

Abstract—Computing the shortest paths in graphs is a
fundamental problem with numerous applications. The rapid
growth of network in size and complexity has made it necessary
to decrease the execution time of the shortest path algorithm.
We develop an effective graph partition method to retrieve
Balanced Traversing Distance partitions and constitute a
hierarchical graph model based on the decomposed network for
accelerating the path queries. We then propose a new heuristic
hierarchical routing algorithm that can significantly reduce the
search space by pruning unpromising subgraph branches. We
evaluate our approach experimentally under different network
partition schemes to show the gain in performance.

I. INTRODUCTION
OMPUTING the shortest path between two points in a
network is one of the most fundamental and well-studied

problems in network algorithms. Numerous real-world
applications can be transformed to this problem, which have
attracted interests from many fields including geographic
information systems (GIS), intelligent transportation systems
(ITS), computer networks, and social networks. In 1959,
Dijkstra [1] developed an elegant shortest path algorithm with
a complexity of O(|E|+|V|log|V|), where |V| is the number of
vertices and |E| is the number of arcs. Though Dijkstra
algorithm computes the optimal solution in a theoretical sense,
it is often too slow in practical applications, motivating
several techniques for improving its response time [2].

In a typical application scenario, path queries have to be
solved quickly and repeatedly for different node pairs on the
same network, which stimulates the research on utilizing
preprocessing techniques [3-7]. Naturally, pre-computing the
shortest paths for all pairs of nodes would achieve extremely
fast queries but is prohibited by its huge time and storage
requirement. Thus, a better approach turns to extract and
process some helpful hints that can effectively accelerate the
queries. A lot of research has been tried to balance between
preprocessing and query times, most of which uses graph
partition techniques [3, 4, 5, 8] for the original problem
decomposition. Möhring et al. [3] and Maue et al. [4]
partition the graph into regions and employ goal-directed
preprocessing techniques to eliminate unnecessary searches.
Rajagopalan et al. [6] combine goal-directed heuristics with

Manuscript received March 5, 2011. This work was supported by the
Major State Basic Research Development Program of China (973 Program)
under Grant 2010CB731400 and the NSF of China under Grant 61074125.

The authors are with the Department of Automation, Shanghai Jiao Tong
University, and Key Laboratory of System Control and Information
Processing, Ministry of Education of China, Shanghai 200240, China (e-mail:
qsong@sjtu.edu.cn; xfwang@sjtu.edu.cn).

hierarchical and preprocessing techniques, and constitute an
abstraction graph model for efficient storage and path
computation on node-weighted graphs. Similarly, Jung et al.
[7] develop a hierarchical graph model based on the spatial
partitioning [5] of graphs, and then apply a variation of A*
algorithm to accelerate the query process.

Intuitively, the choice of underlying partition methods may
not affect the accuracy of a query algorithm, but the query
execution can be effectively accelerated through appropriate
partition of graphs. In addition, specific graph partition
objectives should be employed to cater to different types of
query algorithms. However, recent research related to path
computations focuses more on the routing algorithm design,
where the planar graph partition method is generally used just
as a tool for decomposing the networks, with some simple
partition objectives such as balance of subnetwork size or
minimization of boundary nodes [5, 8, 9]. Less has been done
to analyze the impact of graph partition objectives on the
speedup of a shortest path algorithm.

In this work, we consider exact shortest path queries in
large networks. The main goal is to accelerate the path
queries based on an effective partition of graphs without a
layout or an embedding, using fast preprocessing that
maintains a small amout of auxiliary data. The network is
abstracted in a hierarchical fashion, and the query algorithm
is executed by combining hierarchical and goal-directed
heuristics. The efficiency of the query algorithm towards
different partitions is analyzed, with comparison experiments
conducted on a large city road network.

II. HIERARCHICAL GRAPH MODEL

Let G=(V, E) be a graph, where each node in V represents
network objects, i.e., the intersecting points of roads in a road
network, routers in the Internet, or individuals in a friendship
network. Edges E={(u, v)|(u, v∈V) ∧ (u ≠ v)} correspond to
the connections between the preceding objects. Each node is
assigned a weight by a function vw : 0≥ℜ→V . The length of
a path P is the sum of the weights of all nodes on the path,
denoted by)(Pwv , and the distance),(tsdG between two
nodes s and t is defined by the length of the shortest path from
s to t in G.

Given a graph G=(V, E), a collection κ ={G1(V1, E1), …,
Gk(Vk, Ek)} of pairwise disjoint sets Vi ⊆ V, Ei ⊆ E, 1 ≤ i ≤ k,
such that VVi

k
i ==1U and EEi

k
i ⊂=1U is called a partition of

G and each set Gi(Vi, Ei), 1 ≤ i ≤ k a subgraph of G. For any

Partitioning Graphs to Speed Up Point-to-Point Shortest
Path Computations

Qing Song, and Xiaofan Wang, Senior Member, IEEE

C

2011 50th IEEE Conference on Decision and Control and
European Control Conference (CDC-ECC)
Orlando, FL, USA, December 12-15, 2011

978-1-61284-799-3/11/$26.00 ©2011 IEEE 5299

node v∈V, let Sub(v) denote the subgraph to which v belongs
to. A node u∈Vi is called a border node of Gi if there exists an
edge (u, v)∈E with v∈Vj and i ≠ j, and an inner node of Gi
otherwise; Gj is then called a neighbor subgraph of u, denoted
by Ns(u), and the subgraphs Gi and Gj are said to be adjacent.
The set of all border nodes of Gi is denoted by B(Gi). An edge
(u, v)∈E is called an intercommunity edge if u, v belong to
adjacent subgraphs Gi and Gj respectively. The inter-
community edge set between Gi and Gj is denoted by I(Gi,
Gj)={(u, v)∈E|(u∈B(Gi)) ∧ (v∈B(Gj)) ∧ (i ≠ j)}. Obviously,

iijiji EEGGI UU −=),(, , with 1 ≤ i, j ≤ k and i ≠ j.
Definition 1: Given a partition κ ={G1, G2, …, Gk} of G,

the community edge set of subgraph Gi (1 ≤ i ≤ k) is defined
by

)}.()(

))()((),(|),{()(
),(

vuvu

GBGBvuvuGC
vud

iii

iG

≠∧→∧

×∈=

Definition 2: Given a partition κ ={G1, G2, …, Gk} of G,
the high-level graph of G is defined by GH=(VH, EH, WH).

1))(1 i
k
i

H GBV == U .

2)))(()),((, iijiji
H GCGGIE UU ∪= , with 1 ≤ i, j ≤ k and

i ≠ j.
3) For any edge (u, v)∈EH, its edge weight),(vuwH

e :=
),(vud

iG if u, v belong to the same subgraph, and 0
otherwise. For all nodes in VH, the weight H

vw := wv.
Definition 3: Given a partition κ ={G1, G2, …, Gk} of G.

For any shortest path P=(ttvuss ,,,,,,,, KKK ′′) that passes
a subgraph Gi, 1 ≤ i ≤ k, the traversing distance is defined by

),(:)(vudGTd Gi = ,

where u is the first node and v is the last node from Gi on P,
)()(tSubsSub ′≠′ ,)(sNsGi ′⊆ , and)(tNsGi ′⊆ . Note that

u, v may be duplicated when the path passes Gi via just one

border node. In addition, the traversing distance Td(Gi):=0 if
Gi has only one neighbor subgraph.

The definition of traversing distance makes sense when
each border node of the graph is connected to only one
intercommunity edge. Then, the minimum traversing distance
of subgraph Gi implies the minimum length increase that may
happen when a shortest path passes the subgraph Gi through a
community edge. For the subgraph Gi which has more than
one neighbor, the traversing distance set can be calculated by

)}.())()((
))()((),(|),({)(

vuvNsuNs
GBGBvuvudGTd iiGi

≠∧≠∧
×∈=

Definition 4: Given a partition κ ={G1, G2, …, Gk} of G,
the abstraction graph of G is defined by GA=(VA, EA, WA),
where

1) each node u∈VA is called the supernode representing the
subgraph formed by {v∈V| Sub(v)=u};
2) each edge (u, v)∈EA represents the collection of edges
{ Evu ∈′′),(|))(())((vvSubuuSub =′∧=′ };

3) the weight of any node u ∈ VA is defined by =:A
vw

)(uTdmin .
For example, Fig.1(a) shows a graph G and its four

subgraphs G1, G2, G3, and G4. Fig.1(b) shows the high-level
graph constructed from G1 to G4, where each subgraph is
represented as a complete graph composed of its border node
set and the community edge set. The intercommunity edge
can be thought of as forming bottlenecks between subgraphs.
The corresponding abstraction graph is shown in Fig.2, which
contains far fewer nodes and edges. Thus, it is possible to
perform a search first on the abstraction graph for an estimate
of the path length, which is crucial in eliminating unnecessary
computations. The estimate gets to the real shortest path value
when the maximum traversing distance equals the minimum
one for every subgraph, and the query execution is most
efficient at this ideal case. This observation inspires the
partition method with the objective of balancing traversing
distance to be presented in the next section.

III. GRAPH PARTITIONING
In this section, we present our graph partition model and

the associated notations followed by a description of the BTD
partitioning algorithm for pursuing Balanced Traversing
Distance partitions.

Fig. 1. Two-level graph hierarchy (G, GH). (a) Original network G
with four subgraphs with boundary node sets {b1, b2, b3}, {b4, b5, b6},
{b7, b8, b9, b10}, and {b11, b12}, respectively. (b) High-level graph GH

constructed from subgraphs G1, G2, G3, and G4, where dashed lines
denote community edges, and solid lines denote intercommunity
edges.

Fig. 2. Abstraction graph GA for graph in Fig. 1, with supernodes
denoting the subgraphs and edges representing the connections
between subgraphs.

5300

A. Mathematical Model
Suppose that the original network is partitioned into k

subgraphs G1, G2, …, Gk. Let s(Gi) be the size of subgraph Gi,
and Ri the ratio of the maximum traversing distance to the
minimum traversing distance for subgraph Gi,

,))(())((: iii GTdminGTdmaxR =

with 1 ≤ i ≤ k. The ratio Ri:=1 if Gi has only one neighbor
subgraph. For any node u ∈ B(Gi), Num(u) represents the
number of intercommunity edges incident to u. The permitted
upper and lower bounds for subgraph size are denoted by Uδ
and Lδ , respectively.

Inspired by the ideal case of graph partition and path
queries, we propose a mathematical model as following:

min { Ri | ∀ 1 ≤ i ≤ k }
subject to

Num(u)=1, u∈B(Gi) (1)

Lδ ≤ s(Gi) ≤ Uδ (2)

Here, the traversing distance ratio Ri approaches its
minimum value 1 when the maximum traversing distance gets
very close to the minimum one for each subgraph. Constraint
(1) ensures that the shortest path will pass through a subgraph
via at least one community edge rather than just one border
node based on Definition 3. Constraint (2) aims to avoid too
large/small partitions and thereby balances the path searching
within each subgraph.

B. BTD Algorithm
To get the graph decomposition satisfying the objective

and constraints in (1)-(2), the BTD algorithm comprises two
phases.

Phase 1. Subgraph initialization. During this phase, the
network is divided into a series of small subgraphs. Initially,
all nodes are unmarked. Then, nodes are considered one by
one, and for each unmarked node u of degree two or more, we
proceed as follows.

Step1: Mark the node u with a new subgraph number “sn”,
and maintain a set “temp” for the nodes added to this
subgraph in turn. Set

temp={unmarked neighbors of u}.

Generally, we repeat this process of adding unmarked
neighbors several times to avoid too small subgraphs
produced during initialization.

Step2: Remove the first node v from temp, and judge
whether v has a neighbor node x in a different subgraph. If not,
go to Step3; Otherwise, add all unmarked neighbors of v and x
to the end of the set temp, mark them with the subgraph
number sn, and go to Step4.

Step3: For any unmarked neighbor node x, judge whether x
has a neighbor node in a different subgraph, add the neighbor
x to the end of temp and mark it with the subgraph number sn
if the condition holds, and then go to Step4.

Step4: Exit if the set temp becomes null; Otherwise, go to
Step2 and continue.

At the end of the sweep, we randomly put the unmarked
degree one node in its neighbor subgraph and mark it with the
subgraph number. At that point, all nodes are marked, and
each node is adjacent to one or two subgraphs (for inner
nodes and border nodes, respectively). Then, for any border
node which is adjacent to more than one intercommunity
edge, we turn to add a zero-weighted node to replace the
multiple nodes adjacent to it. In Fig.3(a), node b1 is connected
to three intercommunity edges. By adding a node 1b′ in its
neighbor subgraph and linking up the endpoints of the
original intercommunity edge via 1b′ , we get a modified
graph where each border node is connected to only one
intercommunity edge, as shown in Fig.3(b).

Phase 2. Subgraph agglomeration. During this phase, a
heuristic agglomeration process is performed on the graph
partition produced in phase 1, with the purpose of reducing
the ratio Ri and regulating the subgraph size to [δL, δU].

First, we need to compute the ratio Ri for each subgraph.
This can be fulfilled by a local shortest path tree construction
from each node in the high-level graph (similar strategies can
be found in [10]). At the end of the loop, we get the traversing
distance set for each subgraph, and the ratio Ri is computed by
dividing the maximum traversing distance by the minimum
one. Then, for each subgraph Gi we evaluate the degradation
of Ri that would take place by merging a neighboring
subgraph to Gi. Combine Gi with the neighbor for which this
degradation is maximal, but only if the combined subgraph
size is below δU. This process is repeated for all subgraphs
until no further improvement can be achieved (or as soon as
the ratio Ri is below an acceptable value) and until the
subgraph size is within the region of [δL, δU] for all subgraphs.
This may consume a fair amount of time but is worthy since
the graph partition usually need not be applied repeatedly.
The constructed community edges are employed to facilitate
the computation of the traversing distance ratio Rcom for a
combined subgraph Gcom. Still, more techniques need to be
introduced for further acceleration.

Note that the subgraph combination may simultaneously
affect the traversing distance ratio Rj of a neighboring
subgraph Gj, thus we need to update the neighbor information
and recompute Rj for the affected subgraphs. In addition, the
subgraph agglomeration process will certainly not affect the
number of intercommunity edges incident to a border node so

Fig. 3. Node adding process. (a) Original graph partitions with
boundary node sets {b1} and {b2, b3, b4}. (b) Modified graph partitions
with boundary node sets {b1} and { 1b′ }.

5301

that Constraint (2) satisfies.

IV. HIERARCHICAL ROUTING ALGORITHM
In this section, we introduce an efficient Hierarchical

Subgraph Pruning (HSP) algorithm which will benefit greatly
from the BTD method for route computation on large graphs.
Before formally presenting the algorithm, we introduce the
precomputation task for the static and dynamic scenarios.

A. Preprocessing
Suppose the original network G has been partitioned into k

subgraphs G1, G2, …, Gk. The high-level graph GH can be
easily constructed by extracting the border nodes, the inter-
community edges, and adding the community edges between
every pair of border nodes of each subgraph. As introduced
previously in the BTD algorithm (Phase 2), the traversing
distance set Td(Gi) can be obtained via a local search on GH.
And the abstraction graph GA is then constructed by mapping
each subgraph Gi as a node, with min{Td(Gi)} as its weight,
and adding an edge between any pair of nodes whose
corresponding subgraphs are adjacent. In fact, most of the
preprocessing has been finished at the graph partition stage
when BTD algorithm is employed as the partition tool.

In dynamic scenarios, the preprocessed data have to be
updated temporarily before a path query. Naturally, we will
not re-partition the graphs every time since the weight
changes may not significantly affect the partition quality of a
graph, which is measured by the average traversing distance
ratio R . For the case that the additional computation caused
by an increasing R is still lower than that of the graph
re-partitioning, we turn to use the initial partitions and
reconstruct the related high-level subgraph and abstraction
subgraph for the affected areas, which yields a low update
cost. In case that the weight of a community edge of Gi is
decreasing, we need to compute the optimal community edge
length by performing a local search on GH from each border
node of Gi, and then update the traversing distance set Td(Gi)
and the corresponding supernode weight on GA
simultaneously; For other cases, we will neither perform the
local tree construction nor update the supernode weight. The
real weight value is definitely no less than the current weight.
Thus, we will never overestimate the path length by using a
relatively lower supernode weight, though this may
somewhat affect the query efficiency.

B. HSP Algorithm
The HSP algorithm generally covers two scenarios. Here,

we mainly discuss the case that the source and destination
nodes are in two distinct subgraphs. For those node pairs in
the same subgraph, we can compute the shortest path either
on the original network G, or on a rebuilding search area
defined by [10].

Phase 1: Path length evaluation. During this phase, the
accumulated minimum traversing distance from t to several
other subgraphs is computed, and the path length is estimated

based on a practical route between s and t, which provides an
initial upper bound on the length of the shortest path.

The algorithm first grows a shortest path tree over GA,
starting from the destination supernode Gt (which contains
the destination node t). At the initialization stage, we assign a
distance value d(Gi, t) to every supernode Gi. Set it to zero for
the destination supernode Gt and infinity for all other
supernodes. Then, we perform an ordinary Dijkstra search
from Gt, and prune the search temporarily when the source
supernode Gs is settled. Let SP= (Gt (0i

G) =>
1i

G =>
2i

G ···
=>Gs (ki

G)) represent the optimal path between supernodes
Gs and Gt on GA. For any settled supernode Gi, d(Gi, t) gives a
minimum traversing distance from Gi to t. To compute an
upper bound on the path length between s and t, we set

∞=:),(ˆ tGd i for every subgraph Gi, representing the upper
distance from Gi to t, and update such distance for the
subgraphs on path SP. For each subgraph pair (

jiG ,
1+jiG) on

SP, where 1 ≤ j ≤ k-1, we proceed as follows:
Find an intercommunity edge (uj, vj) between subgraphs

jiG and
1+jiG on GH, where uj, vj are border nodes of

jiG and

1+jiG , respectively. The upper distance),(ˆ tGd
ji is then

updated sequentially by adding the weight of the community
edge (vj-1, uj) to),(ˆ

1
tGd

ji −
, where),(ˆ

0
tGd i is assigned with

the maximum weight of the community edges incident to u0.
For the source subgraph Gs (which contains the source

node s), we update its upper distance),(ˆ tGd s by adding the
maximum weight of the community edges incident from vk-1
to),(ˆ

1
tGd

ki −
. Naturally, R= (t, u0, v0, …, uk-1, vk-1, s) gives a

practical route from t to s, as shown in Fig.4. The weight of
the route R is certainly not more than),(ˆ tGd s since we use a
maximum weight at the source and destination subgraphs
during the upper distance computation. Thus, the upper
bound of the shortest path between s and t can be initialized to

),(ˆ:),(ˆ tGdtsd s= .

Continue the preceding shortest path search from Gt on GA,
until the distance of the currently visited supernode d(Gi, t) is
not less than),(ˆ tsd , or else terminate the search if all
supernodes have been marked. The sub areas denoted by the
unsettled supernode can not appear on the final shortest path
since any path passing them will yield in a larger path length.

Phase 2: Hierarchical search with pruning. In the second
phase we perform a shortest path search starting from the
source node s. During initialization, we assign a distance
value d(s, u) to every node u. Set it be the weight of s for node
s and infinity for all other nodes. Record the previously

Fig. 4. Path length evaluation for the subgraphs of path SP over the
high-level graph GH. s is the source node, and t is the destination node.
(uj, vj) is an intercommunity edge between subgraphs Gij and Gij+1

with 1≤j≤k-1.

5302

visited node Pre(u) on the optimal path for every node u and
set it to null in the beginning. Mark the source node s as
current and begin the search.

Step 1: For current node u (u=s in the beginning), judge
whether u is in the source or destination subgraph. If not, go
to Step 2; Otherwise, relax the nodes v adjacent to u on the
original network G, which amounts to replace d(s, v) with a
new value d(s, u)+wv(v), but only if this value is smaller. Here,
wv(v) denotes the weight of node v. Overwrite the predecessor
Pre(v) if the distance to v is updated, and go to Step 4.

Step 2: Judge whether the current node u and its
predecessor Pre(u) are located in the same subgraph: If not,
go to Step 3; Otherwise, compute the lower bound d(s, u, t) on
the length of the shortest path between s and t by

d(s, u, t)= d(s, u)+ d(Ns(u), t),

where Ns(u) represents the neighbor subgraph of u. For Ns(u),
the subgraph pruning condition satisfies only when this lower
estimate exceeds the upper bound),(ˆ tsd . The condition
holds thereafter because any node marked later will have a
larger d(s, u) value. Mark the subgraph Ns(u) as pruned, and
since then all searches grow into that subgraph will be pruned.
Go to Step 4 without performing any relaxation if subgraph
Ns(u) has been pruned; Otherwise, relax the endpoint v of the
intercommunity edge incident to u, and replace the distance to
v by d(s, u)+wv(v) if this yields a lower d(s, v) value. Update
the predecessor of v, and then go to Step 4.

Step 3: Tighten the upper bound),(ˆ tsd as follows if u is a
node of subgraph SPG

ji ∈ (1 ≤ j ≤ k):

|].),(),(|
)),((ˆ))(,(),,(ˆ[min),(ˆ

1)(1)(jjuSubjuSub uvduvd
tuSubduPresdtsdtsd

−− −
++=

Here, Sub(u) denotes the subgraph to which u belongs to, and
dSub(u)(x, y) gives the weight of the community edge (x, y) of
subgraph Sub(u).

Relax the community edges incident to u, and for each
endpoint v (except u) of the community edge, replace d(s, v)
with d(s,u)+dSub(u)(u, v)-wv(u) if this achieves an improvement.
Update the predecessor of v, and go to Step 4.

Step 4: Choose the node u′ with minimum),(usd ′ value
from all the unmarked nodes. Exit if the node tu =′ ;
Otherwise, mark u′ as current, and go to Step 1 and continue.

The HSP algorithm can be used effectively to address
problems in dynamic scenarios. For example, a new event in
the environment may affect the weights of several nodes on
the path previously obtained, ever since the path traversal has
been initiated from a source node s. The dynamic path
planning problem involves a path recomputation from the
current node c to the destination node t. In case that the node
on pathc→t has an increased weight or the node outside the
path has a decreased weight, we need to update the
preprocessed data temporarily and then compute a new path
from c to t, where the preceding algorithm applies with s
replaced by c. For other cases, we will neither update the

preprocessed data nor recompute the shortest path, as the path
retrieved is already the optimal one.

V. EXPERIMENTAL EVALUATION
To verify the validity of our hierarchical routing algorithm,

we consider the New York City road network with 366923
nodes and 1557956 edges [11], where nodes and edges
denote the roads and the intersecting points of roads
respectively. Each node is assigned a weight representing the
cost of the road, thus the queries compute the minimum cost
route on such network. We evaluate the performances of HSP
using different partition schemes, compared with two well-
known approaches, i.e., HIPLA [6] and hierarchical Dijkstra
algorithm (Hi-dijkstra), and analyze the impact of the average
traversing distance ratio and the number of subgraphs on the
query efficiency. All the algorithms were developed in
Matlab 7.8.0 (R2009a) and conducted on an Intel Xeon
X5482 Dual Core processor with 32GB of RAM. The system
ran Microsoft Windows Vista.

A. Test Generation and Description
A total of five network partition schemes are employed in

our testing, as shown in Table I. Schemes 1 to 4 are produced
at different stages of a BTD algorithm, accompanied by the
subgraph agglomeration. Generally, the average traversing
distance ratio R follows a downward trend as the subgraph
agglomerates, though it may fluctuate slightly. Here, we
select the subgraph partition with a tentative rising R value
for analyzing the effect of the number of subgraphs and R on
a query algorithm. For completeness, another partition
scheme (Scheme 5) satisfying the constraints in (1)-(2) is
generated for comparison, which has the same size as scheme
3 but with a larger R value. Each scheme is made to solve a
set of 1000 problems using the same randomly generated
source and destination nodes.

B. Performances of Various Algorithms
Table II shows the average execution time and accuracy of

HSP, HIPLA, and Hi-dijkstra on Schemes 1 to 5, where the
numbers presented are average values over 1000 problems.
We observe that HSP requires much less computation time

TABLE I
NETWORK PARTITION SCHEMES INVOLVED IN PERFORMANCE

EVALUATION
Partition
Schemes p R nH mH

Scheme 1 2543 8.36 43282 1068699

Scheme 2 1712 9.11 36240 971335

Scheme 3 894 9.31 22960 789790

Scheme 4 510 13.64 19115 761172

Scheme 5 894 16.50 25607 840928

p represents the number of subgraphs; nH and mH represent
the number of nodes and edges in the corresponding high-level
graph.

5303

compared with Hi-dijkstra and it computes the optimal path
for all node pairs. Though HIPLA achieves the best
efficiency in all the partition schemes, the large errors
produced are inevitable due to its naive heuristics. It is noted
that the path identified by HIPLA is on average 38% longer
than the optimal path (much larger than that is reported in [6]),
with an average maximum error of up to 173%, which makes
HIPLA unsuitable for high-precision path queries.

C. Effects of R vs. p
We analyze the execution time of HSP on Schemes 1-4

with different values of R and p. We find that the efficiency
of HSP is affected simultaneously by these two factors.
Naturally, the efficiency of a hierarchical algorithm will be
enhanced with a decreasing number of subgraphs, as the
high-level graph contains fewer nodes and edges. Thus, the
execution time of HSP drops in Schemes 1 to 3 when the
increase in R has not become a leading factor. However,
when R exceeds a certain value, the efficiency of HSP will
be greatly weakened since the increase in R leads to an even
larger increase in the search space. Hence, the execution time
of HSP increases in Scheme 4 though its number of
subgraphs is the smallest.

To further illustrate the effect of R on HSP, we compare
the query execution on Schemes 3 and 5 involving the same
number of subgraphs. From Table II, we can observe that the
execution time of HSP is much lower on Scheme 3 than on
Scheme 5. We also notice that the high-level graphs formed
by Schemes 3 and 5 are almost the same in size from Table I.
Thus, the performance degradation on Scheme 5 can only be
caused by the increasing value of R . Fixing the number of
subgraphs, the efficiency of HSP will be improved via the
decrease of R , which coincides with the starting point of the
BTD partitioning method.

D. Discussion
We analyze the best and worst case runtime complexity of

HSP to show the gain in performance. The best case happens
when R approaches the minimum value 1; then, HSP will
search routes only within the subgraph of path SP. All the
other subgraphs will be pruned by the subgraph pruning
condition, which yields a similar search space as HIPLA.
While on the contrary when R is quite large, few subgraphs
will be pruned during the search of HSP and the
computational complexity gets close to the Hi-dijkstra. Thus,

the runtime complexity of HSP is between that of Hi-dijkstra
and HIPLA, which can be viewed as two extremes of HSP.

VI. CONCLUSION
In this paper, we develop an effective graph partition

method for accelerating the path queries on large node-
weighted networks. We propose a new heuristic hierarchical
routing algorithm based on our hierarchical graph model,
which could compute optimal routes in both static and
dynamic environments. The proposed method can also be
applied to edge-weighted graphs through several conversions
and is focused in another piece of our work. As part of future
research, it would be beneficial to quantify the effect of the
number of subgraphs and the average traversing distance
ratio on the performance improvement of a query algorithm
so as to determine the optimum values. Also, it is worth
developing more fast and effective partition methods to
further reducing the traversing distance ratio.

REFERENCES
[1] E. W. Dijkstra, “A note on two problems in connexion with graphs”,

Numer. Math., vol. 1, pp. 269-271, 1959.
[2] L. Fu, D. Sun, L. R. Rilett, “Heuristic shortest path algorithms for

transportation applications: state of the art”, Comput. Oper. Res., vol.
33, pp. 3324–3343, 2006.

[3] R. Möhring, H. Schilling, B. Schütz, D. Wagner, and T. Willhalm,
“Partitioning graphs to speed up Dijkstra’s algorithm”, ACM J. Exp.
Algor., vol.11, article no.2.8, pp. 1-29, 2006.

[4] J. Maue, P. Sanders, and D. Matijevic, “Goal directed shortest path
queries using precomputed cluster distances”, ACM J. Exp. Algor.,
vol.14, article no.3.2, pp. 1-27, 2009.

[5] Y. W. Huang, N. Jing, and E. A. Rundensteiner, “Effective graph
clustering for path queries in digital map database”, in Proc. CIKM,
Rockville, 1996, pp. 215-222.

[6] R. Rajagopalan, K. G. Mehrotra, C. K. Mohan, and P. K. Varshney,
“Hierarchical path computation approach for large graphs”, IEEE Trans.
Aerosp. Electron. Syst., vol. 44, no. 2, pp. 427-440, 2008.

[7] S. Jung and S. Pramanik, “An efficient path computation model for
hierarchically structured topographical road maps”, IEEE Trans. Knowl.
Data Eng., vol. 14, no. 5, pp. 1029-1046, 2002.

[8] G. Karypis and V. Kumar, “A fast and high quality multilevel scheme
for partitioning irregular graphs”, SIAM J. Sci. Comput., vol. 20, no. 1,
pp. 359-392, 1998.

[9] M. B. Habbal, H. N. Koutsopoulos, and S. R. Lerman, “A
decomposition algorithm for the all-pairs shortest path problem on
massively parallel computer architectures”, Transp. Sci., vol. 28, no. 4,
pp. 292-308, 1994.

[10] Q. Song and X. F. Wang, “Efficient routing on large road networks
using hierarchical communities”, IEEE Trans. Intell. Transp. Syst., vol.
12, no. 1, pp. 132-140, Mar. 2011.

[11] [Online]. Available:http://www.dis.uniroma1.it/~challenge9/download.
shtml

TABLE II
COMPARISON OF AVERAGE EXECUTION TIMES AND ACCURACY FOR SCHEMES 1-5

Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5
Algorithm

t E % Emax % t E % Emax % t E % Emax % t E % Emax % t E % Emax %

Hi-dijkstra 3.51 0 0 3.17 0 0 2.60 0 0 2.36 0 0 3.05 0 0

HSP 0.84 0 0 0.74 0 0 0.54 0 0 0.69 0 0 1.00 0 0

HIPLA 0.20 38.16 154.57 0.19 40.13 242.50 0.22 36.09 164.36 0.17 36.34 164.48 0.19 39.66 141.47

t represents the average execution time (in seconds); E and Emax represent the average and maximum errors observed in various algorithms.

5304

