
Open Stochastic Systems

Jan C. Willems

Abstract— The problem of giving an adequate definition of
an open stochastic system is addressed and motivated using
examples. A stochastic system is defined as a probability triple
on the outcome space. The collection of events is an essential
part of a stochastic model and it is argued that for phenomena
with as outcome space a finite dimensional vector space, the
framework of classical random vectors with the Borel σ -algebra
as events is inadequate even for elementary applications. A
stochastic system is linear if the events are cylinders with fibers
parallel to a linear subspace of a vector space. We also address
interconnection of stochastic systems.
Keywords: Stochastic system, linearity, gaussian system, inter-
connection.

I. INTRODUCTION

This CDC presentation is a short version of a more

extensive article [1] that has been submitted to the IEEE

Transactions on Automatic Control.

We discuss stochastic systems from the point of view

explained in [2] for deterministic systems. This setting goes

under the name of the ‘behavioral approach’. The two main

underlying ideas are the following.

The first point is that the best way to think of a model is

as a em relation between variables, rather than a map from

some variables to some others (which is the idea underlying

input/output thinking). The second point is that the best

way to think of a model is as an open system and that a

mathematical theory of modeling should reflect this aspect

from the very beginning. A model should incorporate the

influence of the environment, as an unmodeled feature. Open

systems are the building blocks for modeling. They allow

to construct models of complex systems from models of

subsystems, through ‘tearing, zooming, and linking’ (see [2,

Figure 1]).

The aim of this presentation is to put forward some of

these ideas in the context of stochastic systems. We deal

mainly with phenomena whose outcomes take their value in

a finite dimensional real vector space.

Whereas the mathematical definition of a probability space

and the concepts used in stochastic analysis can accommo-

date a very wide variety of phenomena, usually attention

is focussed on situations in which the events for which the

probability is defined form a very rich σ -algebra. This means

that for phenomena that take their values in a countable set,

all subsets of outcomes are assumed to be events, while for

phenomena that take their values in a finite dimensional
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vector space, the probability is defined for the Borel σ -

algebra, leading to models which can be described by their

probability distribution or density. The theme underlying the

present article is that this emphasis on rich σ -algebras (as

the Borel σ -algebra for random vectors) is unduly restrictive,

even for elementary applications. Stochastic models with the

Borel σ -algebra as events are basically closed systems. These

models do not incorporate the influence of the environment.

We start with two motivational examples, a noisy resistor

and the price/demand and price/supply elasticities of an

economic good. We argue that in these examples the Borel

σ -algebra requires stochastic modeling of many more events

than justified.

Motivated by these examples, we define a stochastic sys-

tem as a general probability triple on an outcome space and

incorporate notions as linearity and gaussian systems in this

context. Next, we discuss interconnection of stochastic sys-

tems. Interconnection of two stochastic systems means that

two distinct probabilistic laws are simultaneously imposed on

an outcome space. We deal with interconnection in terms of

complementarity. This part is the main mathematical novelty

of the paper, and we feel that the notion of interconnection

should be of considerable interest in the field.

II. MOTIVATIONAL EXAMPLES

Example 1: A noisy resistor. Consider a resistor with

thermal noise. Model this as an Ohmic resistor in series with

R

ε+

-

+

-

V

I

Fig. 1. Noisy resistor

a voltage source, as shown in Figure 1, often referred to as a

Johnson-Nyquist resistor. This leads to the following relation

between the current I through the resistor and the voltage V

across it

V = RI+ ε (1)

with R the value of the resistor and ε the voltage generated

by the noisy resistor. The noise ε is zero mean, wide band,

and gaussian with standard deviation proportional to
√

RT

with T the temperature of the resistor.

Assume therefore that in (1) ε is a gaussian random

variable with zero mean and variance σ . It then follows that
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V −RI is a random variable. But
[

V
I

]

is not a 2-dimensional

random vector in the usual sense of the term, since it is not

implied that all the Borel sets in R
2 are events. In other

words, not all open and closed subsets of the
[

V
I

]

-space is

assigned a probability. In particular, we cannot speak of the

distribution of the vector
[

V
I

]

. How should we then view the

2-dimensional vector
[

V
I

]

as a stochastic object? This is the

first question which we deal with in this article.

Suppose now that we interconnect the noisy resistor with

another circuit, for example a voltage source with internal

resistance and thermal noise. This leads to the configuration

R
R′

ε

ε ′

V0
+

-

+

-

+

-
V

I

Fig. 2. Interconnection of noisy resistors

shown in Figure 2, with V0 a constant voltage, R′ the internal

resistance, and ε ′ a random variable that is independent of

ε . Assume that ε ′ is gaussian, with zero mean and standard

deviation σ ′. Intuitively,
[

V
I

]

in the interconnected circuit

becomes a 2-dimensional random vector in the classical

sense of the term. Is this the case for any interconnecting

circuit, or are there regularity conditions required on the

interconnection? How is the random vector
[

V
I

]

deduced

from the mathematical specifications of the noisy resistor

and the circuit it is interconnected with? This is the second

question which we deal with in this article. �

Example 2: Price/demand and price/supply. Important

characteristics of an economic good are the responsiveness

of the demand and of the supply to the price. Typical

price/demand and price/supply characteristics are shown in

Figure 3. When these characteristics pertain to the same

good, we obtain the equilibrium price, demand, and supply

determined by the intersection of the price/demand and

price/supply characteristics.

priceprice

demand supply

Fig. 3. Deterministic price/demand and price/supply characteristics

In order to express that the demand depends on uncertain

factors other than the price, randomness can be added to

the price/demand characteristic. This leads to models that

state in particular that the price/demand vector lies for

example in the shaded region of the left part of Figure 4

with a certain probability. While it is viable to assign a

probability to similar regions of the price/demand plane, it is

not reasonable to assume that the price/demand is modeled as

a 2-dimensional random vector in the usual sense of the term.

Indeed, the uncertainty of the price/demand phenomenon

does not imply a probability distribution for the price. No

such probability distribution for the price is implied in the

deterministic case, so why should a distribution be implied

in the stochastic case? Similarly, for the price/supply it is

reasonable to assume for example that the price/supply vector

lies in the shaded region of the right part of Figure 4 with

a certain probability, and that a probability is assigned to

similar regions of the price/supply plane.

price price

demand supply

Fig. 4. Stochastic price/demand and price/supply characteristics

The equilibrium price/demand/supply is obtained by ad-

ding the condition demand = supply. When this equilibrium

condition is imposed on the stochastic price/demand and

price/supply phenomena, is it reasonable to expect that the

price, demand, and supply then become random variables in

the classical sense of the term? How is the randomness in

the equilibrium case deduced from the original price/demand

and price/supply randomness? We view the addition of the

equilibrium condition as ‘interconnection’. We shall see that

under mild conditions the interconnection leads to a 2-

dimensional probability distribution for the equilibrium price

and the demand = supply.

The question how to mathematize the randomness of

the price/demand and the price/supply is the main problem

we deal with in this article. Further, we formalize how to

combine the random models of the price/demand and of

the price/supply into a random model when the equilibrium

condition demand = supply is added. �

III. STOCHASTIC SYSTEMS

Definition 1: A stochastic system Σ is a probability triple

(W,E ,P)

with

◮ W a non-empty set, the outcome space, with elements

called outcomes,

◮ E a σ -algebra of subsets of W; elements of E are called

events,

◮ P : E → [0,1] a probability.

�
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The construction of a stochastic model involves therefore

three steps. Firstly, the phenomenon is formalized mathemat-

ically by determining the outcome space. Subsequently, the

set of events to which we are willing to assign a probability

is specified. Finally, we need to quantify the probability of

these events. We view the specification of the events E as a

crucial part of probabilistic modeling, contrary, as we shall

see, to the classical view of probabilistic modeling.

Two important special cases are the following.

◮ Let W be a countable set and E = 2W (2W denotes the

power set of W, that is, the class of all subsets of W).

P can then be specified by giving the probability of the

outcomes, p : W → [0,1], and defining P by P(E) =

∑e∈E p(e).
◮ Let W = R

n and E = B (Rn) (B (Rn) denotes the

Borel σ -algebra on R
n). P can then be specified by

a probability distribution on R
n, or, if the distribution is

sufficiently smooth, by the probability density function

p : Rn → [0,∞) leading to P(A) =
∫

A p(x)dx.

We refer to these special cases as classical stochastic

systems. For a classical stochastic system ‘essentially ev-

ery’ subset of W is an event and is therefore assigned a

probability. Thus for classical stochastic systems, the events

are obtained from the structure of the outcome space. No

probabilistic modeling enters in the specification of the

events. However, in Definition 1, the event space E is very

much a part of the stochastic model. We now illustrate the

importance of specifying E by showing that our motivating

examples are not classical stochastic systems.

Example 1: The noisy resistor. Equation (1) defines a

I

V

V = RIevent

Fig. 5. Events for the noisy resistor

stochastic system with outcome space W = R
2 and as

outcomes voltage/current vectors
[

V
I

]

. The events are the sets

{[

V

I

]

∈R
2 | V −RI ∈ A with A a Borel subset of R

}

(see Figure 5). The probability of this event is equal to the

probability measure of A ⊆ R, with the probability of A

induced by the normal distribution with mean 0 and standard

deviation σ .

Hence, whereas ε is a classical random variable,
[

V
I

]

is not

a classical random vector in R
2. Only cylinders with sides

parallel to V = RI (see Figure 5) are events and are assigned

a probability. In particular, V and I are not classical random

variables. Indeed, the basic model of a noisy resistor does

not imply a stochastic law for V or I, in the sense that (1)

does not model V and I individually as classical random

variables. The model states only that V −RI is a classical

random variable. �

Example 2: Price/demand and price/supply. For the

price/demand, the outcome space W is [0,∞)2 with as

outcomes price/demand vectors
[ p

d

]

. The events are the sets

for which the probability of occurrence in the set is defined,

in the sense illustrated for instance by the shaded area of the

left part of Figure 4.

For the price/supply, the outcome space W is [0,∞)2 with

as outcomes price/supply vectors [ p
s ]. The events are the sets

for which the probability of occurrence in the set is defined,

in the sense illustrated for instance by the shaded area of the

right part of Figure 4.

The basic idea again is that a stochastic model of the

price/demand or the price/supply characteristic of an eco-

nomic good only models the relation between the price and

the demand or between the price and the supply. But it does

not imply that the price, the demand, and the supply are

themselves classical random variables. �

IV. LINEARITY

Definition 2: The n-dimensional stochastic system (Rn,E ,P)
is said to be linear if there exists a linear subspace L

of R
n such that the events are the Borel subsets of the

quotient space R
n/L, a finite dimensional real vector space

of dimension n−dimension(L). The probability of an event

E ∈ E is given by a Borel probability on R
n/L. L is called

the fiber of the linear stochastic system, and dimension(L)
is called the number of degrees of freedom of the linear

stochastic system (Rn,E ,P). An n-dimensional stochastic

system is said to be gaussian if it is linear and if the Borel

probability on R
n/L is gaussian. �

We consider a measure that is concentrated in a point to be

a gaussian measure. More generally, a gaussian probability

measure may be concentrated on a linear variety.

The idea behind Definition 2 is illustrated in Figure 6. The

L
event

Fig. 6. Events for a linear system

events are cylinders in R
n with sides parallel to the fiber

L. A linear n-dimensional stochastic system is a classical n-

dimensional random vector if and only if L= {0}. Therefore
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every classical random vector defines a linear stochastic

system. At the other extreme, when L = R
n, the σ -algebra

of events trivializes to { /0,Rn}.

A more concrete way of thinking about a linear n-

dimensional stochastic system is in terms of two linear

subspaces L,M of Rn that are complementary, L⊕M=R
n,

and a Borel probability PM on M. Take as events the sets of

the form

E = {E ⊆R
n | E =

⋃

w∈M

(w+L) with M a Borel subset of M}

(see Figure 7) and set P(E) equal to PM(M). A linear n-

L
M

M

event E

Fig. 7. Events for a linear system

dimensional stochastic system is thus parameterized by its

fiber L and a Borel probability on M.

V. INTERCONNECTION OF STOCHASTIC SYSTEMS

One of the central aspects of systems thinking is the

possibility of combining subsystems. This feature allows to

set up a model of a complex system from models of simpler

subsystems. In [2] we have discussed such ‘tearing, zooming,

and linking’ modeling procedures for deterministic systems.

w

w1 w2SYSTEM 1

SYSTEM 1 SYSTEM 2

SYSTEM 2

Fig. 8. Interconnection of systems

In this section we discuss interconnection of stochastic

systems. We start by considering the situation shown in

Figure 8 with the assumptions that the two interconnected

systems are stochastically independent before interconnec-

tion. Note that interconnection comes down to imposing

w = w1 = w2, hence imposingtwo distinct probabilistic laws

on the same set of variables. Is it possible to define one

law which respects both laws? Clearly we cannot simply

state P(E) = P1(E) = P2(E) if E is an event that belongs to

both interconnected system and if P1(E) 6= P2(E). We call

the required regularity condition ‘complementarity’.

Definition 3: The stochastic systems Σ1 = (W,E1,P1) and

Σ2 = (W,E2,P2) are said to be complementary if for all

E1,E
′
1 ∈ E1 and E2,E

′
2 ∈ E2 there holds

[[E1 ∩E2 = E ′
1 ∩E ′

2]]⇒ [[P1(E1)P2(E2) = P1(E
′
1)P2(E

′
2)]].

�

Two σ -algebras E1 and E2 on a set W are said to be

complementary if for all nonempty sets E1,E
′
1 ∈ E1,E2,E

′
2 ∈

E2 there holds

[[E1 ∩E2 = E ′
1 ∩E ′

2]]⇒ [[E1 = E ′
1 and E2 = E ′

2]].

In words, system complementarity requires that the intersec-

tion of two evens from each of the σ -algebras determines

the product of the probabilities of the events uniquely, while

complementarity of the σ -algebras requires that the intersec-

tion of two sets from each of the σ -algebras determines the

intersecting sets uniquely.

Complementarity of two stochastic systems is implied by

the complementarity of the associated σ -algebras. On the

other hand, it is easy to construct examples that show that

complementarity of two stochastic systems does not imply

complementarity of the associated σ -algebras. The problem

is that the stochastic systems may have too many zero

probability events. Complementarity of the event σ -algebras

is a more primitive condition that is convenient for proving

complementarity of stochastic systems.

Definition 4: Let Σ1 = (W,E1,P1) and Σ2 = (W,E2,P2) be

stochastic systems and assume that they are complementary.

Then the interconnection of Σ1 and Σ2, assumed stochas-

tically independent, denoted by Σ1 ∧Σ2, is defined as the

stochastic system

Σ1 ∧Σ2 := (W,E ,P)

with E the σ -algebra generated by E1 ∪ E2, and

with the probability P defined through rectangles

{E1 ∩E2 | E1 ∈ E1,E2 ∈ E2} by

P(E1 ∩E2) := P1(E1)P2(E2)

for E1 ∈ E1,E2 ∈ E2. �

The definition of the probability P for rectangles uses

complementarity in an essential way. Note that E is the σ -

algebra generated by the rectangles. It is readily seen that

the class of subsets of W that consist of the union of a finite

number of disjoint rectangles forms an algebra of sets, that

is, a class of subsets of W that is closed under taking the

complement, under intersection, and under union. The prob-

ability of rectangles defines the probability on the subsets
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of W that consist of a union of a finite number of disjoint

rectangles. By the Hahn-Kolmogorov extension theorem, this

leads to a unique probability measure on E . This construction

of the probability measure is completely analogous to the

construction of a product measure in measure theory.

Note that E1 and E2 are both sub-σ -algebras of E . More-

over, for E1 ∈ E1 and E2 ∈ E2, P(E1 ∩E2) = P1(E1)P2(E2) =
P1(E1 ∩W)P2(W ∩ E2) = P(E1)P(E2). Hence E1 and E2

are stochastically independent sub-σ -algebras of E . This

expresses that Σ1 and Σ2 model phenomena that are stochas-

tically independent.

We illustrate interconnection by our two examples.

Example 1: The noisy resistor. Consider the interconnection

of the noisy resistor and a voltage source with an internal

resistance and thermal noise (see Figure 2). System 1 cor-

responds to the noisy resistor and is described by equation

V = RI+ ε . System 2 correspond to the voltage source, and

is described by equation V = V0 −R′I + ε ′. An associated

rectangular event is shown in Figure 9. It is easily seen

I

V

V0

V = RI

V =V0 −R′I

event ∈ E1

event ∈ E2

event ∈ E

Fig. 9. Events for the interconnected circuits

that the corresponding σ -algebras are complementary if and

only if R + R′ 6= 0. The σ -algebra corresponding to the

interconnection then becomes the Borel σ -algebra on R
2, and

[

V
I

]

in the interconnected circuit is a classical 2-dimensional

random vector. �

Example 2: Price/demand/supply. We start with system

Σ1 = ([0,∞)2,E1,P1) that models the price/demand, and a

system Σ2 = ([0,∞)2,E2,P2) that models the price/supply.

The elements of E1 and E2 are those to which a probability is

assigned (see the discussion of this example in Section III).

Call the variables in Σ1,
[ p1

d

]

and those in Σ2, [ p2
s ]. Intercon-

nection of Σ1 and Σ2 means p1 = p2 = p (expressing that the

prices pertain to the same good), and d = s (expressing the

equilibrium condition demand = supply). Under reasonable

conditions (related, for example, to the cardinality, shape, and

monotonity of the price/demand and price/supply events) the

associated σ -algebras E1 and E2 are complementary, and the

interconnection σ -algebra consists of the Borel subsets of

[0,∞)2. A rectangular event for the interconnected stochastic

system is shown in Figure 10.

Note that for this example, independence of Σ1 and Σ2 is

acceptable, since the probabilities in Σ1 depend on things

price

demand supply

event ∈ E1

event ∈ E2

event ∈ E

Fig. 10. Price/demand/supply event

like consumer preferences, while the probabilities in Σ2

depend on things like the production technology. It is not

unreasonable to assume these to be independent phenomena.

�

VI. OPEN VERSUS CLOSED SYSTEMS

Definition 4 shows that it is possible to impose two distinct

probabilistic laws on an outcome space if the stochastic

systems are complementary.

Assume that Σ1 = (Rn,B(Rn),P1) is a classical random

vector and that Σ2 = (Rn,E2,P2) is a stochastic system with

E2 ⊆ B(Rn). Then the σ -algebras associated with Σ1 and

Σ2 can only be complementary provided E2 is trivial, that

is, E2 = { /0,Rn}. More generally, if the stochastic systems

Σ1 and Σ2 are complementary then for all E ∈ E2, we have

P1(E) = P1(E)P2(E) = P2(E). Therefore the following zero-

one law must hold:

[[E ∈ E2]]⇒ [[P1(E) = P2(E) = 0 or 1]].

This is a very restrictive condition on Σ2. For example, if

support(P1) = R
n, then E2 cannot contain sets E such that

both E and Ecomplement have a non-empty interior.

We conclude that basically classical random vectors are

models of closed systems. These systems cannot be intercon-

nected with other systems. Open systems require a coarse

σ -algebra. This shows a serious limitation of the classical

stochastic framework, since interconnection is one of the

basic tenets of model building.

VII. FUNCTIONS OF STOCHASTIC SYSTEMS

In this section we discuss functions of a random system.

Consider the equation

f (w) = w′ (2)

with w governed by the stochastic system (W,E ,P) and

f a map from W into W
′. We want to construct the

stochastic system (W′,E ′,P′) that governs the outcomes of

the variables w′ ∈W
′. A special case of (2) is a projection

(w1,w2) 7→ w1, which we have referred in Section V as

‘elimination’.

In classical probability theory, with for example W= R
n

and W
′ = R

n
′
, the assumption is usually made that the
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σ -algebras E and E
′ are given, for example as Borel σ -

algebras, and that the map f is measurable, for example con-

tinuous, leading to a definition of P′. In this case the events

E and E
′ are obtained from the topological structure of the

outcome spaces W and W
′ and therefore the construction of

E and E
′ does not involve the probabilistic laws. However,

the main theme of the present article is that the events are

an essential part of a stochastic model and must therefore be

constructed in accordance with the sets whose probability

the model wishes to assign. The question therefore emerges

how to choose E
′ from E so that as many subsets of W′ as

possible are events with a well-defined probability and such

that f : (W,E )→ (W′,E ′) is measurable.

We start with some facts about σ -algebras and pull-

backs. Let f : W → W
′. Denote by f−1 the set theoretic

inverse of f , that is, for E ′ ⊆ W
′, define f−1(E ′) := {w ∈

W | f (w) ∈ E ′}. The pullback f−1 satisfies f−1(W′) =W,

f−1
(

E ′complement
)

= f−1 (E ′)complement
, and f−1 (

⋃

k∈N E ′) =
⋃

k∈N f−1
(

E ′
k

)

. These relations show that f−1 takes σ -

algebras into σ -algebras, in both directions. More concretely,

if E
′ is a σ -algebra of subsets of W′, then the class of subsets

E of W defined by

[[E ∈ E ]] :⇔ [[E = f−1(E ′) for some E ′ ∈ E
′]] (3)

is a σ -algebra of subsets of W. Conversely, if E is a σ -

algebra of subsets of W, then the class of subsets E
′ of W′

defined by

[[E ′ ∈ E
′]] :⇔ [[ f−1(E ′) ∈ E ]] (4)

is a σ -algebra of subsets of W′.
Let (W,E ,P) be a stochastic system and f : W → W

′.
Define E

′ by (4). Then f : (W,E )→ (W′,E ′) is measurable,

leading to to the probability

P′(E ′) := P
(

f−1(E ′)
)

for E ′ ∈ E
′.

(W′,E ′,P′) is the stochastic system induced by (2).

The construction of E
′ defined by (4) leads to the largest

class of subsets of W
′ for which the probability can be

defined from the probability of events in E . Note in particular

that not all subsets of the form f (E) for E ∈ E have a well-

defined probability.

For the noisy resistor with R 6= 0, the maps
[

V
I

]

7→ V

and
[

V
I

]

7→ I both generate the trivial stochastic system with

events { /0,R}. In particular, V and I are therefore not classical

random variables. The only linear functional that generates a

non-trivial stochastic system is the map
[

V
I

]

7→V −RI which

generates a classical gaussian random variable.

We end with some general comments regarding stochastic

modeling. A common way in which probability enters into a

system is that some of the variables are modeled as random

and influence other related variables, and the aim is to

describe the stochastic behavior of these related variables.

As a typical example think of modeling the terminal cur-

rent/voltage behavior of an electrical circuit that contains

stochastic sources.

We explained how to construct the stochastic laws gov-

erning w′ from the stochastic laws of w when w and w′ are

related by (2). When w and w′ are related by an equation

like f (w′) = w, then the construction of (3) shows how to

define the w′-events from the w-events.

The definition of the w′-events from the w-events is more

involved when w and w′ are related by an implicit equation

like f (w,w′) = 0. An example of a system governed by an

equation of this sort is y= f (u,ε),w′ = (u,y), with ε random

playing the role of w in the equation f (w,w′) = 0. When

ε a classical random vector y = f (u,ε) can be dealt with

by considering u as an input ‘parameter’ which together

with ε generates the ‘output’ y. It is possible approach this

situation by viewing u as random, and that u together with ε

generates the random y. For example, for the noisy resistor,

one could assume I is a random variables which together

with ε generates the random variable V through (1). There

are several drawbacks of dealing with the noisy resistor in

this way, the main ones being that it does not put I and

V a priori on equal footing, but, more importantly, that the

physics simply does not specify a random distribution for

I or for V . From the physical point of view our way of

dealing with
[

V
I

]

in terms of a coarse σ -algebra appears

more satisfying conceptually.

Other ways of specifying random systems is by giving

the ‘conditional’ probability of the output ‘parametrized’

by the input variable. Such situations occur frequently in

engineering applications, for example as models for noisy

communication channels. The probabilistic structure of the

variables w′ defined by f (w,w′) = 0, in particular or (u,y)
defined by y = f (u,ε), and its relation with the concepts put

forward in Definitions 1, 2, and 3 form a topic of ongoing

research.

VIII. CONCLUSION

The mathematical specification of a stochastic system

involves the events on an equal footing as the probability

measure. The need to have not all Borel sets as events is

essential even for elementary applications. Interconnection

of stochastic systems requires suitable properties of the event

space, as complementarity of the stochastic systems or the

associated σ -algebras.
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