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Abstract— This paper deals with the presence of equilibrium
points and limit-cycles in a PI control system with send-on-delta
sampling. In particular, sufficient conditions on the controller
parameters for the existence of equilibrium points are given.
These conditions can be usefully exploited for the tuning of the
event-based PI controller parameters, thus making the overall
design easier. Simulation results are provided as illustrative
examples.

I. INTRODUCTION

It is well known that in some processes a small steady-

state control error of the process output around the set-point

does not constitute a hard design constraint but, however,

the reduction of the information exchanged between the

agents that take part in the control loop (sensors, controllers,

actuators) is one of the tightest requirements. Indeed, the

reduction of the information flow is a relevant issue es-

pecially when there are constraints on the communication

rate, for instance when data are exchanged in a distributed

control system by wired or wireless networks [9], [7], [10].

In these situations, cutting down the traffic load is a key

point because the more traffic, the higher possibility of lost

data and stochastic time delays. This prevents the occurrence

of large latencies and delay jitter and the CPU utilization is

also reduced. In particular, a framework where the reduction

of the exchanged traffic is an essential issue is in wireless

networks and specially using battery-powered or limited

computational power devices [21], [1]. Therefore, the higher

information flow reduction, the higher decrease of computing

operations and transmissions, and thus the longest lifetime

of batteries.

In this context, one of the most convenient strategies is

the use of event-based sampling and control approaches.

Indeed, during last years event-based sampling and control

techniques have been addressed by a large number of re-

searchers (see, for example, [3], [19], [6]) also in the con-

text of Proportional-Integral-Derivative (PID) controllers [2],

[11], [5], [13]. Between the different event-based sampling

strategies, one of the most common is the so called send-on-

delta sampling (also known as deadband sampling) where

feedback control actions are computed when the process

output is outside a certain detection band located around

the set-point value [16], [12]. Once the process is inside the

detection band, new control actions are not produced until the

process leaves the region as a consequence of disturbances or

of a change of the set-point value. The controller employed is

usually a PID controller with variable sampling period [15],

[17], [18].

Actually, (time-based) PID controllers are the most employed

controllers in industry owing to their advantageous cost-

benefit ratio. In fact, they are capable to provide a satisfactory

performance for many processes and the settings of their

parameters are relatively easy also because of the large

number of tuning rules that are available [8]. However, in

event-based control the events occur asynchronously and

therefore the tuning of the PID controller parameters is

in general more challenging, as the timing of the events

influences the system performance and limit cycles may

arise [14] (note that the presence of limit cycles is a typical

problem in general event-based control systems [4]). Further,

in addition to the PID gains, the threshold values employed

in the control algorithm (see Section 2) have also to be

tuned. Indeed, the tuning of a PID controller with deadband

sampling has not been explicitly addressed in the literature

until now, at least to the authors’ knowledge.

In this paper, sufficient conditions on the controller parame-

ters for the existence of equilibrium points are given. On the

other hand, starting from them, conditions for the existence

of a limit cycle can be easily derived. The cases of event-

based P, I and a PI controllers are considered (the derivative

action is not considered because its implementation is very

critical with a variable, and possibly long, sampling period).

It is believed that these conditions can be usefully employed

for the tuning of the overall controller. The paper is organized

as follows. In Section 2 the problem is formulated. Sufficient

conditions for the presence of equilibrium points (or, from

another point of view, the conditions for the presence of a

limit cycle) are given, with illustrative examples, in Section

3, 4 and 5 for the P, I, and PI case respectively. Conclusions

are explained in Section 6.

II. PROBLEM FORMULATION

We consider the control scheme shown in Figure 1 where

the process is described by the following general transfer

function

G(s) = bmsm+···+b1s+b0
ansn+···+a1s+a0

e−Ls. (1)

where L is the dead time, b0 6= 0 and m < n. We assume

that all the poles belong to the open left half plane with

the exception of a possible pole at the origin, namely, we

can have a self-regulating or a non self-regulating (integral)

process.

The control action u(t) is generated by an event-based PI

controller where the proportional and integral actions are

enabled once the process output is outside a predefined

band around the set-point value r. In particular, a send-on-

delta sampling strategy is applied. The proportional action
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uP (t) = Kpe(t) (where Kp is the proportional gain) is

recalculated every time that the aboslute error is greater than

∆p and the absolute value of the difference between the

current error e(t) = r(t) − y(t) and the error in the last

crossing e(tPl ) is greater than ∆p, that is:

|e(t)− e(tPl )| ≥ ∆p. (2)

The integral action uI(t) = KiIE (t) (where Ki is the

integral gain) is calculated every time that

|IE (t)− IE (tIl )| ≥ ∆i (3)

where the integral of the error IE (t) is defined as

IE (t) =

∫

e(t)f(e(t))dt, f(e) =

{

1 if |e| > ε

0 if |e| ≤ ε
(4)

where ε is the desired maximum error (deadband).

It is worth stressing that, from a practical point of view,

the considered event-based control approach is implemented

by sampling the process variable and by evaluating the

event-based conditions as fast as possible. This is called the

compound approach or the fast sampling approach where

the asynchronous events are presynchronized by using a fast

periodic sampling [7].

Thus, by denoting as T the sampling period of the sensor,

the following overall control algorithm can be outlined.

Sensor unit

1) if |r − y| > ∆p then set ep(t) = r − y;

else set ep(t) = 0;

2) if |ep(t) − ep(t
P
l )| > ∆p then generate a P event by

sending ep(t) to the control unit and set ep(t
P
l ) =

ep(t);
3) if |r − y| > ε then set ei(t) = r − y;

else set ei(t) = 0;

4) set IE = IE + Tei(t);
5) if |IE (t) − IE (tIl )| > ∆i then generate an I event by

sending IE (t) to the control unit and set IE (tIl ) =
IE (t).

Control unit

1) if a P event is received, then set uP (t) = Kpep(t);
2) if a I event is received, then set uI(t) = KiIE (t);
3) set u(t) = uP (t) + uI(t).

Note that if Ki = 0 then a proportional controller results

while if Kp = 0 then an integral controller results. It appears

that, with respect to a standard time-based PI controller, the

proposed algorithm has more parameters to tune. Indeed, in

addition to the proportional and integral gains the threshold

values ∆p, ∆i, and ε have to be suitably selected.

The aim of the following sections is to define conditions on

the controller parameters which allow the system to have

at least an equilibrium point for every value of the set-

point r and of the constant disturbance amplitude D. In fact,

equilibrium points which depend on a limited set of set-point

values r and disturbance amplitudes D have not practical

relevance, because in general their values are not known a

D

Sensor

UnitUnit

Event u(t) y(t)Control
r

G(s)

Fig. 1. Scheme of the event-based control system.
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Fig. 2. P event unit automaton.

priori. Note that no considerations are done with respect to

the region of the attraction of the equilibrium points. Thus,

the presence of an equilibrium point does not imply that it

will be attained by the control system.

III. EVENT-BASED PROPORTIONAL CONTROLLER

In a proportional event-based control strategy, the behavior

of the sensor unit can be described as an automaton. In fact, it

is possible to define a state Pj , where e(t) ∈ [(j−1)∆p, (j+
1)∆p]; when the error reaches the threshold (j + 1)∆p the

automaton jumps to the state Pj+1 and the sensor unit sends

to the controller unit the value (j + 1)∆p; as soon as the

error is less than (j−1)∆p the automaton jumps to the state

Pj−1 and the sensor sends the value (j − 1)∆p. Figure 2

shows the automaton representation. In a generic state Pj the

control system is an open-loop system with a constant control

variable uP
j , therefore it is possible to define a steady-state

output yss,j = G(0)
(

uP
j +D

)

. This output is an equilibrium

point if ess,j ∈ [(j − 1)∆p, (j + 1)∆p]. In fact, as Figure 3

shows, if the latter condition is not satisfied, the automaton

would jump in another state.

It is important to notice that ess,j ∈ [(j−1)∆p, (j+1)∆p] is

a necessary condition only of the existence of the equilibrium

point, because it does not give information about the region

of attraction of the equilibrium point. In fact, the system

can reach the equilibrium point with a finite number of

transitions, or can admit a limit cycle which involves two

or more states, as a consequence of a periodic sequence of

events that are generated because of the characteristics of the

transient response of the system. This aspect is exemplified

in Figure 4, where the equilibrium point exists but the

system does not attain it. The necessary condition can

be used to find sufficient conditions of the values of the

controller parameters for which there is at least one possible

equilibrium point, indifferently by the values of D. By taking

into account that the control action, with an event-based

proportional controller, can assume the following values

uP
ss,j = Kpep(t) = Kpj∆p, j ∈ Z (5)

the following propositions can be stated.
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Fig. 3. Case without an equilibrium point.
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Fig. 4. Case with an equilibrium point which is not attained. Solid thick
line: evolution of the error in the state Pj . Dashed thick line: evolution of
the error if the first event would not occur. Solid thin line: evolution of the
error after the first event.

Proposition 1: If the process (1) has a pole at the origin,

there are values of D for which there does not exist an

equilibrium point.

Proof. In order for the process output to be constant the

steady-state process input should be null. As it is uP
ss,j +

D = 0 if D is not exactly a multiple of Kp∆p there are no

equilibrium points. 2

Proposition 2: If the process (1) is asymptotically stable,

then a sufficient condition for the presence of an equilibrium

point for all the values of r and D is Kp ≤ 1/K where

K = G(0).
Proof. If the process is self-regulating, then the steady-state

outputs yss,j are

yss,j = K(jKp∆p +D), j ∈ Z.

Thus, yss,j can be an equilibrium point if:

(j − 1)∆p ≤ ess,j = r − yss,j ≤ (j + 1)∆p,

that is,

r − jKKp∆p −KD ≥ (j − 1)∆p,
r − jKKp∆p −KD ≤ (j + 1)∆p.

(6)

These conditions can be rewritten as

j ≤ r−KD
(1+KKp)∆p

+
∆p

(1+KKp)∆p
,

j ≥ r−KD
(1+KKp)∆p

−
∆p

(1+KKp)∆p
.

(7)

The term r−KD
1+KKp

corresponds to the steady-state error that

would be obtained by using a proportional controller with

periodic sampling. The quantity r−KD can be expressed as

r−KD = jf (1+KKp)∆p+d with jf = ⌊ r−KD
(1+KKp)∆p

⌋ ∈ Z

and d = r −KD − jf (1 +KKp)∆p ∈ [0, (1 +KKp)∆p],
where d is, roughly speaking, the “unquantizable” part of

r−KD. In this way, the conditions (7) can be rewritten as:

j ≤ jf +
d+∆p

(1+KKp)∆p
(8)

j ≥ jf +
d−∆p

(1+KKp)∆p
. (9)

∆p ∆p p(1+KK )

j +1
f

KKp ∆p0

d

j
f
is an equilibrium point is an equilibrium point

no equilibrium points

Fig. 5. Relationship between equilibriums and d

It is important to notice that, with the first condition, it is

possible to exclude all states Pj with j > jf + 1. In fact,

considering a state Pjf+h, with h ≥ 2 the condition (8)

becomes:

jf + h ≤ jf +
d+∆p

(1+KKp)∆p

and therefore

h(1 +KKp)∆p −∆p < (1 +KKp)∆p ≤ d,

which is absurd because d ∈ [0, (1 +KKp)∆p].
In the same way the state Pj with j < jf can be excluded by

applying the second condition. In fact, considering the state

Pjf−h, with h ≥ 1 the condition (9) becomes:

jf − h ≥ jf +
d−∆p

(1+KKp)∆p

or equally:

d ≤ −h(1 +KKp)∆p +∆p,

which is absurd because d ∈ [0, (1 +KKp)∆p].
From the previous considerations, there are only two possible

candidates to be equilibrium states, namely Pjf and Pjf+1.

Considering the first one, the necessary conditions (8)-(9)

can be written, respectively, as:

jf ≤ jf +
d+∆p

(1+KKp)∆p
, (10)

which is always true, and

jf ≥ jf +
d−∆p

(1+KKp)∆p
, (11)

which is true if d ≤ ∆p.

Considering the state Pjf+1, the necessary conditions are:

jf + 1 ≤ jf +
d+∆p

(1+KKp)∆p
(12)

which is verified if d ≥ KKp∆p, and

jf + 1 ≥ jf +
d−∆p

(1+KKp)∆p
(13)

which is always true. As already stressed, we need to find

values of Kp and ∆p which allow the controlled system

to have at least one equilibrium point indifferently to the

value of d. By looking the previous equations, it is easy to

note that: if d ≤ ∆p, then Pjf is a equilibrium state; if

d ≥ KKp∆p, then Pjf+1 is an equilibrium state; if ∆p <
d < KKp∆p, then there is the absence of equilibrium points.

To avoid the occurrence of the third condition, it is necessary

to chose KKp∆p < ∆p, therefore KKp ≤ 1. The conditions

are summarized in Figure 5. 2

Remark 1. In this section we consider that the send-on-delta

sampled error assumes only values multiple of ∆p (see for

instance (5)). This assumption seems contradictory with the

definition (2), however it is clear that applying (2) if the error
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Fig. 6. I event unit automaton.

is a continuous signal, then the send-on-delta sampled error

assumes values which are the sum of a multiple of ∆p and an

initial constant term which can be neglected by considering

it as a part of the disturbance D. Similar considerations are

applied in Sections IV-V.

IV. EVENT-BASED INTEGRAL CONTROLLER

By following a similar reasoning applied to the P case,

the sensor unit of an event-based integral controller has a

behavior which can be described as an automaton. In this

automaton the state Ii is assumed when IE = [i−1, i+1]∆i

with ∆i > 0; the automaton jumps to the “upper” state if

IE ≥ (i + 1)∆i and to the “downer” state if IE ≤ (i −
1)∆i. When a transition occurs, the sensor sends the new

value to the controller unit. Figure 6 shows the automaton

representation. Also in this case, when the system remains

in a state, the control system is an open-loop system with a

constant input uI
i , therefore it is possible to define a steady-

state output yss,i = G(0)
(

uI
i +D

)

. This is an equilibrium

point if ess,i ∈ [−ε, ε]. This necessary condition is easy to

explain by noting that if it is false then IE changes its value

continuously. As for the P controller, it can be used to find

the values of the controller parameters for which there is

at least one equilibrium point. By taking into account that

the control action of an event-based integral controller can

assume the following values:

uI
ss,i = KiIE = Kii∆i, i ∈ Z

the following propositions can be stated.

Proposition 3: If the process (1) as a pole at the origin,

there are values of D for which there does not exists an

equilibrium point.

Proof. If the process (1) is non self-regulating, then the

steady-state control variable should be null, that is uI
ss,i +

D = 0. Thus, if D is not exactly a multiple of Ki∆i there

are no equilibrium points. 2

Proposition 4: If the process (1) is asymptotically stable,

then a sufficient condition for the presence of an equilibrium

point for all the values of r and D is Ki ≤ (2ε)/(K∆i)
where K = G(0).
Proof. If the process is self-regulating, the steady-state out-

puts yss,i are:

yss,i = K(iKi∆i +D) with i ∈ Z

Thus yss,i is an equilibrium point if

−ε ≤ ess,j = r − yss,i ≤ ε

or equivalently

−iKKi∆i + r −KD ≥ −ε
−iKKi∆i + r −KD ≤ ε

These conditions can be rewritten as

i ≤ r−KD
KKi∆i

+ ε
KKi∆i

i ≥ r−KD
KKi∆i

− ε
KKi∆i

Redefining the product KKi∆i as αε, the term r−KD can

be expressed as r−KD = ifαε+d with if = ⌊ r−KD
αε

⌋ ∈ Z

and d = r−KD−ifαε ∈ [0, αε]. In this way, the conditions

can be rewritten as:

i ≤ d
αε

+ 1
α
+ if

i ≥ d
αε

− 1
α
+ if

or:

d ≥ (α(i − if )− 1) ε (14)

d ≤ (α(i − if ) + 1) ε (15)

Condition (14) is certainly true if (i − if ) ≤ 1/α, and it is

certainly false if (i− if ) ≥ (1+1/α). Conversely, condition

(15) is certainly true if (i − if ) ≥ (1 − 1/α), and it is

certainly false if (i− if ) ≤ −1/α. Also in this controller, it

is important to find values of the parameters which allow the

controlled system to have at least a possible equilibrium point

independently from the value of d. The previous conditions

are verified together if 1/α ≥ (1 − 1/α) or, equivalently, if

α ≤ 2, that is Ki ≤ (2ε)/(K∆i). If this condition is not

verified an equilibrium point can exist for particular values

of d (that is, of D). 2

It is worth noting that the number of equilibrium points

increases as α decreases. Some illustrative cases are outlined.

• Choosing α = 2, if d < ε, then Iif is an equilibrium

state; if d > ε, then Iif+1 is an equilibrium state; if

d = ε, then both Iif and Iif+1 are equilibrium states.

• Choosing α = 1, Iif and Iif+1 are equilibrium states

for every values of d.

• Choosing α = 1/2, Iif , Iif+1, Iif+2 and Iif−1 are

equilibrium states for every values of d.

V. EVENT-BASED PI CONTROLLER

If the chosen control strategy is an event-based PI con-

troller, it is possible to define an automaton where a generic

state Si,j is the combination between a state Pj on the

proportional part and a state Ii on the integral part. Figure 7

shows the automaton representation. In a generic state Si,j

the control system is an open-loop system with a constant

input ui,j , therefore is possible to define a steady-state output

yss,i,j = G(0) (ui,j +D). This output corresponds to an

equilibrium point if ess,i,j ∈ [(j − 1)∆p, (j + 1)∆p] and

ess,i,j ∈ [−ε, ε].
Note that the value of ∆p should be greater than ε, because

when the error is less than the maximum desirable error,

namely e ∈ [−ε, ε], the new value of the control variable

must not be computed.

By taking into account that for the event-based PI control

strategy the control action can assume the following values

uss,i,j = iKi∆i + jKp∆p, i, j ∈ Z

we can state the following propositions.
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Fig. 7. PI event unit automaton.

Proposition 5: If the process (1) as a pole at the origin,

there are values of D for which there does not exists an

equilibrium point.

Proof. If the process is non self-regulating, the steady-state

process input should be null, that is, uss,i,j +D = 0. Thus,

if D is not exactly a multiple of a combination of Ki∆i

and Kp∆p there are not equilibrium points and the system

certainly has a limit cycle. 2

Proposition 6: If the process (1) is asymptotically stable,

then a sufficient condition for the presence of an equilibrium

point for all the values of r and D is Ki ≤ (2ε)/(K∆i).
Proof. If the process is asymptotically stable, the steady-state

outputs yss,i,j are

yss,i,j = K(iKi∆i + jKp∆p +D) with i, j ∈ Z

These outputs are equilibrium points if

−iKKi∆i − jKKp∆p + r −KD ≥ −ε
−iKKi∆i − jKKp∆p + r −KD ≤ ε
−iKKi∆i − jKKp∆p + r −KD ≥ (j − 1)∆p

−iKKi∆i − jKKp∆p + r −KD ≤ (j + 1)∆p

(16)

Hence, by considering ∆p > ε, there are only three values

of j which satisfy all the conditions: −1, 0 and 1. When

j = 0, the conditions on the steady-state error are equal

to the integral case, therefore, recalling that KKi∆i = αε,

there is at least an equilibrium point if α ≤ 2.

When j = −1 the steady-state errors are

ess,i,−1 = −iKKi∆i +K(Kp∆P −D) + r, i ∈ Z

The term K(Kp∆p −D) + r can be expressed as

K(Kp∆P −D) + r = if1αε+ d

TABLE I

SUFFICIENT CONDITIONS FOR EVENT BASED PI

α > 2 Equilibriums points exist only for some
values of D, otherwise there is a limit cycle.

1 < α ≤ 2 There are equilibrium points with j = 0.

0 < α ≤ 1 There are equilibrium points with j = 0, 1,−1.

where if1 = ⌊
K(Kp∆p−D)+r

αε
⌋ ∈ Z and d = K(Kp∆p −

D) + d − if1αε ∈ [0, αε]. In this way, the conditions (16)

can be rewritten as

−(i− if1)αε+ d ≥ −min(ε, 2∆p) = −ε (17)

−(i− if1)αε+ d ≤ min(ε, 0) = 0 (18)

Conditions (17) and (18) can be expressed as

d ≥ (i− if1)αε− ε (19)

d ≤ (i − if1)αε (20)

Condition (19) is certainly true if (i − if2) ≤ 1/α and is

certainly false if (i− if2) ≥ (1+1/α), while condition (20)

is certainly true if (i − if2) ≥ 1 and is certainly false if

(i− if2) ≤ 0. Previous equations are certainly both verified

if 1
α
> 1, or equally α < 1.

When j = 1 the steady-state outputs are

yss,i,−1 = −iKKi∆i +K(−Kp∆P −D) + r, i ∈ Z

The term r −K(Kp∆p +D) can be expressed as:

r −K(Kp∆P +D) = if2αε+ d

with if2 = ⌊
r−K(Kp∆p+D)

αε
⌋ ∈ Z and d = r −K(Kp∆p +

D) − if2αε ∈ [0, αε]. In this way, the four conditions (16)

can be rewritten as:

−(i− if2)αε+ d ≥ −ε (21)

−(i− if2)αε+ d ≤ ε (22)

−(i− if2)αε+ d ≥ 0 (23)

−(i− if2)αε+ d ≤ 2∆p (24)

Conditions (21) and (24) are always verified, while condi-

tions (22)-(23) can be expressed as:

d ≥ (i − if1)αε (25)

d ≤ ε+ (i − if1)αε (26)

Condition (25) is certainly true if (i− if ) ≤ 0 and certainly

false if (i−if2) ≥ (1−1/α) while condition (26) is certainly

true if (i−if2) ≥ (1−1/α) and certainly false if (i−if2) <
−1/α. Both conditions are therefore verified if (1− 1/α) >
0, i.e., α < 1. Results are summarized in Table 1. 2

Remark 2. Note that in an event-based PI controller, the

steady-state sufficient conditions for the existence of at least

an equilibrium point concern only the product KKi∆i = αε
and there are no conditions on the proportional parameters

Kp and ∆p (provided ∆p > ε). Note also that the conditions

on the integral part are the same as the event-based integral

controller case.
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Fig. 8. Simulation with α = 2.1. Dashed line: evolution of the automaton
Pj . Solid line: evolution of the automaton Ii
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Fig. 9. Simulation with α = 2.0. Dashed line: evolution of the automaton
Pj . Solid line: evolution of the automaton Ii

VI. ILLUSTRATIVE EXAMPLE

In this section, the unit step response of a second-order-

plus-dead-time process (with K = 1) controlled by an event-

based P controller is analyzed. In particular, two cases are

presented, the first where α = 2.1 (therefore the sufficient

condition is not verified), and the second where α = 2.0
(therefore the condition is verified). Both the cases have the

same Ki = 1. The other parameters are set as ε = 0.1,

∆p = 0.15, Kp = 3 and D = 2.155. The considered process

is

G(s) = 1
s2+3s+1e

−0.4s (27)

The process output and the evolution of the automaton Si,j

are presented for the two cases in Figures 8 and 9.

Remark 3. It is worth stressing that from the above analysis it

can be straightforwardly deduced that, from a practical point

of view, it is very likely that a limit cycle occurs if α > 2
(this does not happen just for specific values of D, see Table

1).

VII. CONCLUSIONS

In this work conditions on the existence of equilibrium

points and limit cycles are investigated. In particular, condi-

tions on the parameters of P, I and PI controllers based on

send-on delta sampling are presented. These conditions allow

the controlled system to have at least one equilibrium point

indifferently from the value of the constant load disturbance.

Another important result that has been presented is the

presence of limit cycle in processes with a pole at the

origin of the complex plane. This fact is caused by the

“quantized” nature of the controller, which can not exactly

compensate the constant load disturbance. This is relevant

because integral (non self-regulating) process are frequently

encountered in the process industry and their control has

been widely investigated [20].
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