It also turns out that we can determine the
rotation direction and the period of the limit cycle by adjusting
the parameters of the system. In order to show the effectiveness
of our new synthesis method, we illustrate various simulation
results.

I. INTRODUCTION

A limit cycle has been attracted a lot of researchers’

interest as a specific phenomenon for nonlinear systems

along with chaos, fractal and solitons [1]. Limit cycles

in real world can be found in various research fields, for

example, stable walking or gaits of humanoid robots in

robotic engineering, oscillator circuits in electronic engineer-

ing, catalytic hypercycles in chemistry, circadian rhythms

in biology, boom-bust cycles in economics and so on.

Researches on limit cycles have been actively done from

mathematical and engineering perspectives so far [2], [3],

[4], [5], [6], [7], [8], [9], [10], [11], [12], [13]. Especially,

some conditions for nonlinear systems that generate periodic

solutions and some applications were shown in [2], and in

[7], a synthesis method of hybrid systems whose solution

trajectories converge to desired trajectories was proposed.

In these studies, it is guaranteed that solution trajectories

of the systems converges to a desired closed curve, and

the existence of limit cycles was confirmed by numerical

simulations. However, the mathematical guarantee of the

existence of limit cycles was not indicated.

In this paper, we consider a synthesis problem of multi-

modal and 2-dimensional piecewise affine systems that gen-

erate desired limit cycles, and give the mathematical guar-

antee of the existence and uniqueness of limit cycles. The

outline of this paper is as follows. We first give the problem

formulation on piecewise affine systems in Section II. Next,

in Section III, we derive a specific form of the piecewise

affine system. In Section IV, we then prove the existence and

uniqueness of limit cycle for the piecewise affine system.

Moreover, theoretical analysis on rotational directions and

periods of limit cycles is obtained. Finally, we show some

numerical simulations in order to confirm the effectiveness

of our new synthesis method.
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II. PROBLEM SETTING

In this section, we give the problem formulation which is

dealt with throughout this paper. Consider the 2-dimensional

Euclidian space: R2, its coordinate: x = [ x1 x2 ]
T ∈ R

2,

and the origin of R
2: O. Let us set N (N > 3) points

Pi 6= O (i = 1, · · · , N) in R
2 and denote the vector from O

to Pi by pi = [ p1i p2i ]
T. We also denote the angle between

the half line OPi and the x1-axis by θi. Now, without loss of

generality, we assume that the N points Pi (i = 1, · · · , N)
are located in the counterclockwise rotation from the x1-axis,

that is, θ1 < θ2 < · · · < θN holds.

Next, we define the semi-infinite region Di which is

sandwiched by the half lines OPi and OPi+1 and the line

segment Ci joining Pi and Pi+1, where PN+1 = P1. Set a

polygon that is a union of Ci (i = 1, · · · , N) as

C :=
N
⋃

i=1

Ci. (1)

Fig. 1 shows an example of a Polygonal Closed Curve for

N = 5.

Fig. 1 : Example of Polygonal Closed Curve (N = 5)

We then consider the next affine system defined in Di:

ẋ = ai +Aix, (2)

where x = [ x1 x2 ]
T ∈ R

2 is the state variable, and ai ∈
R

2, Ai = R
2×2 are the affine term and the coefficient

matrix, respectively. Consequently, we treat the N -modal and

2-dimensional piecewise affine system that consists of N
regions Di (i = 1, · · · , N) and N affine systems (2). In this
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paper, we consider the following synthesis problem on limit

cycles.

Problem 1 : For the N -modal and 2-dimensional piecewise

affine system (2), design ai, Ai (i = 1, · · · , N) such that a

given polygonal closed curve C (1) is a unique and stable

limit cycle.

III. SYNTHESIS OF PIECEWISE AFFINE SYSTEMS

In this section, we will derive a candidate of a solution

for Problem 1. First, we focus on a behavior of a solution

trajectory of (2) in Di. We can easily confirm that the

equation of Ci is represented by

(p2i − p2i+1)x1 − (p1i − p1i+1)x2

+ p1i p
2
i+1 − p2i p

1
i+1 = 0.

(3)

Using (3), we now define a limit cycle function Vi as

Vi(x) = (p2i − p2i+1)x1 − (p1i − p1i+1)x2

+ p1i p
2
i+1 − p2i p

1
i+1.

(4)

If Vi converges to 0 along a solution trajectory of (2), then

the solution trajectory of (2) also converges to Ci. Hence,

ai and Ai should be determined so that Vi converges to 0
along a solution trajectory of (2).

We now show an important result derived by Green in [2]

on design of nonlinear systems as follows.

Theorem 1 [2] : Consider the following 2-dimensional

nonlinear system:

ẋ = f(x) + g(x), (5)

where x ∈ R
2 and f, g ∈ R

2 → R
2 are vector fields

defined in R
2. In addition, consider a radial and unbounded

function define on R
2: V : R2 → R such that V (0) = 0

and V (x) 6= 0, ∀x 6= 0 hold. We now define f and g as

f := Uf (x)
∂V

∂x

T

, g := −ug(V )Ug(x)
∂V

∂x

T

, (6)

where a skew-symmetric matrix Uf , a positive definite matrix

Ug , and ug such that ug(V ) > 0, V 6= 0 holds. Then, for

the system (5) with (6),

lim
t→∞

V (x(t)) = 0 (7)

holds

By Theorem 1, we can derive an affine term ai and a

coefficient matrix Ai of the affine system (2) such that Vi

converges to 0 along a solution trajectory of (2). As a specific

form of (5) and (6), we use

ẋ = fi + gi,

fi :=

[

0 ωi

−ωi 0

]

∂Vi

∂x

T

, gi := −Vi(x)
∂Vi

∂x

T

.
(8)

Substituting (4) into (8), we can obtain ai and Ai of (2) as

ai =

[

−(p2i − p2i+1)(p
1
i p

2
i+1 − p2i p

1
i+1)− ωi(p

1
i − p1i+1)

(p1i − p1i+1)(p
1
i p

2
i+1 − p2i p

1
i+1)− ωi(p

2
i − p2i+1)

]

,

Ai =

[

−(p2i − p2i+1)
2 (p2i − p2i+1)(p

1
i − p1i+1)

(p2i − p2i+1)(p
1
i − p1i+1) −(p1i − p1i+1)

2

]

.

(9)

However, it is only guaranteed that the system (2) with (9)

satisfies the convergence property (7), that is, its solution

trajectory converges to Ci in Di. Hence, it is not guaranteed

that the system (2) with (9) has a unique and stable limit

cycle. In the next section, we will discuss the existence of a

unique and stable limit cycle of the system (2) with (9).

IV. THEORETICAL ANALYSIS

A. Proof on Existence and Uniqueness of Limit Cycle

The main purpose of this subsection is to prove that the N -

modal and 2-dimensional piecewise affine systems (2) with

(9) has a unique and stable limit cycle, and it is equivalent

to C. To complete the proof, we first indicate three lemmas,

and then we show the main theorem by using them.

First, we give the definition on the clockwise and coun-

terclockwise rotations of limit cycle solution trajectories of

the system (2) with (9).

Definition 1 : For limit cycle solution trajectories of the N -

modal and 2-dimensional piecewise affine system (2) with

(9), one that rotates in the clockwise direction in R
2 is called

a limit cycle solution trajectory in the clockwise rotation.

On the contrary, one that rotates in the counterclockwise

direction in R
2 is called a limit cycle solution trajectory

in the counterclockwise rotation (see Fig. 2).

[a] Crockwise Rotation [b] Countercrockwise Rotation

Fig. 2 : Clockwise and Counterclockwise Rotations of

Limit Cycle Solution Trajectories

Let us define a subset in Di as

Mi(εi) := { x ∈ Di | ε
−

i ≤ Vi(x) ≤ ε+i }, (10)

where ε−i , ε+i ∈ R satisfies ε−i < ε+i and we set εi =
(ε−i , ε

+

i ). We also define a sum of these subsets as

M(ε) :=

N
⋃

i=1

Mi(εi), (11)

where we use the notations: ε− = (ε−1 , · · · , ε
−

N ), ε+ =
(ε+1 , · · · , ε

+

N ), ε = (ε−, ε+), and the parameters ε− and ε+
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are determined such that

M−(ε−) =
N
⋃

i=1

{ x ∈ Di | Vi(x) = ε−i }

M+(ε+) =

N
⋃

i=1

{ x ∈ Di | Vi(x) = ε+i }

(12)

form closed polygons. If M−(ε−) and M+(ε+) are closed

polygons, that is, M(ε) is a bounded and closed set, then

ε is said to be admissible (see Fig. 3). We can derive the

following proposition on M(ε).

Fig. 3 : Example of M−(ε−), M+(ε+) and M(ε)

Lemma 1 : For the N -modal and 2-dimensional piecewise

affine system (2) with (9), M(ε) is a positively invariant,

bounded and closed set for any admissible ε.

(Proof) Calculating the time differential of 1/2V 2
i along a

solution trajectory of the system (2) with (9), we have

1

2

d

dt
(V 2

i ) = ViV̇i = Vi

∂Vi

∂x
ẋ = Vi

∂Vi

∂x
(fi + gi)

= Vi

∂Vi

∂x

[

0 ωi

−ωi 0

]

∂Vi

∂x

T

−V 2
i

∂Vi

∂x

∂Vi

∂x

T

= −V 2
i

∂Vi

∂x

∂Vi

∂x

T

< 0.

Hence, it turns out that the velocity vector field of the

system (2) with (9) points to the direction of the inner

side of the bounded and closed set M at any points on the

boundary M−(ε−) ∪ M+(ε+) of M . Consequently, M(ε)
is a positively invariant, bounded and closed set.

Next, we consider equilibrium points of the system (2)

with (9). The following lemma on equilibrium points can be

obtained.

Lemma 2 : Assume ωi 6= 0 (i = 1, · · · , N). Then, the N -

modal and 2-dimensional piecewise affine system (2) with

(9) does not have any equilibrium points in M(ε) for any

admissible ε.

(Proof) The unit vector which is on a parallel with Ci in

Di and points to the counterclockwise rotation is given by

(pi−pi+1)/||pi−pi+1||. By considering the inner product of

this unit vector and the velocity vector field of the system (2)

with (9), we have the magnitude of the velocity component

to the direction of pi − pi+1 for a solution trajectory vi of

the system (2) with (9) in Di as

vi = (ai +Aix) ·
pi − pi+1

||pi − pi+1||
. (13)

Now, we denote a point in Di by x = αipi+βipi+1, αi, βi ≥
0. Hence, we can calculate (13) as

vi = {ai +Ai(αipi + βipi+1)} ·
pi − pi+1

||pi − pi+1||

= −ωi

√

(p1i − p1i+1
)2 + (p2i − p2i+1

)2.

(14)

From (14), we can see that the parameters αi and βi vanish,

and hence vi is constant at any point x ∈ Di. Since vi does

not vanish at any point x ∈ Di, the system (2) with (9) does

not have any equilibrium points in M(ε).

Then, we here give a definition on the concept “traversal”

for the system (2) with (9) as follows [10].

Definition 2 : Let Σ be a line segment in the positively

invariant, bounded and closed set M(ε). If the value of an

inner product of the unit normal vector to Σ: eΣ and the

velocity vector of the N -modal and 2-dimensional piecewise

affine system (2) with (9) is not equal to 0 and its sign does

not change at any point in Σ, then Σ is said to be traversal

with respect to the system (2) with (9).

In addition to Lemma 2, under the condition of ωi > 0(i =
1, · · · , N), a solution trajectory vector of the system (2) with

(9) always has a velocity component in the counterclockwise

rotation. On the other hand, under the condition of ωi <
0 (i = 1, · · · , N), a solution trajectory vector of (2) with (9)

always has a velocity component in the clockwise rotation.

From this fact, we can derive the following lemma.

Lemma 3 : For the N -modal and 2-dimensional piecewise

affine system (2) with (9), assume that ωi > 0(i = 1, · · · , N)
or ωi < 0 (i = 1, · · · , N) holds. Then, there exists a

traversal line segment Σ at any point in x ∈ M(ε), and

it is satisfied that x ∈ Σ and Σ infinitely intersects with

solution trajectories of the system (2) with (9).

(Proof) We assume that ωi > 0 (i = 1, · · · , N) or

ωi < 0 (i = 1, · · · , N) holds. Then, a solution trajectory of

the system (2) with (9) always circles to the counterclockwise

rotation or to the clockwise rotation. Now, for a point x ∈ M ,

we consider a half line whose origin is O and that passes

through x, and define a subset Σ ⊂ M as the intersection

of the half line and M . Since the velocity vector field of the

system (2) with (9) always has the velocity component of

the counterclockwise rotation or the clockwise rotation, the

inner product of a normal vector of Σ and the vector field

of the system (2) with (9) at any point in Σ is not equal

to 0 and its sign does not change, that is, Σ is traversal.

Moreover, in each Mi (i = 1, · · · , N), since the velocity
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vector field of the system (2) with (9) always has the velocity

component of the clockwise rotation or the counterclockwise

rotation, a solution trajectory of the system (2) with (9)

x(t) that intersected Σ intersects Σ in a finite time again.

Consequently, it turns out the solution trajectory intersects

Σ infinitely.

Using Lemmas 1–3, we can derive the main theorem on

the existence of the limit cycle of the system (2) with (9).

Theorem 2 : For the N -modal and 2-dimensional piecewise

affine system (2) with (9), assume that ωi > 0(i = 1, · · · , N)
or ωi < 0 (i = 1, · · · , N) holds. Then, the unique and stable

limit cycle of the system (2) with (9) is equivalent to C.

(Proof) By the result on the hybrid Poincare-Bendixson

theorem derived in [3], [10], it turns out that sufficient

conditions for the existence of stable limit cycles of the

system (2) with (9) in M(ε) are the following three: (i) M(ε)
is a positively invariant, bounded and closed set, (ii) there

do not exist any equilibrium points at the boundary and in

the interior of M(ε) (iii) there exists a traversal line segment

Σ ⊂ M(ε) such that x ∈ Σ and Σ infinitely intersects with

solution trajectories of the system (2) with (9). Since we

have confirmed these three conditions in Lemma 1, 2, and

3, we can see that there exists a stable limit cycle in M(ε)
for the system (2) with (9) for any admissible ε. Moreover,

since M(ε) converges to C as the values of ε goes to 0, it

can be confirmed that C is a unique and stable limit cycle.

Hence, the proof is completed.

B. Analysis of Rotational Directions and Periods

This section presents theoretical analysis on rotational

directions and periods of limit cycle solution trajectories of

the system (2) with (9). First, we consider the relationship

between rotational directions of limit cycles and the param-

eters in (9). We can easily derive the following result.

Proposition 1 : For the N -modal and 2-dimensional piece-

wise affine system (2) with (9), its limit cycle solution

trajectory moves in the counterclockwise rotation for ωi >
0 (i = 1, · · · , N), and conversely it moves in the clockwise

rotation for ωi < 0 (i = 1, · · · , N).

(Proof) The proof of this proposition is trivial from the

discussion in the previous section.

Next, we analyze periods of limit cycles of the system (2)

with (9). It can be expected that after a solution trajectory

of the system (2) with (9) converges to C, it behaves as a

periodic trajectory. By calculating the velocity component

of the vector of the system along C, we can derive the next

proposition.

Proposition 2 : When a limit cycle solution trajectory of

the N -modal and 2-dimensional piecewise affine system (2)

with (9) is sufficiently close to C, the period with which it

rotates around C is given by

T ≈

N
∑

i=1

1

|ωi|
. (15)

(Proof) The velocity component of a solution trajectory vi
of (2) with (9) in Di to the direction of pi − pi+1 is given

by (13). The length of Ci: li can be calculated as

li =
√

(p1i − p1i+1
)2 + (p2i − p2i+1

)2. (16)

Therefore, we can obtain the period T as

T ≈

N
∑

i=1

li
|vi|

=
N
∑

i=1

1

|ωi|
. (17)

This completes the proof of this proposition.

From Proposition 1 and 2, it turns out that by turning the

parameters ωi (i = 1, · · · , N) in ai (i = 1, · · · , N) of

(9), we can determine the rotational direction and the period

of a limit cycle solution trajectory of the N -modal and 2-

dimensional piecewise affine system (2) with (9).

V. SIMULATIONS

In this section, we consider an example and carry out some

numerical simulations to confirm the results derived in the

previous sections. We now give data of the polygon with

N = 8 as P1 = (1.20, 0.00), P2 = (0.19, 0.23), P3 =
(0.60, 1.04), P4 = (0.00, 0.70), P5 = (−0.60, 1.04), P6 =
(−0.80, 0.00), P7 = (−0.50, −0.87), P8 = (0.40, −0.69),
which are shown in Fig. 4. First, we use the parameters in

(9) as ωi = 1 (i = 1, · · · , 8). Then, the piecewise affine

system is given by

a1 =

[

−0.94652
0.50876

]

, A1 =

[

−0.0529 −0.2323
−0.2323 −1.0201

]

,

a2 =

[

0.458276
0.785564

]

, A2 =

[

−0.6561 0.3321
0.3321 −0.1681

]

,

a3 =

[

−0.7428
−0.088

]

, A3 =

[

−0.1156 0.204
0.204 −0.36

]

,

a4 =

[

−0.4572
−0.592

]

, A4 =

[

−0.1156 −0.204
−0.204 −0.36

]

,

a5 =

[

−1.06528
−0.8736

]

, A5 =

[

−1.0816 0.208
0.208 −0.04

]

,

a6 =

[

−0.30552
−1.0788

]

, A6 =

[

−0.7569 −0.261
−0.261 −0.09

]

,

a7 =

[

1.02474
−0.4437

]

, A7 =

[

−0.0324 0.162
0.162 −0.81

]

,

a8 =

[

1.37132
0.0276

]

, A8 =

[

−0.4761 0.552
0.552 −0.64

]

.

(18)

The initial state is set as x0 = [ 0, 0 ]T. The simulation

results are illustrated in Figs. 5–7. Fig. 5 shows the solution

trajectory on the x1x2-plane. In Figs. 6 and 7, the time series

of x1 and x2 are shown, respectively. From these results, we

can see that the solution trajectory that starts from x0 behaves

as a limit cycle for the desired polygonal closed curve C,

and hence Theorem 1 holds. Since we use the parameters

ωi = 1 (i = 1, · · · , 8), the solution trajectory moves in the

counterclockwise rotation, and this result is coincident with

Proposition 1. In addition, we can derive the estimated period
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as T ≈ 8 by Proposition 2, and it is mostly agree about the

simulation result from Figs. 6 and 7.

Fig. 4 : Polygonal Closed Curve of Example
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Fig. 5 : Solution Trajectory on x1x2-Plane
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Fig. 6 : Time Series of x1
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Fig. 7 : Time Series of x2

Next, we use another set of parameters in (9) as ωi =
−2 (i = 1, · · · , 8). The piecewise affine system for these

parameters is given by

a1 =

[

2.08348
−0.18124

]

, a2 =

[

−0.77172
−1.64444

]

, a3 =

[

1.0572
0.932

]

,

a4 =

[

1.3428
−0.428

]

, a5 =

[

−0.46528
2.2464

]

, a6 =

[

−1.20552
1.5312

]

,

a7 =

[

−1.67526
−0.9837

]

, a8 =

[

−1.028682
−2.0424

]

. (19)

and Ai (i = 1, · · · , 8) are the same as (18).

We set the initial state as x0 = [−1.5, 0]T. The simulation

results are depicted in Figs. 8–10. Fig. 8 illustrates the

solution trajectory on the x1x2-plane. Figs. 9 and 10 show

the time series of x1 and x2, respectively. From these results,

we can see that the solution trajectory that starts from x0

behaves as a limit cycle for the desired polygonal closed

curve C, and hence Theorem 1 holds. Since we use the

parameters ωi = −2 (i = 1, · · · , 8), the solution trajectory

moves in the clockwise rotation, and this result is agree

with Proposition 1. Moreover, the estimated period can be

obtained as T ≈ 2, and it is mostly consistent with the

simulation result from Figs. 9 and 10.
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Fig. 8 : Solution Trajectory on x1x2-Plane
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Fig. 9 : Time Series of x1
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Fig. 10 : Time Series of x2

In Fig. 11, some simulation results for some polygons

are illustrated. By approximating arbitrary 2-dimensional

continuous curve by a polygon, we can use the synthesis

method proposed in this paper for various types of curves.

VI. CONCLUSION

In this paper, we have developed a synthesis method of

a multi-modal and 2-dimensional piecewise affine system

with a unique and stable limit cycle which is consistent with

a desired polygonal closed curve. We have also shown the

mathematical guarantee for the existence and uniqueness of

the limit cycle. Moreover, we have given theoretical analysis

on rotational directions and periods of limit cycles, and

derives the relationships between these characteristics and

the parameters of the system.

Our future work includes applications of the proposed

synthesis method to real systems, a new limit cycle synthesis

method for piecewise affine control systems, and extensions

to multi-dimensional piecewise affine systems.
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[6] F. Gómez-Estern, J. Aracil, F. Gordillo and A. Barreiro, “Generation

of Autonomous Oscillations via Output Feedback,” in Proc. of IEEE

CDC 2005, Seville, Spain, pp.7708–7713, 2005
[7] A. Ohno, T. Ushio and M. Adachi, “Synthesis of Nonautonomous

Systems with Specified Limit Cycles,” IEICE Trans. Fundamentals,
vol.E89-A, No.10, pp.2833–2836, 2006
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