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Abstract— We introduce and solve stabilization problems for
linear and nonlinear systems with state-dependent input delay.
Since the state-dependence of the delay makes the prediction
horizon dependent on the future value of the state, which
means that it is impossible to know a priori how far in the
future the prediction is needed, the key design challenge is
how to determine the predictor state. We resolve this challenge
and establish closed-loop stability of the resulting infinite-
dimensional nonlinear system for general nonnegative-valued
delay functions of the state. Due to an inherent limitation on
the allowable delay rate in stabilization of systems with time-
varying delays, in the case of state-dependent delay, where the
delay rate becomes dependent on the gradient of the delay
function and on the state and control input, only regional
stability results are achievable. For forward-complete nonlinear
systems we establish global asymptotic stability results and for
linear systems we prove exponential stability. Global stability is
established under a restrictive but a priori verifiable Lyapunov-
like condition that the delay rate be bounded by unity irre-
spective of the values of the state and input. Several illustrative
examples are provided, including unicycle stabilization subject
to input delay that grows with the distance from the reference
position.

I. INTRODUCTION

State-dependent delays are common in real world. For

example, in control over networks, it makes sense to send

control signals less frequently when the state is small and

more frequently when the state is large [7]. In control of

mobile robots the magnitude of the delay depends on the

distance of the robot with the operator interface [17]. A priori

known functions of time are used to model state-dependent

delays in transmission channels of communication networks,

used for the remote stabilization of unstable systems [24].

In supply networks, state-dependent delays appear due to

transportation of materials [23]. In milling process, speed-

dependent delays arise due to the deformation of the cutting

tool [1]. The reaction time of a driver is often modeled as

a pure [19] or distributed [21] delay. However, the delay

depends on the intensity of the disturbance, the size of the

tracking error to which the driver is reacting, the speed of

the vehicle, the physical situation of the driver, etc [6]. In

irrigation channels the dynamics of a reach are accurately

represented by a time-varying delayed-integrator model de-

veloped, in [13]. Finally, in population dynamics, the time

required for the maturation level of a cell to achieve a certain

threshold can be modeled as a state-dependent delay [14].

Compensation of constant input delays in unstable linear

plants is achieved using predictor-based (finite spectrum
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assignment) techniques [3], [16], [25]. Extensions of these

designs to linear systems with simultaneous input and state

delay can be found in [8]. In addition, predictor-based

techniques are developed for linear systems with both un-

known plant parameters and delays [5]. Control schemes for

nonlinear systems with input delay are developed in [12]

whereas nonlinear systems with state delays are considered

in [9], [15].

Although there are numerous results concerning plants

with constant input delays, the problem of compensation of

long time-varying input delays, even for linear systems, is

tackled in only a few references [3], [11], [18]. Even more

rare are papers that deal with the compensation of time-

varying input delays in nonlinear systems [9]. No results exist

for compensation of a state-dependent input delay, even for

linear plants.

We present a methodology for compensating state-

dependent input delays for both linear and nonlinear systems.

For nonlinear systems with state-dependent input delay and

under the assumption of forward-completeness and global

stabilizability (by a possibly time-varying control law) in

the absence of the input delay, we design a predictor-based

compensator (Section II). Our controller uses predictions of

future values of the state on appropriate predictor intervals

that depend on the current values of the state. Due to the

physical restriction on the magnitude of the delay function’s

gradient (the controller never reaches the system if the delay

rate is larger than one), we obtain only a regional stability

result. We give an estimate of the region of attraction for our

control scheme based on the construction of a strict, time-

varying Lyapunov function (Section III). We present a global

result for forward-complete systems under a restrictive but a

priori verifiable Lyapunov-like condition that the delay rate

be bounded by unity irrespective of the values of the state and

input (Section V). We also deal with linear systems, treating

them as a special case of the design for nonlinear systems, for

which we prove exponential stability (Section IV). Finally,

three detailed examples are presented to demonstrate the

capabilities of the present methodology (Section VI).

Notation: We use the common definition of class K , K∞

and K L functions from [10]. For an n-vector, the norm | · |
denotes the usual Euclidean norm. We say that a function ρ
: R+×(0,1) 7→ R+ belongs to class K C if it is of class K

with respect to its first argument for each value of its second

argument and continuous with respect to its second argument.

It belongs to class K C ∞ if it is of class K∞ with respect to

its first argument for each value of its second argument and

continuous with respect to its second argument.
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II. PROBLEM FORMULATION AND CONTROLLER DESIGN

We consider the following system

Ẋ(t) = f (X(t),U (t −D(X(t)))) , (1)

where X ∈ R
n, U ∈ R, t ∈R+, D ∈C1 (Rn;R+), f : Rn ×R

→ R
n is locally Lipschitz with f (0,0) = 0 and it holds

| f (X ,ω)| ≤ α1 (|X |+ |ω |) , (2)

for a class K∞ function α1. The results of this paper can be

extended to the multi-input case when the delay functions

are identical in each individual input channel. If this is not

the case, one has to follow a different methodology than the

one considered here, which is related to [4].

Assumption 1: The plant Ẋ = f (X ,ω) is strongly forward

complete, that is, there exist a smooth positive definite

function R and class K∞ functions α2, α3 and α4 such that

for all X ∈ R
n and for all ω ∈R the following holds

α2 (|X |) ≤ R(X)≤ α3 (|X |) (3)

∂R(X)

∂X
f (X ,ω) ≤ R(X)+α4 (|ω |) . (4)

This property differs from the standard forward com-

pleteness [2] in the sense that we assume f (0,0) = 0 and,

in accordance with that, also assume that R(·) is positive

definite. Assumption 1 guarantees that system (1) does not

exhibit finite escape time, that is, for every initial condition

and every bounded input the solution is defined for all t ≥ 0.

Assumption 2: The plant Ẋ(t)= f (X(t),κ (t,X(t))+ω(t))
satisfies the uniform in time input-to-state stability property

with respect to ω and the function κ is uniformly bounded

with respect to its first argument, that is, there exists a class

K∞ function α̂ such that

|κ (t,ξ )| ≤ α̂ (|ξ |) , for all t ≥ 0. (5)

We design a predictor-based controller for the plant (1) as

U(t) = κ (σ(t),P(t)) , (6)

where for all t −D(X(t))≤ θ ≤ t

P(θ )=X(t)+

∫ θ

t−D(X(t))

f (P(s),U(s))ds

1−∇D(P(s)) f (P(s),U(s))
(7)

σ(θ )=θ +D(P(θ )) . (8)

The initial predictor P(θ ), θ ∈ [−D(X(0)) ,0], is given by

(7) for t = 0.

The quantity P(t) given in (7) is the σ(t)−t time units pre-

dictor of X(t), which can be seen as follows. Differentiating

relation (7) with respect to θ , setting θ = t and performing a

change of variables τ = σ(t) in the ODE for X(τ) given in

(1) (where t is replaced by τ), one observes that P(t) satisfies

the same ODE in t as X(σ(t)). Since from (7) for t = 0 it

follows that P(−D(X(0))) = X(0), by defining

φ(t) = t −D(X(t)) , t ≥ 0, (9)

σ(θ ) = φ−1(θ ), t −D(X(t))≤ θ ≤ t, (10)

we get P(0)=X(σ(0)). Hence, indeed P(t)=X (σ(t)) , t ≥ 0.

For implementing the control law (6)–(8) one has to compute

the integral in (7) at each step for all t −D(X(t))≤ θ ≤ t.

Noting from (9) that D
(

X(φ−1(t))
)

= φ−1(t)− t, differ-

entiating this relation, we get for all t −D(X(t))≤ θ ≤ t

∇D(X (σ(θ ))) f (X (σ(θ )) ,U (θ )) σ̇(θ )=σ̇(θ )− 1.(11)

Solving for σ̇(θ ) and observing that X
(

φ−1(θ )
)

is the

predictor signal P(θ ), we get for all t −D(X(t))≤ θ ≤ t

σ̇(θ ) =
1

1−∇D(P(θ )) f (P(θ ),U(θ ))
. (12)

Motivated by the need to keep the denominator in (7) and

(12) positive, throughout the paper we consider the condition

on the solutions which is given for all θ ≥−D(X(0)) by

Fc : ∇D(P(θ )) f (P(θ ),U(θ ))< c, (13)

for c ∈ (0,1]. We refer to F1 as the feasibility condition of

the controller (6)–(8).

III. STABILITY ANALYSIS

Theorem 1: Consider the plant (1) together with the con-

trol law (6)–(8). Under Assumptions 1 and 2 there exist a

class K C function ψRoA, class K C ∞ functions ρ̄c, ρ and

a class K L function β such that for all initial conditions

of the plant (1) that satisfy

|X(0)|+ sup
−D(X(0))≤θ≤0

|U(θ )|< ψRoA (ρ̄c(c,c),c) , (14)

for some 0 < c < 1, the following holds

Ω(t)≤ β (ρ (Ω(0),c) , t) , (15)

for all t ≥ 0, where

Ω(t) = |X(t)|+ sup
t−D(X(t))≤θ≤t

|U(θ )|. (16)

Furthermore, there exists a class K∞ function δ1 such that,

for all t ≥ 0,

D(X(t)) ≤ D(0)+ δ1 (ρ̄c(c,c)) (17)
∣

∣Ḋ (X(t))
∣

∣ ≤ c. (18)

Lemma 1: The infinite-dimensional backstepping trans-

formation of the actuator state for t −D(X(t))≤ θ ≤ t

W (θ ) =U(θ )−κ (σ(θ ),P(θ )) , (19)

together with the predictor-based control law given in rela-

tions (6)–(8) transform system (1) to the “target system”:

Ẋ(t) = f (X(t),κ (t,X(t))+W (t −D(X(t)))) (20)

W (t) = 0, ∀t ≥ 0. (21)

Proof: Using (6) and the facts that P(t −D(X(t))) =
X(t), σ (t −D(X(t))) = t, which are immediate conse-

quences of (7)–(8), we get the statement of the lemma.

Lemma 2: The inverse of the infinite-dimensional back-

stepping transformation (19) for all t −D(X(t))≤ θ ≤ t is

U(θ ) =W (θ )+κ (σ(θ ),Π(θ )) , (22)

where for all t −D(X(t))≤ θ ≤ t

Π(θ )=

∫ θ

t−D(X(t))

f (Π(s),κ (σ(s),Π(s))+W (s))ds

1−∇D(Π(s)) f (Π(s),κ (σ(s),Π(s))+W (s))

+X(t). (23)
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Proof: We first point out that Π(θ ) is for the closed-

loop system (20) what P(θ ) is for system (1). Although

Π(θ ) = P(θ ) for all t −D(X(t))≤ θ ≤ t, Π(θ ) is driven by

the transformed input W (θ ), whereas P(θ ) is driven by the

input U(θ ) for t−D(X(t))≤ θ ≤ t. In other words, the direct

backstepping transformation is defined as (X(t),U(θ )) 7→
(X(t),W (θ )) and is given in (19), where P(θ ) is given

as a function of X(t) and U(θ ) through relations (7)–

(8). Analogously, the inverse transformation is defined as

(X(t),W (θ )) 7→ (X(t),U(θ )) and is given in (22) where

Π(θ ) is given in terms of X(t) and W (θ ) through (23).

Lemma 3: There exist a positive constant g, a function

δ1 ∈K∞ and a function β2 ∈K L such that for all solutions

of the system satisfying (13) for 0< c< 1, the following holds

Ξ(t) ≤ β2 (ρ∗ (Ξ(0),c) , t) , (24)

for all t ≥ 0, where

Ξ(t) = |X(t)|+ sup
t−D(X(t))≤θ≤t

|W (θ )| (25)

ρ∗(s,c) =
e

g
1−c

1− c
e

g
1−c (D(0)+δ1(s))s. (26)

Proof: Based on Assumption 2 and [22] we can

conclude that there exist a smooth positive definite function

S (X(t)) and class K∞ functions α5, α6, α7 and α8 such that

α5 (|X(t)|)≤ S (X(t))≤ α6 (|X(t)|) (27)
∂S(X(t))

∂X(t) f (X(t),κ (X(t))+W (t −D(X(t))))≤
−α7 (|X(t)|)+α8 (|W (t −D(X(t)))|) . (28)

Consider now the following Lyapunov function for (20)–(21)

V (t) = S (X(t))+ k

∫ L(t)

0

α8 (r)

r
dr, (29)

where L(t) = supt−D(X(t))≤θ≤t

∣

∣

∣
eg(1+σ(θ)−t)W (θ )

∣

∣

∣
=

limn→∞

(

∫ t
t−D(X(t)) e2ng(1+σ(θ)−t)W (θ )2ndθ

)
1
2n

, and g > 0.

We now upper- and lower-bound L(t) in terms of

supt−D(X(t))≤θ≤t |W (θ )|. From (13) for 0 < c < 1 we get

that σ̇(θ ) ≤ 1
1−c

. Integrating the relation σ̇(θ ) ≤ 1
1−c

from

t −D(X(t)) to θ and, since σ (t −D(X(t))) = t, we have

for all t −D(X(t))≤ θ ≤ t that 1+σ(θ )− t ≤ 1−c+D(X(t))
1−c

.

Since D ∈ C1 (Rn;R+) there exists δ1 ∈ K∞ such that

D(X) ≤ D(0)+ δ1 (|X |) . (30)

Therefore, L(t)≤ e
g

1−c (1+D(0)+δ1(|X(t)|))
1−c

supt−D(X(t))≤θ≤t |W (θ )|.
With relation σ (t −D(X(t))) = t and since σ is increasing

we get 1 ≤ 1 + σ(θ ) − t for all t − D(X(t)) ≤ θ ≤ t.

Hence, L(t) ≥ eg supt−D(X(t))≤θ≤t |W (θ )|. Taking

the time derivative of L(t), with (21) we get

L̇(t) = limn→∞
1

2n

(

∫ t
t−D(X(t)) e2ng(1+σ(θ)−t)W (θ )2ndθ

)
1
2n−1

×
(

−
(

1− dD(X(t))
dt

)

e2ngW (t −D(X(t)))2n − 2ng
∫ t

t−D(X(t))

e2ng(1+σ(θ)−t)W (θ )2ndθ
)

. Using (13) we get

dD(X(t))
dt

< 1. Hence L̇(t) ≤ −gL(t). Taking the derivative

of V (t), and using (28), L̇(t) ≤ −gL(t) we get

V̇ (t) ≤ −α7 (|X(t)|) + α8 (|W (t −D(X(t)))|)− kgα8 (L(t)).
Setting k = 2g−1, the lower bound of L(t) gives

V̇ (t) ≤ −α7 (|X(t)|)− α8 (L(t)). With (27), the definition

of L(t) and (29) there exists γ1 ∈ K such that

V̇ (t) ≤ −γ1 (V (t)). Using Lemma 4.4 in [10] there

exists β1 ∈ K L such that V (t) ≤ β1 (V (0), t). Using

(27), (29) and the properties of class K functions we get

|X(t)|+L(t)≤ β2 (|X(0)|+L(0), t), for a β2 ∈ K L . Using

the upper and lower bounds of L(t) the lemma is proved.

Lemma 4: There exists a class K C ∞ function ρ1 such

that for all solutions of the system satisfying (13) for 0 <

c < 1, the following holds for all t −D(X(t))≤ θ ≤ t

|P(θ )| ≤ ρ1 (Ω(t),c) . (31)

Proof: Consider the following ODE in θ for all t −
D(X(t))≤ θ ≤ t which follows by differentiating (7)

Ṗ(θ ) =
f (P(θ ),U(θ ))

1−∇D(P(θ )) f (P(θ ),U(θ ))
. (32)

Define the change of variables y = σ(θ ) and rewrite (32) as

dP(φ(y))

dy
= f (P(φ(y)),U (y−D(P(φ(y))))) , (33)

for all t ≤ y ≤ σ(t). Using (4) we get
dR(P(φ(y)))

dθ
dθ
dy

≤
R(P(φ(y))) + α4 (|U (y−D(P(φ(y))))|). With (13) we

have
dR(P(θ))

dθ ≤ 1
1−c

(R(P(θ ))+α4 (|U(θ )|)). Using the

comparison principle and (30) we get R(P(θ )) ≤
e
(D(0)+δ1(|X(t)|))

1−c

(

R(X(t))+ supt−D(X(t))≤s≤t α4 (|U(s)|)
)

. With

the properties of class K∞ functions the lemma is proved

with ρ1(s,c) = α−1
2 ◦ (α3(s)+α4(s))e(D(0)+δ1(s))(1−c)−1

.

Lemma 5: There exists a class K function γ5 such that

for all solutions of the system satisfying (13) for 0 < c < 1,

the following holds for all t −D(X(t))≤ θ ≤ t

|Π(θ )| ≤ γ5

(

|X(t)|+ sup
t−D(X(t))≤s≤t

|W (s)|
)

. (34)

Proof: Under Assumption 2 and [22], there exists class

K L function β3(·,τ) and class K function γ3 such that

|Y (τ)| ≤ β3 (|Y (0)| ,τ)+ γ3

(

sup
s≥0

|ω(s)|
)

, τ ≥ 0, (35)

where Y (τ) satisfies Ẏ (τ) = f (Y (τ),κ (τ,Y (τ))+ω(τ)).
Defining y = σ(θ ). Equations (23), (33) and the properties

of class K L functions, give for all t ≤ y ≤ σ(t), dΠ(φ(y))
dy

=
f (Π(φ(y)),κ (y,Π(φ(y)))+W(φ(y))). From (35) and the

properties of class K functions we get (34) with γ5 ∈K as

γ5(s) = γ3(s)+β3(s,0).
Lemma 6: There exist a class K C ∞ function ρ2 and a

class K∞ function α9 such that for all solutions of the system

satisfying (13) for 0 < c < 1, the following holds

Ω(t) ≤ α−1
9 (Ξ(t)) , t ≥ 0 (36)

Ξ(t) ≤ ρ2 (Ω(t),c) , t ≥ 0. (37)

Proof: Using (22) and (34) we get (36) with α−1
9 (s) =

s+ α̂ ◦ γ5(s). With (19) and (31) we get (37) with ρ2(s,c) =
s+ α̂ ◦ρ1(s,c).
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Lemma 7: There exists a class K C ∞ function ρ̄c such

that all the solutions that satisfy

|X(t)|+ sup
t−D(X(t))≤θ≤t

|U(θ )| < ρ̄c(c,c), t ≥ 0, (38)

for 0 < c < 1 also satisfy (13).

Proof: Since D ∈ C1 (Rn;R+) there exists a class K∞

function δ2 such that

|∇D(X)| ≤ |∇D(0)|+ δ2 (|X |) . (39)

If a solution satisfies for all t − D(X(t)) ≤
θ ≤ t the inequality (|∇D(0)|+ δ2 (|P(θ )|))
α1

(

|P(θ )|+ supt−D(X(t))≤s≤t |U(s)|
)

< c, for 0< c < 1, then

it also satisfies (13). Using Lemma 4 this inequality holds

for 0 < c < 1, if (38) holds, where ρc ∈ K C ∞ is defined as

ρc(s,c) = (|∇D(0)|+ δ2 (ρ1(s,c)))α1 (ρ1(s,c)+ s), and ρ̄c

denotes the inverse function of ρc with respect to its first

argument.

Lemma 8: There exist function γ2 ∈ K such that for all

initial conditions of the closed-loop system (1), (6)–(8) that

satisfy relation (14) for the function ψRoA ∈ K C defined as

ψ̄RoA(s,c) = γ2 (ρ∗ (ρ2 (s,c) ,c)) , (40)

where ψ̄RoA stands for the inverse function of ψRoA with

respect to ψRoA’s first argument, the solutions of the system

satisfy (38) for 0 < c < 1 and hence satisfy (13).

Proof: Using Lemma 6, with (24) we have that

Ω(t)≤α−1
9 ◦β2 (ρ∗ (ρ2 (Ω(0),c) ,c) , t) . (41)

Defining the function γ2 ∈K , γ2(s)=α−1
9 ◦(β2(s,0)), we get

Ω(t) ≤ γ2 (ρ∗ (ρ2 (Ω(0)) ,c) ,c). Hence, for all initial condi-

tions that satisfy (14), with ψRoA(s,c) as in (40), the solutions

satisfy (38). Furthermore, for all those initial conditions, the

solutions verify (13) for all θ ≥−D(X(0)).
Proof of Theorem 1: Using (41) we get (15) of Theorem

1 with β (s, t) = α−1
9 (β2(s, t)) and ρ(s,c) = ρ∗ (ρ2(s,c),c).

Using Lemma 8, and (30), (39) we get (17)–(18). �

IV. APPLICATION TO LINEAR SYSTEMS

In this section we apply the general theory of Sections II

and III to linear systems of the form

Ẋ(t) = AX(t)+BU (t −D(X(t))) , (42)

where X ∈ R
n, U ∈ R, D ∈ C1 (Rn;R+). Assumption

1 is satisfied for any A by means of the fact
d|Y (τ)|2

dτ ≤
(2|A|+ 1)|Y (τ)|2 + |B|2ω2(τ). Assumption 2 is satisfied un-

der the controllability condition of the pair (A,B) with

U(t)=KP(t) (43)

P(θ )=X(t)+
∫ θ

t−D(X(t))

(AP(s)+BU(s))ds

1−∇D(P(s)) (AP(s)+BU(s))
,

t −D(X(t))≤ θ ≤ t, (44)

where K is chosen such that the matrix A+BK is Hurwitz.

The initial conditions for (44) are derived by setting t = 0 in

(44). One can observe that the predictor signal P(θ ), even for

the linear case, is not given explicitly. However, we establish

explicit estimates, that highlight the nonlinear role of the

delay function D(X), and exponential decay in time.

Corollary 1: Consider the plant (42) together with the

control law (43)–(44) and K chosen such that A + BK is

Hurwitz. Then there exist class K C ∞ functions ζ̄c, ζ4, ζRoA

and a positive constant λ such that for all initial conditions

of the plant that satisfy

|X(0)|+ sup
−D(X(0))≤θ≤0

|U(θ )|< ζRoA

(

ζ̄c(c,c),c
)

, (45)

for some 0 < c < 1, the following holds

Ω(t) ≤ ζ4 (Ω(0),c)e−λ t
, (46)

for all t ≥ 0. Furthermore, inequalities (17) and (18) hold

with ρ̄c(c,c) replaced by ζ̄c(c,c).
Proof: The proof of Corollary 1 follows the lines of the

proof of Theorem 1, and hence, it is omitted due to space

limitation.

V. GLOBAL STABILIZATION

The key challenge for the stabilization of systems with

state-dependent input delay is to maintain the feasibility

condition (13), i.e., keep the delay rate below one. This

condition can be satisfied a priori by assuming the following.

Assumption 3: ∇D(X) f (X ,ω) < c, for some 0 < c < 1

and all (X ,ω) ∈ R
n+1.

Corollary 2: Consider the plant (1) together with the

controller (6)–(8). Under Assumptions 1, 2 and 3 there exist

a function βGL ∈K L and a function ρGL ∈K C ∞ such that

Ω(t)≤ βGL (ρGL (Ω(0),c) , t) , (47)

for all t ≥ 0 and some 0 < c < 1.

Proof: Based on Assumption 3 the condition (13) for

0 < c < 1 is satisfied and hence Lemmas 1–6 apply. Using

Lemmas 3 and 6 we get (41) which completes the proof.

VI. EXAMPLES

Example 1: We consider the following prototype scalar

system with a Lyapunov-like delay

Ẋ(t) = X(t)+U
(

t −X(t)2
)

. (48)

The delay-compensating controller is U(t)=−2P(t), P(θ )=

X(t)+
∫ θ

t−X(t)2
(P(s)+U(s))ds

1−2P(s)(P(s)+U(s)) , for all θ ≥−X(0)2. In Fig. 1

we show the response of the system and the function φ(t) =
t − X(t)2 for four different initial conditions of the state,

X(0) = 0.15,0.25,0.35,X∗. With X∗ we denote the critical

value of X(0) for the given initial condition of the input,

such that, for any X(0)≥ X∗, the control inputs produced by

the delay-compensating feedback law for positive t never

reach the plant. The function φ(t) = t − X(0)2e2t has a

maximum at t∗ if − log
(

√

2X(0)2
)

= t∗ > 0. Since φ(t∗) =

− log
(

√

2X(0)2
)

− 1
2

has to be positive for the control to

reach the plant, it follows X∗ = 1√
2e

= 0.43.

Example 2: We consider the problem of stabilizing a mo-

bile robot (non-holonomic unicycle) subject to an input delay

that grows with the distance relative to the reference position.

7596



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

t

x(t)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

φ(t)

t

Fig. 1. Response of system (48) with initial conditions as U(θ ) = 0 for
all −X(0)2 ≤ θ ≤ 0 and four different initial conditions for the state X(0).

The model is ẋ(t) = v(t −D(x(t),y(t)))cos(θ (t)), ẏ(t) =
v(t −D(x(t),y(t))) sin(θ (t)), θ̇ (t) = ω (t −D(x(t),y(t))),
where D(x(t),y(t)) = x(t)2 + y(t)2 and (x(t),y(t)) is the po-

sition of the robot, θ (t) is the heading, v(t) is the speed and

ω(t) is the turning rate. When D = 0 a stabilizing controller

is ([20]), ω(t) =−5p(t)2 cos(3t)− p(t)q(t)
(

1+ 25cos(3t)2
)

and v(t) = −p(t) + 5q(t)(sin(3t)− cos(3t)) + q(t)ω(t),
where p(t) = x(t)cos (θ (t)) + y(t)sin(θ (t)) and q(t) =
x(t)sin (θ (t)) − y(t)cos(θ (t)). The predictor-based ver-

sion of this controller is ω(t) = −5P(t)2 cos(3σ(t)) −
P(t)Q(t)

(

1+ 25cos(3σ(t))2
)

− Θ(t) and v(t) = −P(t) +

5Q(t)(sin(3σ(t))− cos(3σ(t))) +Q(t)ω(t), where respec-

tively P(t) = X(t)cos(Θ(t)) + Y (t)sin (Θ(t)) and Q(t) =
X(t)sin(Θ(t)) − Y (t)cos(Θ(t)), and the predictors are

X(t) = x(t) +
∫ t

t−D(x(t),y(t)) σ̇(s)v(s)cos(Θ(s))ds, Y (t) =

y(t) +
∫ t

t−D(x(t),y(t)) σ̇(s)v(s) sin(Θ(s))ds, Θ(t) = θ (t) +
∫ t

t−D(x(t),y(t)) σ̇(s)ω(s)ds, σ(t) = t + D(X(t),Y (t)), σ̇(s) =
1

1−2v(s)(X(s)cos(Θ(s))+Y (s)sin(Θ(s))) . The initial conditions are

x(0) = y(0) = θ (0) = 1 and ω(s) = v(s) = 0 for all −x(0)2−
y(0)2 ≤ s ≤ 0, and hence, X(s) = Y (s) = Θ(s) = 1 for all

−2 ≤ s ≤ 0. The controller “kicks in” at t0, where t0 =
x(t0)

2 + y(t0)
2. Since v(s) = ω(s) = 0 for s < 0 we get

x(t) = y(t) = θ (t) = 1 for all 0 ≤ t ≤ t0. Hence, t0 = 2. In

Fig. 2 we show the delay and the trajectory of the robot for

the uncompensated and the delay-compensating controller.

In Fig. 3 we show the control efforts v(t) and ω(t). From

Fig. 2 one can observe that in the case of the uncompensated

controller the delay grows aproximately linearly in time and

the vehicle’s trajectory is a divergent Archimedean spiral.
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Fig. 2. The delay and the trajectory of the robot with the delay-
compensating controller (top two plots) and the trajectory of the robot with
the un-compensating controller (bottom plot).

Example 3: We consider the following scalar system

Ẋ(t) =
X(t)+U (t −D(X(t)))

U (t −D(X(t)))2 + 1
, (49)

with D(X(t)) = 1
4

log
(

X(t)2 + 1
)

. Young’s inequality gives

Ḋ(X(t))≤ 6
7
. System (49) satisfies Assumptions 1–3. Hence,

Corollary 2 applies. The control law is U(t) = −2P(t),

where P(t) = X(t) +
∫ t

t−D(X(t))
2(P(θ)2+1)(P(θ)+U(θ))dθ

Γ(θ) and

Γ(θ ) = 2
(

U(θ )2 + 1
)(

P(θ )2 + 1
)

−P(θ )(P(θ )+U(θ )). As

one can observe from Fig. 4, initially X(t) runs in open

loop and grows exponentially. During this time, D(t) grows

roughly linearly since D(X(t))= 1
4

log
(

X(t)2 + 1
)

. This goes

on until the predictor control “kicks in”, which is at the time

when t∗ = 1
4

log
(

1+X(0)2e2t∗)= 0.4835. For t > t∗, X(t) no

longer grows exponentially and the controller starts bringing

it back to zero. As X(t) decays according to the target system

Ẋ(t)=− X(t)
1+4X(t)2 , the delay D(t) also decays. Starting from a

large X(t∗), X(t)2 first decays roughly linearly in t, making
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Fig. 3. The control efforts v(t) (dot line) and ω(t) (solid line) for the
non-holonomic unicycle with the delay-compensating controller.
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Fig. 4. Response of system (49) with the predictor controller and initial
conditions as X(0) = 1.5 and U(θ ) = 0 for all − 1
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)

≤ θ ≤ 0.

the decay of D(t) logarithmic. When X(t) becomes small,

its decay becomes exponential and the decay of D(t) is also

exponential. The behavior of U(t) is governed by −2P(t) for

t > t∗. Since P(t)2 initially decays linearly in t and later P(t)
decays exponentially, U(t) decays with the same pattern as

P(t).

VII. CONCLUSIONS

The paper’s key design idea is how to define the predictor

state (5). The gradient-of-delay term in the denominator of

(5) is the result of a change in the time variable, which allows

the predictor to be defined using an integral from the known

delayed time φ(t) = t −D(X(t)) until present time t, rather

than an integral from the present time t until the unknown

prediction time σ(t) = t +D(P(t)).
Though the stability results in the paper are not global, the

size of the delay is not limited. By examining the estimates

in detail, the reader can observer that, when D(X)|X=0 is

large, namely when the system is regulated to an equilibrium

where the delay is necessarily large, the stability estimates

dictate that the initial conditions of the state and the input be

small. However, no restrictions on D(X)|X=0 are imposed. A

tradeoff exists between the size of the state-dependent delay

and the achievable region of attraction in closed loop.
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