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Abstract— This paper considers 2D systems described by the
discrete Roesser model with linear dynamics in the forward
path and a feedback path containing a memoryless, possibly
time-varying, nonlinearity. Based on the extension of absolute
stability theory to this class of systems, sufficient conditions
for absolute p-stability are obtained and for the particular
case of p = 2 linear matrix inequality based tests for this
property are obtained, together with an algorithm to design
a stabilizing nonlinear control law. The extension of these
results to 2D discrete systems described by the Roesser model
with Markovian jumps is also given. A numerical example to
demonstrate the applicability and effectiveness of these new
results concludes the paper.

I. INTRODUCTION

Multidimensional systems propagate information in n > 1
independent directions but in this paper attention is restricted
to the 2D case where the dynamics evolve over the right-
upper quadrant of the associated plane. The study of 2D
systems is motivated by many applications in, for example,
image and signal processing and also by systems theo-
retic questions that cannot be solved by direct extension
of standard, or 1D, theory. In terms of models for the
dynamics, there is a much wider variety of signals possible
in multidimensional systems where, for example, information
propagation could be functions of discrete variables in both
directions, of continuous variables in both directions, or a
discrete variable in one direction and continuous in the other.

Consider the case when information propagation in both
directions is a function of a discrete variable, for which
there are two extensively studied state-space models. The
Roesser model [1] defines a state vector for each direction
of information propagation whereas the Fornasini-Marchesini
model [2] uses a single state vector. Repetitive processes [3]
also have a 2D systems structure but information propagation
in one of the two directions only occurs over a finite duration.
In control systems terms, repetitive processes do provide
physical applications, such as iterative learning control,
where a 2D systems approach can be applied, and this area
has recently seen experimental verification studies [4].
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Stability analysis and control law design for 2D discrete
linear systems has received considerable attention in the liter-
ature, including the case when there is uncertainty associated
with the process model. A Linear matrix Inequality (LMI)
approach to robust stabilization has also been extensively
studied in, for example, [5]. The vast majority of the results
currently available on control related analysis of 2D linear
systems require the application of a linear state control law
and hence, unless all state vector entries are available for
measurement, an observer will be required for implementa-
tion.

A significant proportion of the literature on the control of
multidimensional systems is based on a linear plant model
and implementation. The first part of this paper deals with
the case where the process model is linear and the feedback
path contains a memoryless (in general time-varying) nonlin-
earity, which depends on the physical characteristics of the
feedback channel. In 1D control systems theory this form of
nonlinearity has been intensively studied in the framework of
absolute stability theory [6] using, for example, the Popov
criteria and the Kalman-Yacubovich-Popov (KYP) lemma.
This paper first extends the absolute stability approach to 2D
systems described by the Roesser model, where the resulting
control design algorithms can in at least one case of interest
be computed using LMIs.

The second area addressed in this paper is 2D discrete
linear systems described by the Roesser model where fail-
ures in operation can occur which is modeled as random
switching. In particular, the failures are modeled by a state-
space models with jumps in the parameter values and/or
structure governed by a Markov chain with a finite set of
states, often termed Markovian jump systems or systems
with random structure [7], [8]. Results on the development of
control theory for such systems, which address issues such as
stability, optimal and robust control problems in the 1D case
can be found in, for example, [9]. In [10] results obtained for
1D Markovian jump systems are extended to investigate the
problems of stabilization via state feedback and H∞ control
of 2D discrete-time Markovian jump systems described by
the Roesser model. The new results in this part of the paper
are for the case when the feedback control system of the first
part also has failures modeled by Markovian jumps.

Throughout this paper the notation M > 0 (respectively)
M < 0 is used to denote a symmetric positive-definite
(respectively negative-definite) matrix. Also M ≥ 0 (re-
spectively M ≤ 0) is used to denote a symmetric positive
(respectively negative) semi-definite matrix. Let y be an
m × 1 vector with elements yk, 1 ≤ k ≤ m. Then |y| =
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(
m∑
k=1

|yk|2
) 1

2

and |y|p =

( m∑
k=1

|yk|2
) 1

2
p .

II. PROBLEM FORMULATION AND PRELIMINARIES

The systems considered in this part of the paper are
described by the 2D discrete linear systems Roesser state-
space model[

h(i+ 1, j)
v(i, j + 1)

]
= A

[
h(i, j)
v(i, j)

]
+Bu(i, j),

z(i, j) = C

[
h(i, j)
v(i, j)

]
, (1)

where h ∈ Rnh and v ∈ Rnv are the horizontal and vertical
state vectors respectively and u ∈ Rnu and z ∈ Rnz are
the input and output vectors, respectively. The boundary
conditions are

h(0, j) = h0,j , v(i, 0) = vi,0, i, j ∈ Z+. (2)

Also it is convenient to compatibly partition the matrices
A, B and C in (1) as

A =
[
A11 A12

A21 A22

]
, B =

[
B1

B2

]
, C = [C1 C2].

Use will also be made of the local state vector for (1) defined
as

x(i, j) =
[
hT (i, j) vT (i, j)

]T
(3)

In this paper, the subject of interest is the application of
a nonlinear output feedback control law of the form

u = ϕ(z), ϕ(0) = 0, (4)

to examples described by (1), where it is assumed that ϕ(z)
satisfies the inequality

zTQz + 2zTSϕ(z) + ϕT (z)Rϕ(z) ≥ 0, z ∈ Rnz , (5)

where Q = QT , R = RT and S are matrices of compatible
dimensions. This last inequality (5) is a standard constraint
in absolute stability theory [6] for 1D systems, and absolute
p-stability for the 2D system formed by applying (4) to (1)
under (5) is defined as follows.

Definition 1: A 2D linear system (1) with control law (4)
applied is said to be absolutely p-stable if for all boundary
conditions (2) satisfying the inequality

∞∑
j=0

|h(0, j)|p +
∞∑
i=0

|v(i, 0)|p <∞ (6)

and for all nonlinear functions ϕ(z) satisfying (5)

|h(i, j)|p + |v(i, j)|p → 0,

as i+ j →∞.
The next step is to develop constructive conditions for
absolute p -stability for the system described by (1), (4)
and (5) in the form of computationally tractable stability test.

III. STABILITY THEORY AND STABILIZATION

Consider the following candidate Lyapunov function for
the system considered in terms of the local state vector (3)

V (x(i, j)) = V1(h(i, j)) + V2(v(i, j)), h ∈ Rnh ,

V1(0) = 0, V2(0) = 0,
V1(h(i, j)) > 0, h 6= 0, V2(v(i, j)) > 0, v 6= 0,

(7)

with associated increment

∆V (x(i, j)) = V1(h(i+ 1, j))− V1(h(i, j))
+V2(v(i, j + 1))− V2(v(i, j)). (8)

The following result is the 2D counterpart of a well known
exponential stability theorem [6].

Theorem 1: Consider the 2D system described by (1) with
control law (4) applied. Suppose also that, for all boundary
conditions satisfying (6) and for all ϕ(z) satisfying (5), there
exist positive constants c1, c2, c3 such that the Lyapunov
function (7) and its associated increment (8) satisfy

c1(|h(i, j)|p + |v(i, j)|p) ≤ V (x(i, j))
≤ c2(|h(i, j)|p + |v(i, j)|p), (9)

and
∆V (x(i, j)) ≤ −c3(|h(i, j)|p + |v(i, j)|p), (10)

respectively. Then this system is absolutely p-stable.
Proof: It follows from (9) and (10) that

V1(h(i+ 1, j)) + V2(v(i, j + 1))
−[V1(h(i, j)) + V2(v(i, j))]

≤ −c3(|h(i, j)|p + |v(i, j)|p)
≤ −c3

c2
[V1(h(i, j)) + V2(v(i, j))]. (11)

Rearranging (11) yields

V1(h(i+ 1, j)) + V2(v(i, j + 1))
≤ λ[V1(h(i, j)) + V2(v(i, j))], (12)

where λ = c2−c3
c2

. Also since V1(h) and V2(v) are positive
definite, 0 < λ < 1 (using (7), c2 > 0 and (12)). Also for i
from 0 to N and j from N to 0,

V1(h(1, N)) + V2(v(0, N + 1))
≤ λ[V1(h(0, N) + V2(v(0, N)],
V1(h(2, N − 1)) + V2(v(1, N))

≤ λ[V1(h(1, N − 1)) + V2(v(1, N − 1))],
V1(h(3, N − 2)) + V2(v(2, N − 1))
≤ λ[V1(h(N, 0)) + V2(v(N, 0))],

...
V1(h(N + 1, 0)) + V2(v(N, 1))
≤ λ[V1(h(N, 0)) + V2(v(N, 0))].
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Adding both sides of these inequalities and using the trivial
identity

V1(h(0, N + 1)) + V2(v(N + 1, 0))
= V1(h(0, N + 1)) + V2(v(N + 1, 0)),

gives

N+1∑
j=0

V1(h(N + 1− j, j)) + V2(v(N + 1− j, j))

≤ λ

 N∑
j=0

V1(h(N − j, j)) + V2(v(N − j, j))


+V1(h(0, N + 1)) + V2(v(N + 1, 0))

and hence

N+1∑
j=0

V1(h(N + 1− j, j)) + V2(v(N + 1− j, j))

≤
N+1∑
j=0

λj(V1(h(0, N + 1− j)) + V2(v(N + 1− j, 0)).

Using (9) now gives

N∑
j=0

(|h(N − j, j)|p + |v(N − j, j)|p)

≤ α

 N∑
j=0

λj(|h(0, N − j)|p + |v(N − j, 0)|p)

 ,
where α = c2/c1, and hence

M∑
N=0

N∑
j=0

(|h(N − j, j)|p + |v(N − j, j)|p)

≤ α[(1 + λ+ . . .+ λM )(|h(0, 0)|p + |v(0, 0)|p)
+(1 + λ+ . . .+ λM−1)(|h(0, 1)|p + |v(1, 0)|p)
+(1 + λ+ . . .+ λM−2)(|h(0, 2)|p + |v(2, 0)|p)

+ . . .+ (|h(0,M)|p + |v(M, 0)|p)]

≤ α[(1 + λ+ . . .+ λM )
M∑
N=0

(|h(0, N)|p + |v(N, 0)|p)].

Since (6) holds and 0 < λ < 1, it follows that the right-hand
side of this last inequality is bounded as M →∞, hence the
series on the left-hand side is convergent and

N∑
j=0

(|h(N − j, j)|p + |v(N − j, j)|p)→ 0

as N →∞. Hence absolute p-stability holds.
Note that this last result is valid if the feedback path is time-
varying, that is, u = ϕ(i, j, z(i, j)), ϕ(i, j, 0) = 0, i, j ∈
Z+.

IV. ABSOLUTE QUADRATIC STABILITY AND
STABILIZATION

A. LMI based stability test

In the quadratic case when p = 2, the following result is
obtained.

Theorem 2: Consider a system described by (1) with a
control law (4) satisfying (5) applied. Then the resulting
controlled system is absolutely quadratically stable if the
following LMIs are feasible[
ATPA− P + CTQC + εI ATPB + CTS

BTPA+ STC BTPB +R

]
≤ 0, (13)

P = diag[P1 P2] > 0.
Proof: Choose the candidate Lyapunov function as the

quadratic form

V (x(i, j)) = hT (i, j)P1h(i, j) + vT (i, j)P2v(i, j),
P1 > 0, P2 > 0. (14)

To guarantee absolute quadratic stability of the system
formed by applying (4) to (1), the increment of (14) should
be negative for all ϕ(z), satisfying (5). Applying the S
procedure [11], this condition holds if for some ε > 0

∆V (x(i, j)) + zT (i, j)Qz(i, j) + 2zT (i, j)Sϕ(z(i, j))
+ϕ(zT (i, j))Rϕ(z(i, j)) ≤ −ε(|h(i, j)|2 + |v(i, j)|2). (15)

Calculating increment and completing the square gives that
if (14) and (15) are valid then Theorem 1 in this case holds
with c1 = λmin(P ), c2 = λmax(P ), c3 = ε, where
λmin(P ), λmax(P ) denote the minimum and maximum
eigenvalues of P, respectively.

B. Stabilization via nonlinear feedback

Consider first the application of the following linear feed-
back control law defined in terms of the local state vector (3)
as

u(i, j) = −Kx(i, j) (16)

to (1). Then the controlled linear system is internally sta-
ble [12] if there exists a matrix H = diag[H1 H2] > 0 such
that

(A−BK)TH(A−BK)−H < 0, (17)

or, the LMIs with variables X and Y[
X (AX −BY )T

AX −BY X

]
> 0, (18)

X = diag[X1 X2] > 0,

are feasible. In which case a stabilizing control law matrix
is given by K = Y X−1.

Suppose that the system (1) has been stabilized by design
of (16) and consider the modified nonlinear control law

u = ϕ(z)−Kx(i, j), ϕ(0) = 0. (19)

Then we have the following result.
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Theorem 3: Suppose that the system (1) has been stabi-
lized by application of the linear state feedback (16) and the
following LMI is feasible[

ATc PAc − P + Q̄+ εI ATc PB + S̄
BTPAc + S̄T BTPB +R

]
≤ 0, (20)

P = diag[P1 P2] > 0,

where Ac = A−BK, Q̄ = CTQC −CTSK −KTSTC +
KTRK, S̄ = CTS − KTR and ε is positive scalar. Then
systems described by (1) are absolutely quadratically stable
under the nonlinear control law (19).

Proof: The result follows immediately on forming
the controlled system state-space model and application of
Theorem 2.

Consider the case when the control law is linear and
actuated only by the system output, that is,

u(i, j) = −Fz(i, j) (21)

and suppose that F satisfies LMI[
Q− SF − (SF )T FT

F −R−1

]
≥ 0. (22)

Then the following corollary to Theorem 3 holds.
Corollary 1: Let K = Y X−1, where the pair (X,Y ) is

solution to (18) and LMI’s (20) and (22) are feasible. Then
system formed by applying the control law (21) to (1) is
internally stable.

V. ROESSER MODELS WITH MARKOVIAN JUMPS AND
NONLINEAR FEEDBACK

The 2D systems considered in this section are described
by the Roesser state-space model[

h(i+ 1, j)
v(i, j + 1)

]
= A(ρ(i, j))

[
h(i, j)
v(i, j)

]
+B(ρ(i, j))u(i, j),

z(i, j) = C(ρ(i, j))
[
h(i, j)
v(i, j)

]
, (23)

where ρ(i, j) is an homogeneous Markov process with a
finite set of states N = {1, . . . , ν} and transition probabilities
given by

P[ρ(i, j + 1) = l|ρ(i, j) = k] = πkl,

P[ρ(i+ 1, j) = l|ρ(i, j) = k] = ωkl. (24)

The remainder of the notation is the same as that for (1).
Consider a nonlinear output feedback control law of the

form
u(i, j) = ϕ(z(i, j), ρ(i, j)), ϕ(0, r) = 0 (25)

where it is assumed that ϕ(z, r) satisfies the inequality

zTQ(r)z + 2zTS(r)ϕ(z, r) + ϕT (z, r)R(r)ϕ(z, r)
≥ 0, z ∈ Rnz , if ρ(i, j) = r (26)

and Q(r) = QT (r), R(r) = RT (r) and S(r) are matrices
of compatible dimensions.

Definition 2: A 2D system (23) with control law (25)
applied is said to be stochastically absolutely p-stable if for

all boundary conditions (2) satisfying the inequality (6) and
for all nonlinear functions ϕ(z) satisfying (26)

E[|h(i, j)|p + |v(i, j)|p]→ 0,

as i+ j →∞.
In the remainder of this section, general conditions

for stochastic absolute p-stability of the system described
by (23), (4) and (26) are developed together with a compu-
tationally tractable stability test for the quadratic case when
p = 2.

Consider the candidate stochastic Lyapunov function

V (x, r) = V1(h, r) + V2(v, r), h ∈ Rnh ,

v ∈ Rnv , r ∈ N; V1(0, r) = 0, V2(0, r) = 0, r ∈ N,
V1(h, r) > 0, h 6= 0, V2(v, r) > 0, v 6= 0, r ∈ N, (27)

with associated increment

∆V (x, r) = E[V1(h(i+ 1, j), ρ(i+ 1, j))
−V1(h(i, j), ρ(i, j)) + V2(v(i, j + 1), ρ(i, j + 1))
−V2(v(i, j), ρ(i, j))|x(i, j) = x, r(i, j) = r]. (28)

Theorem 4: Consider the 2D system described by (23)
with the control law (25) applied. Suppose also that for all
boundary conditions satisfying

E

 ∞∑
j=0

|h(0, j)|p +
∞∑
i=0

|v(i, 0)|p
 <∞ (29)

and for all ϕ(z) satisfying (5), there exist positive constants
c1, c2, c3 such that the Lyapunov function (27) and its
associated increment (28) satisfy

c1(|h(i, j)|p + |v(i, j)|p) ≤ V (x(i, j), ρ(i, j))
≤ c2(|h(i, j)|p + |v(i, j)|p), (30)

and

∆V (x(i, j), ρ(i, j)) ≤ −c3(|h(i, j)|p + |v(i, j)|p). (31)

Then this controlled system is stochastically absolutely p-
stable.

Proof: It follows from taking the expectation of both
sides in (30) and (31) that

E[V1(h(i+ 1, j), ρ(i+ 1, j)) + V2(v(i, j + 1), ρ(i, j + 1))]
≤ λE[V1(h(i, j), ρ(i, j)) + V2(v(i, j), ρ(i, j))],

where λ = c2−c3
c2

. By the same arguments as in the proof
of Theorem 1, 0 < λ < 1. Writing out the inequalities for
i from 0 to N and j from N to 0, adding both sides and
using the trivial identity

E[V1(h(0, N + 1), ρ(0, N + 1))
+V2(v(N + 1, 0), ρ(N + 1, 0))]

= E[V1(h(0, N + 1), ρ(0, N + 1))
+V2(v(N + 1, 0), ρ(N + 1, 0))],
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gives

N+1∑
j=0

E[V1(h(N + 1− j, j), ρ(N + 1− j, j))

+V2(v(N + 1− j, j), ρ(N + 1− j, j))]

≤ λ
N∑
j=0

E[V1(h(N − j, j), ρ(N − j, j))

+V2(v(N − j, j), ρ(N − j, j))]
+E[V1(h(0, N + 1), ρ(0, N + 1))
+V2(v(N + 1, 0), ρ(N + 1, 0))].

Hence
N+1∑
j=0

E[V1(h(N + 1− j, j), ρ(N + 1− j, j))

+V2(v(N + 1− j, j), ρ(N + 1− j, j))]

≤
N+1∑
j=0

λjE[V1(h(0, N + 1− j), ρ(0, N + 1− j))

+V2(v(N + 1− j, 0), ρ(N + 1− j, 0))].

Using (30) now gives

E

 N∑
j=0

(|h(N − j, j)|p + |v(N − j, j)|p)


≤ αE

 N∑
j=0

λj(|h(0, N − j)|p + |v(N − j, 0)|p)

 ,
where α = c2/c1, and hence

M∑
N=0

E

 N∑
j=0

(|h(N − j, j)|p + |v(N − j, j)|p)


≤ α[(1 + λ+ . . .+ λM )E(|h(0, 0)|p + |v(0, 0)|p)
+(1 + λ+ . . .+ λM−1)E(|h(0, 1)|p + |v(1, 0)|p)
+(1 + λ+ . . .+ λM−2)E(|h(0, 2)|p + |v(2, 0)|p)

+ . . .+ E(|h(0,M)|p + |v(M, 0)|p)]

≤ α[(1 + λ+ . . .+ λM )E

[
M∑
N=0

(|h(0, N)|p + |v(N, 0)|p)

]
.

Since (29) holds and 0 < λ < 1, it follows that the right-
hand side of this inequality is bounded as M → ∞, hence
the series on the left-hand side is convergent and

E

 N∑
j=0

(|h(N − j, j)|p + |v(N − j, j)|p)

→ 0

as N →∞, and the stability property is established.
In the case of p = 2, and choose the candidate stochastic

Lyapunov function as the quadratic form

V (x, r)) = hTP1(r)h+ vTP2(r)v,
P1(r) > 0, P2(r) > 0, r ∈ N. (32)

To guarantee stochastic absolute quadratic stability of the
controlled system, the increment of this function must be
negative for all ϕ(z, r), satisfying (26). Applying the S
procedure [11], this condition holds provided

∆V (x, r) + zTQ(r)z + 2zTS(r)ϕ(z, r)
+ϕT (z, r)R(r)ϕ(z, r) ≤ −ε(|h|2 + |v|2), (33)

x ∈ Rnx , r ∈ N.

Remark 1: For ease of presentation, the notation Ar =
A(r), Br = B(r) etc is used from this point onwards.

Theorem 5: Consider a system described by (23) with a
control law (25) satisfying (26) applied. Then the resulting
controlled system is stochastically absolutely quadratically
stable if the following LMI is feasible

Lr ≤ 0, Pr = diag[P1r P2r] > 0, r ∈ N,

where

Lr =
[
ATr P̄rAr − Pr + Q̄r ATr P̄rBr + CTr Sr
BTr P̄rAr + STr Cr BTr P̄rBr +Rr

]
,

and

P̄r = diag

[
ν∑
l=1

P1lπrl

ν∑
l=1

P2lωrl

]
, Q̄r = CTr QrCr + εI.

Proof: Follows from the constructing increment of
the Lyapunov function, completing the square in (33), and
applying Theorem 4.
Suppose that there exists linear state feedback control law

u(i, j) = −Krx(i, j), if ρ(i, j) = r (34)

such that the controlled system formed by applying (34) to
(23) is stochastically quadratically stable. Then it follows
from Theorem 4 that a sufficient condition for stochastic
quadratic stability of this system is existence of a matrix

Hr = diag[H1r H2r] > 0,

such that

(Ar −BrKr)T H̄r(Ar −BrKr)−Hr < 0, (35)

where Hr = diag [
∑ν
l=1H1lπrl

∑ν
l=1H2lωrl] . Also (35)

is solvable with respect to the stabilizing pair (Hr,Kr)
provided the following LMIs with variables Xr, Yr[

M11r M12r

MT
12r M22r

]
> 0, X = diag[X1r X2r] > 0,

(36)

r ∈ N are feasible, where

M11r = Xr, M22r = diag[X1 . . . Xν ], M12r

=

[
(A11rX1r −B1rY1r)π

1
2
r1 (A12rX2r −B1rY2r)ω

1
2
r1

(A21rX1r −B2rY1r)π
1
2
r1 (A22rX2r −B2rY2r)ω

1
2
r1

]

. . .

[
(A11rX1r −B1rY1r)π

1
2
rν (A12rX2r −B1rY2r)ω

1
2
rν

(A21rX1r −B2rY1r)π
1
2
rν (A22rX2r −B2rY2r)ω

1
2
rν

]
.

If these LMIs are feasible, a stabilizing control law matrix
is given by Kr = YrX

−1
r .
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Suppose that the system has been stabilized by the design
of (34) and consider the modified nonlinear control law

u(i, j) = ϕ(z(i, j), r(i, j))−Kx(i, j), ϕ(0, r) = 0. (37)

Then we have the following result.
Theorem 6: Suppose that the system (23) is has been

stabilized by application of the linear state feedback (34)
and the following LMI is feasible[
ATcrP̄rAcr − Pr + Q̄r + εI ATcrP̄rBr + S̄r

BTr P̄rAcr + S̄Tr BTr P̄rBr +Rr

]
≤ 0, (38)

Pr = diag[P1r P2r] > 0, r ∈ N,

where Acr = Ar − BrKr, Q̄r = CTr QrCr − CTr SrKr −
KT
r S

T
r Cr+K

T
r RrKr, S̄r = CTr Sr−KT

r Rr and ε is positive
scalar. Then systems described by (23) are stochastically
absolutely quadratically stable under the nonlinear control
law (37).

Proof: Follows from the same arguments used to prove
Theorem 3 with appropriate modifications in the stochastic
setting.

VI. NUMERICAL EXAMPLE

Consider the case of (23) with two modes

A1 =

 0.9992 0.0197 0.0008
−0.0821 0.9696 0.0821
0.0153 0.0002 0.9847

 , B1 =

 −0.0015
−0.1458

0

 ,

A2 =

 0.9891 0.0198 0.0109
−1.0797 0.9761 1.0797
0.0166 0.0002 0.9834

 , B2 =

 −0.0045
−0.4454

0

 ,

nh = 2, nv = 1 and with an unknown matrix of transition
probabilities of the Markov chain. It is assumed that only
horizontal variables are measurable and the control law is

z(i, j) = Fh(i, j), (39)
u(i, j) = ϕ(z(i, j)). (40)

where

µ1 ≤ ϕ(z)/z ≤ µ2, µ1 = 0.38, µ2 = 1.6, ϕ(0) = 0. (41)

Algorithm 3 from [13] is used to compute linear stabilizing
non-switching control law (39) that stabilizes the system with
u = z for arbitrary transition probabilities. The algorithm
gives F = [27.594 1.63792]. Also it follows from (41)
that (26) holds with Q(r) = −µ1µ2, S(r) = (µ1 + µ2)/2
and R = −1, and since C(r) = F the LMI (34) is feasible
with P̄ = P = diag[P1 P2] > 0. Hence by Theorem 5 the
system is stochastically absolutely quadratically stable and
the control law (39) has robustness property in the sense that
it stabilizes the system for arbitrary transition probabilities
between the modes and for all nonlinearities in the feedback
channel (40) satisfying (41).

VII. CONCLUSIONS AND FURTHER WORK

This paper has addressed the development of absolute
stability theory for analysis and stabilizing control law design
for the class of 2D discrete linear systems described by the
Roesser model, firstly for nonlinear output feedback and then
with Markovian jumps in system parameters. The resulting
design algorithms can be computed using LMIs for the
quadratic case (p = 2) and an illustrative numerical example
has been given.

Corollary 1 gives simple LMI based algorithm for com-
puting of linear output stabilizing control law. This result
appears to be conservative since if (20) holds then all
control laws satisfying (5) are stabilizing and this aspect
requires further research.. Also the problem of choosing the
matrices Q,S and R in (5) is open. These questions and
the extension of the given results to other classes of 2D
systems are currently under investigation. The problem of
robust stabilization in the presence of parameter uncertainty
in the linear dynamics of such systems is also open.
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