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Abstract— In this paper, we study a speed tracking and
load torque disturbance rejection problem of PM synchronous
motor by internal model design. We first formulate the problem
into a global robust output regulation problem of a special
class of multivariable systems. Then we further convert the
output regulation problem into a global stabilization problem
of an augmented system composed of the original plant and
an internal model. As the augmented system does not take
any known special form, we have to develop a specific tool to
deal with the stabilization problem. In particular, a generalized
changing supply function technique applicable to non-ISS
(input-to-state stable) systems is developed. This technique, in
conjunction with a particular nonlinear internal model, leads
to an effective solution to the problem.

I. INTRODUCTION

Permanent magnet (PM) synchronous motor can be mod-
eled as follows [15]:
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where θr is rotor position, ωr is speed, id and iq are dq frame
stator currents, TL is load torque, ud and uq are dq frame
stator voltages, Ld and Lq are dq axes inductances, Φv is
rotor flux, Rs is stator resistance, J is inertia, B is viscous
friction coefficient and p is the number of pole pairs. When
dq axes inductances are equal, i.e. Ld = Lq, PM synchronous
motor is also called surface-mounted PM synchronous motor.
A basic control problem for PM synchronous motors is to
design a feedback control law such that the solution of the
closed-loop system is globally bounded, and the speed ωr

asymptotically tracks a desired reference input, and the d axis
current id is asymptotically regulated to zero. This problem
can also be called speed tracking control and load torque
disturbance rejection problem.

For the special case where Ld = Lq, the problem has
been extensively studied since 2000 [1], [8], [9], [11], [14],
[16]. In particular, Ping and Huang formulated the above
problem into a global robust output regulation problem of
a class of multivariable systems [11]. The output regulation
approach allows the reference input of the motor speed, and
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the unknown torque to be generated by a class of autonomous
linear system called exosystem and tolerates uncertainties
of all the motor parameters. In contrast, for the general
case where Ld 6= Lq, the problem has received relative
little attention. To our knowledge, Zhu et al. considered the
problem based on the feedback linearization approach and
an extended observer [15]. However, their approach needs to
know the exact knowledge of the motor parameters and the
control law relies on the reference input as well as its first and
second derivatives. Guo et al. studied the above problem via
feedback dissipative Hamiltonian realization approach [3].
Their approach allows the load torque and stator resistance
to be unknown, but they need to assume that the reference
input to be constant and the viscous friction coefficient B to
be zero.

In this paper, we will also formulate the speed tracking
control and load torque disturbance rejection problem for
the general case where Ld 6= Lq into a global robust
output regulation problem. It turns out that, by means of
a class of nonlinear internal models, the problem can be
converted into a global robust stabilization problem of a
so-called augmented system composed of the original plant
and an internal model. The augmented system is a two-
input, two-output nonlinear system subject to both static and
dynamic uncertainties. As will be seen in Sections II and
III, the presence of the coupling term 3p

2J (Ld − Lq)idiq in
(1) significantly complicates the above problem. In particular,
the augmented system does not possess any known form, and
is thus not amenable to the approach in [11]. As a result,
we will develop a generalized changing supply function
technique and gain assignment method to overcome the
difficulty. This technique will lead to an effective solution to
the motor control problem. Compared with [15], we allow
the motor parameters Rs, J, B to be unknown with known
bounds. Compared with [3], we don’t need to assume the
reference input to be constant and allows the viscous friction
coefficient B to be nonzero and uncertain.

The rest of the paper is organized as follows. In Section
II, we first formulate the speed tracking and load torque
disturbance rejection problem as a robust output regulation
problem, and then convert the global robust output regulation
problem of the given plant into a global stabilization problem
of an augmented system. In Section III we establish some
technical lemmas for tackling the stabilization problem of
the augmented system. In Section IV we apply the results
in Section III to obtain the solvability conditions for the
PM synchronous motor control problem, and evaluate the
effectiveness of the control law by computer simulations. In
Section V, we conclude the paper with some remarks.
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II. PROBLEM FORMULATION AND PRELIMINARIES

To formulate the speed tracking and load torque distur-
bance rejection problem of (1) as a robust output regulation
problem, define the following exosystem

v̇ = A1v =




0 ω 0
−ω 0 0
0 0 0


 v (2)

where v = col(v1, v2, v3). Then (2) can generate any
combination of a sine function with arbitrary amplitudes and
initial phase and an arbitrary constant. In particular, with
initial value given by v(0) = col(A sinφ,A cos φ, 1

J TL), the
solution of (2) is such that

v1(t) = yd(t), v3(t) =
1
J

TL. (3)

Let x1,1 = ωr, x1,2 = iq, x2,1 = id, u1 = uq, u2 =
ud, a11 = B

J , a12 = 3p
2J (Ld − Lq), b11 = 3pΦv

2J , a13 =
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, a14 = pΦv

Lq
, a15 = pLd

Lq
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Lq
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Ld
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Ld
.

Then system (1) can be put in the following form.

ẋ1,1 = −a11x1,1 − v3 + b11x1,2 + a12x2,1x1,2

ẋ1,2 = −a13x1,2 − a14x1,1 + b12u1 − a15x1,1x2,1

ẋ2,1 = −a21x2,1 + a22x1,1x1,2 + b21u2

e =
[

e1

e2

]
=

[
x1,1 − v1

x2,1

]
. (4)

Denote the nominal values of the motor parameters by
R̄s, J̄ , B̄ and let col(Rs, J, B) = col(R̄s, J̄ , B̄) + w where
w ∈ R3 is the deviation of the motor parameters from their
nominal values. As a result, the system (4) and the exosystem
(3) can be put in the following compact form:

ẋ = f(x, u, v, w)
v̇ = A1v

e = h(x, u, v, w) (5)

where

x =



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
 , h(x, u, v, w) =

[
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x2,1

]
,
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=




−a11x1,1 − v3 + b11x1,2 + a12x2,1x1,2

−a13x1,2 − a14x1,1 + b12u1 − a15x1,1x2,1

−a21x2,1 + a22x1,1x1,2 + b21u2


 .

Let V be some known compact subset of R3 containing
the origin, and W a known compact subset of R3 such that
w ∈ W implies R2 ≥ R̄s + w1 ≥ R1,J2 ≥ J̄ + w2 ≥ J1,
and B2 ≥ B̄ + w3 ≥ B1 for some known positive numbers
Ri, Ji, Bi, i = 1, 2. Then the global robust output regulation
problem of (5) means the design of a state feedback control
law such that, for any initial condition of the closed-loop
system, any w ∈ W , and any v(0) ∈ V , the solution of
the closed-loop system is globally bounded, and the tracking
error e approaches the origin asymptotically. Clearly, the

solvability of the global robust output regulation problem
of (5) implies the solution of the speed tracking and load
torque disturbance rejection problem of the motor (1).

Various versions of the global robust output regulation
problem have been extensively studied since the 1990s [2],
[5], [7], [12]. In particular, [5] established a framework for
converting a global robust output regulation problem of a
plant into a global stabilization problem of an augmented
system. In what follows, we will derive the augmented
system for (5) based on the framework of [5].

First note that, associated with (5) are the following partial
differential equations:

∂x(v, w)
∂v

A1v = f(x(v, w), u(v, w), v, w)

0 = h(x(v, w), u(v, w), v, w) (6)

where x : R3 × R3 7→ R3 and u : R3 × R3 7→ R2 are two
smooth functions vanishing at the origin. (6) is known as
regulator equations [6].

As b11, b12, b21 > 0, it can be readily verified that the
solution of the regulator equations (6) exists globally and
take the following polynomial form in v.

x1,1(v, w) = v1, x2,1(v, w) = 0
x1,2(v, w) = b−1

11 a11v1 + b−1
11 ωv2 + b−1

11 v3

u1(v, w) = b−1
12 (−b−1

11 ω2 + b−1
11 a11a13 + a14)v1

+b−1
12 (b−1

11 a11ω + b−1
11 a13ω)v2

+b−1
12 b−1

11 a13v3

u2(v, w) = −b−1
11 a22b

−1
21 v1(a11v1 + ωv2 + v3).

It can be verified that the solution of the regulator equa-
tions (6) satisfies the following equations:

x(3)
1,2(v, w) + ω2ẋ1,2(v, w) = 0,

u(3)
1 (v, w) + ω2u̇1(v, w) = 0,

u(5)
2 (v, w) + 5ω2u(3)

2 (v, w) + 4ω4u̇2(v, w) = 0.

Let

θ1(v, w) =
[

x1,2(v, w) ẋ1,2(v, w) x(2)
1,2(v, w)

]T

θ2(v, w) =
[

u1(v, w) u̇1(v, w) u(2)
1 (v, w)

]T

θ3(v, w) =
[

u2(v, w) u̇2(v, w) u(2)
2 (v, w)

u(3)
2 (v, w) u(4)

2 (v, w)
]T

.

Let g(x, u) = col(x1,2, u1, u2) with its i-th component
being denoted by gi(x, u). Then it can be verified that

θ̇i(v, w) = Φiθi(v, w)
gi(x(v, w), u(v, w)) = Ψiθi(v, w), i = 1, 2, 3 (7)

where

Φ1 =
[

02×1 I2×2

0 −ω2 0

]

3×3

,Ψ1 =
[

1 0 0
]
,

Φ2 =
[

02×1 I2×2

0 −ω2 0

]

3×3

,Ψ2 =
[

1 0 0
]
,
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Φ3 =
[

04×1 I4×4

0 −4ω4 0 − 5ω2 0

]

5×5

,

Ψ3 =
[

1 0 0 0 0
]
.

System (7) is called a steady-state generator of (5) with
output g(x, u) [5].

For i = 1, 2, 3, let Mi ∈ Rσi×σi and Ni ∈ Rσi×1 be a
pair of controllable matrices with Mi Hurwitz, and define
the following dynamic compensator

η̇1 = M1η1 + N1x1,2 + N1b
−1
11 a12x1,2x2,1

η̇2 = M2η2 + N2u1

η̇3 = M3η3 + N3u2. (8)

It can be verified that (8) is an internal model of (4) with
output x1,2, u1, u2 as described in [5].

Let Ti be the unique nonsingular matrix satisfying the
Sylvester equation

TiΦi −MiTi = NiΨi, i = 1, 2, 3. (9)

The existence of Ti is guaranteed since (Mi, Ni) is control-
lable, (Φi,Ψi) is observable, and the spectra of Φi and Mi

are disjoint [10].
Performing on the system composed of (4) and (8) the

following coordinate and input transformation

z1,1 = η1 − T1θ1(v, w)−N1b
−1
11 x̄1,1

z1,2 = η2 − T2θ2(v, w)−N2b
−1
12 x̄1,2

z2,1 = η3 − T3θ3(v, w)−N3b
−1
21 x̄2,1

x̄1,1 = x1,1 − v1, x̄2,1 = x2,1

x̄1,2 = x1,2 −Ψ1T
−1
1 η1

ū1 = u1 −Ψ2T
−1
2 η2

ū2 = u2 −Ψ3T
−1
3 η3 (10)

yields the following system

ż1,1 = M1z1,1 + d1x̄1,1

˙̄x1,1 = f̄1,1(z1,1, x̄1,1, x̄2,1, µ) + (b1,1(µ) + a(µ)x̄2,1)x̄1,2

ż1,2 = M2z1,2 + Q1,2(z1,1, x̄1,1, x̄1,2, x̄2,1, µ)
˙̄x1,2 = f̄1,2(z1,1, z1,2, x̄1,1, x̄1,2, x̄2,1, µ) + b1,2(µ)ū1

ż2,1 = M3z2,1 + Q2,1(X̄2, x̄2,1, µ)
˙̄x2,1 = f̄2,1(X̄2, z2,1, x̄2,1, µ) + b2,1(µ)ū2 (11)

where µ = col(v, w), X̄1 = col(z1,1, x̄1,1), X̄2 =
col(X̄1, z1,2, x̄1,2), b1,1(µ) = b11, b1,2(µ) = b12, b2,1(µ) =
b21, a(µ) = a12 and

f̄1,1(z1,1, x̄1,1, x̄2,1, µ)
= d2z1,1 + d3x̄1,1 + d4x̄2,1z1,1 + d5x̄1,1x̄2,1

+c1(v)x̄2,1

Q1,2(z1,1, x̄1,1, x̄1,2, x̄2,1, µ)
= d6z1,1 + d7x̄1,1 + c2(v)x̄2,1 + d8x̄1,2 + d9x̄1,1x̄2,1

+d10x̄2,1x̄1,2 + d11x̄2,1z1,1

f̄1,2(z1,1, z1,2, x̄1,1, x̄1,2, x̄2,1, µ)
= d12z1,2 + d13z1,1 + d14x̄1,1 + c3(v)x̄2,1 + d15x̄1,2

+d16x̄1,1x̄2,1 − b3x̄2,1x̄1,2 − b4x̄2,1z1,1

Q2,1(X̄2, x̄2,1, µ)
= c4(v)z1,1 + c5(v)x̄1,1 + d17x̄2,1 + c6(v)x̄1,2

+d18x̄1,1x̄1,2 + d19x̄1,1z1,1 + d20x̄
2
1,1

f̄2,1(X̄2,1, z2,1, x̄2,1, µ)
= d21z2,1 + c7(v)z1,1 + c8(v)x̄1,1 + d22x̄2,1

+c9(v)x̄1,2 + d23x̄1,1x̄1,2 + d24x̄1,1z1,1 + d25x̄
2
1,1

where the expressions of b3, b4, c1(v), · · · , c9(v), d1, · · · ,
d25 are omitted for space limit.

Remark 2.1: System (11) is called the augmented system
of the plant (4). It can be shown that the origin is an
equilibrium of (4) for all µ [5]. Moreover, if a state feedback
control law of the form

ū1 = α1(x̄1), ū2 = α2(x̄1, x̄2) (12)

where x̄1 = col(x̄1,1, x̄1,2), x̄2 = x̄2,1, α1 and α2 are
globally defined smooth functions vanishing at the origin
globally stabilizes the augmented system (11), then the
following control law

u1 = α1(x̄1) + Ψ2T
−1
2 η2

u2 = α2(x̄1, x̄2) + Ψ3T
−1
3 η3

η̇1 = M1η1 + N1g1(x, u) + N1b
−1
11 a12x1,2x2,1

η̇i = Miηi + Nigi(x, u), i = 2, 3 (13)

solves the global robust output regulation problem of the
original plant (4) [5].

Remark 2.2: As pointed out in [5], a system can have
multiple internal models. For example, (8) would still be
qualified for being an internal model of (4) if the last term
in the first equation of (8) were removed. In this case, (8)
would be the so-called canonical linear internal model as
used in [11]. It is known that the key to the success of
solving an output regulation problem is to be able to find a
proper internal model that yields an augmented system which
is stablizable and whose stabilization problem is tractable.
It can be shown that, due to the presence of the term
a12x2,1x1,2 in (4), a linear canonical internal model as used
in [11] would yield an augmented system of the form (11)
but with the first equation taking the following form:

ż1,1 = (M1 + χx̄2,1)z1,1 + F (x̄1,1, x̄1,2, x̄2,1, µ) (14)

where χ = −N1b
−1
11 a12Ψ1T

−1
1 , F (x̄1,1, x̄1,2, x̄2,1, µ) =

(M1N1b
−1
11 + N1b

−1
11 a11)x̄1,1 − N1b

−1
11 a12x̄2,1(x̄1,2 +

Ψ1T
−1
1 N1b

−1
11 x̄1,1 + x1,2(v, w)). We have no clue if the

stabilization problem of such an augmented system is
solvable. That is why we have proposed the nonlinear
internal model (8) in this paper.

III. TWO TECHNICAL LEMMAS

Since the term x̄2,1 appears in all equations of system (11),
system (11) is not in any special form such as the normal
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form or lower triangular form. The stabilization of such a
system has never been encountered before. Consequently,
in this section, we have to first establish two technical
lemmas tackling the stabilization problem of system (11).
The first lemma can be viewed as a generalized changing
supply function technique, and the second one a generalized
gain assignment technique. The two lemmas are generalized
version of the results in [13] and [2] in the sense that they
apply to a particular type of non-ISS (input-to-state stable)
systems.

Lemma 3.1: Consider the following system

ẋ = f(x, u, y, µ(t)) (15)

where x ∈ Rn, u ∈ R, y ∈ R, µ : [0,∞) 7→ Rl is a bounded
piecewise continuous function. Let ym = col(h(x, u), u)
where h(x, u) : Rn+1 7→ Rs with 0 ≤ s ≤ n is
some measurable output of (15). Suppose, for any compact
set Σ ⊂ Rl, there exists a C1 function V0(x) satisfying
γ

0
(‖x‖) ≤ V0(x) ≤ γ0(‖x‖) for some class K∞ functions

γ
0
(·) and γ0(·) such that for all µ(t) ∈ Σ along any trajectory

of system (15),

V̇0 ≤ −γ0(‖x‖) + ω1(ym)u2 + ω2(ym, y)y2 (16)

for some class K∞ function γ0(·) satisfying
lims→0+ sup(γ−1

0 (s2)
s ) < ∞ and some smooth nonnegative

functions ω1(ym), ω2(ym, y). Then given any smooth
function ∆(x) > 0, there exist a C1 function W0(x)
satisfying δ0(‖x‖) ≤ W0(x) ≤ δ0(‖x‖) for some class K∞
functions δ0(·) and δ0(·) such that for all µ ∈ Σ along the
trajectory of system (15),

Ẇ0 ≤ −∆(x)‖x‖2 + ω̄1(ym)u2 + ω̄2(ym, y)y2 (17)

for some known smooth functions ω̄1(ym) ≥ 1, ω̄2(ym, y) ≥
1.

The proof is omitted due to the space limit.
Remark 3.1: The inequality (17) means that system (15)

does not have to be input-to-state stable with x as the state
and (u, y) as input. For example, the following system

ẋ = −x + xy. (18)

is a special case of system (15). It is not ISS but satisfies
inequality (16) with ym = x since, along any trajectory of
system (15), the positive definite proper function V0(x) = x2

satisfies

V̇0 = −2x2 + 2x2y

= −2x2 + 2x · xy

≤ −x2 + x2y2. (19)

Thus, Lemma 3.1 can be viewed as a generalized changing
supply function technique. The interest of this lemma lies
in the fact that it will lead to a generalized gain assignment
result for non-ISS systems as shown in the following result.

Lemma 3.2: Consider the following system

ζ̇1 = ϕ1(ζ1, x, y, µ(t))
ζ̇2 = Aζ2 + ϕ2(ζ1, x, y, µ(t))
ẋ = φ(ζ1, ζ2, x, y, µ) + (b(µ(t)) + a(µ(t))y)u (20)

where ζ1 ∈ Rn1 , ζ2 ∈ Rn2 , x ∈ R, u ∈ R, y ∈
R, µ : [0,∞) 7→ Rl is a bounded piecewise con-
tinuous function, A ∈ Rn2×n2 is a Hurwitz matrix,
ϕ1(ζ1, x, y, µ), ϕ2(ζ1, x, y, µ) and φ(ζ1, ζ2, x, y, µ) are suf-
ficiently smooth with ϕ1(0, 0, 0, µ) = 0, ϕ2(0, 0, 0, µ) = 0
and φ(0, 0, 0, 0, µ) = 0 for all µ ∈ Rl. b(µ) is a function
satisfying, for all µ, bm ≤ b(µ) ≤ bM with bm, bM

known positive numbers. Let ym = col(h(ζ1, x), x) where
h(ζ1, x) : Rn1+1 7→ Rs with 0 ≤ s ≤ n1 is some
measurable output of the plant (20). Suppose, given any
compact subset Σ ⊂ Rl, there exists a C1 function V̄1(ζ1)
satisfying γ

1
(‖ζ1‖) ≤ V̄1(ζ1) ≤ γ1(‖ζ1‖) for some class

K∞ functions γ
1
(·) and γ1(·) such that, for all µ(t) ∈ Σ,

along any trajectory of system ζ̇1 = ϕ1(ζ1, x, y, µ),

˙̄V1 ≤ −γ1(‖ζ1‖) + π̄1(ym)x2 + π̄2(ym, y)y2 (21)

where γ1(·) is some known class K∞ functions satisfying
lims→0+ sup(γ−1

1 (s2)
s ) < ∞ and π̄1(ym), π̄2(ym, y) are

some known smooth nonnegative functions. Then there exist
a smooth function ρ(ym) : Rs+1 7→ [0,∞), a controller of
the form

u = −ρ(ym)x + ν (22)

with ν ∈ R, and a C1 function U1(ζ1, ζ2, x) satisfying
α1(‖ζ1, ζ2, x‖) ≤ U1(ζ1, ζ2, x) ≤ α1(‖ζ1, ζ2, x‖) for some
class K∞ functions α1(·) and α1(·) such that along the
trajectory of the closed-loop system composed of (20) and
(22),

U̇1 ≤ −‖ζ1‖2 − ‖ζ2‖2 − x2 + ν2 + π(ȳm, y)y2 (23)

for some known smooth nonnegative function π(ȳm, y)
where ȳm = col(ym, ν).

The proof is omitted due to the space limit.
Remark 3.2: System (11) is in contrast with system (19)

of [11] in that it contains the term: a(µ)x̄2,1x̄1,2 in the x̄1,1-
subsystem. Therefore, Lemma 3.1 in [11] does not apply to
system (11). Thus we need to develop Lemma 3.2 to tackle
the stabilization problem of system (11).

Remark 3.3: System (20) contains the following system

ζ̇ = Aζ + ϕ(x, y, µ(t))
ẋ = φ(ζ, x, y, µ) + (b(µ(t)) + a(µ(t))y)u (24)

as a special case. For this case, condition (21) becomes
redundant. By Lemma 3.2 with ym = x, there exist a smooth
function ρ(ym) : R1 7→ [0,∞), a controller of the form
(22) with ν ∈ R, and a C1 function U1(ζ, x) satisfying
α1(‖ζ, x‖) ≤ U1(ζ, x) ≤ α1(‖ζ, x‖) for some class K∞
functions α1(·) and α1(·) such that, along any trajectory of
the closed-loop system composed of (24) and (22),

U̇1 ≤ −‖ζ‖2 − x2 + ν2 + π(ȳm, y)y2 (25)

for some known smooth nonnegative function π(ȳm, y)
where ȳm = col(ym, ν).

Remark 3.4: If system (20) does not contain y, then
Lemma 3.2 means that the controller (22) with ν = 0 solves
the global stabilization problem of system (20).
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IV. SOLVABILITY OF THE MOTOR CONTROL PROBLEM

Let us first introduce the following notations:

x̃1,1 = x̄1,1

x̃1,2 = x̄1,2 + ρ1,1(x̃1,1)x̃1,1

ū1 = −ρ1,2(x̃1,1, x̃1,2)x̃1,2

x̃2,1 = x̄2,1

ū2 = −ρ2,1(x̃1,1, x̃1,2, x̃2,1)x̃2,1 (26)

where ρ1,1, ρ1,2, ρ2,1 are certain smooth nonnegative func-
tions to be specified. Also, let X̃1 = col(z1,1, x̃1,1), X̃2 =
col(X̃1, z1,2, x̃1,2), X̃3 = col(X̃2, z2,1, x̃2,1).

The stabilization problem of system (11) can be done by
the following steps.

Step 1: Consider the following system

ż1,1 = M1z1,1 + d1x̃1,1

˙̃x1,1 = f̃1,1(z1,1, x̃1,1, x̄2,1, µ) + (b1,1(µ) + a(µ)x̄2,1)x̄1,2

(27)

where f̃1,1(z1,1, x̃1,1, x̄2,1, µ) = f̄1,1(z1,1, x̄1,1, x̄2,1, µ).
System (27) is in the form of system (24) with ζ =

z1,1, x = x̃1,1, u = x̄1,2, y = x̄2,1, A = M1, ym = x̃1,1. By
Remark 3.3, with ν = x̃1,2, ȳm = col(x̃1,1, x̃1,2), there exist
a smooth nonnegative function ρ1,1(x̃1,1) and a C1 function
Ũ1(X̃1) satisfying α1(‖X̃1‖) ≤ Ũ1(X̃1) ≤ α1(‖X̃1‖) for
some class K∞ functions α1(·) and α1(·) such that, for all
µ ∈ Σ, Ũ1(X̃1) satisfies inequality (25).

Step 2: Consider the following system

˙̃X1 = F1(X̃1, x̃1,2, x̄2,1, µ)
ż1,2 = M2z1,2 + Q̃1,2(X̃1, x̃1,2, x̄2,1, µ)
˙̃x1,2 = f̃1,2(X̃1, z1,2, x̃1,2, x̄2,1, µ) + b1,2(µ)ū1 (28)

where

F1(X̃1, x̃1,2, x̄2,1, µ) =[
M1z1,1 + d1x̃1,1

f̃1,1(z1,1, x̃1,1, x̄2,1, µ) + (b1,1(µ) + a(µ)x̄2,1)x̄1,2

]

Q̃1,2(X̃1, x̃1,2, x̄2,1, µ) = Q1,2(z1,1, x̄1,1, x̄1,2, x̄2,1, µ)
f̃1,2(X̃1, z1,2, x̃1,2, x̄2,1, µ)

= f̄1,2(z1,1, z1,2, x̄1,1, x̄1,2, x̄2,1, µ)

+
∂(ρ1,1(x̃1,1)x̃1,1)

∂x̃1,1
(f̃1,1(z1,1, x̃1,1, x̄2,1, µ)

+(b1,1(µ) + a(µ)x̄2,1)x̄1,2).

System (28) is in the form of system (20) with ζ1 =
X̃1, ζ2 = z1,2, x = x̃1,2, u = ū1, y = x̄2,1, A = M2, ym =
col(x̃1,1, x̃1,2). Because X̃1-subsystem satisfies inequality
(21), by Lemma 3.2, with ν = 0, ȳm = col(x̃1,1, x̃1,2), there
exist a smooth nonnegative function ρ1,2(x̃1,1, x̃1,2) and a
C1 function Ũ2(X̃2) satisfying α2(‖X̃2‖) ≤ Ũ2(X̃2) ≤
α2(‖X̃2‖) for some class K∞ functions α2(·) and α2(·) such
that, for all µ ∈ Σ, Ũ2(X̃2) satisfies inequality (23).

Step 3: Consider the following system

˙̃X2 = F2(X̃2, x̃2,1, µ)
ż2,1 = M3z2,1 + Q̃2,1(X̃2, x̃2,1, µ)
˙̃x2,1 = f̃2,1(X̃2, z2,1, x̃2,1, µ) + b2,1(µ)ū2 (29)

where

F2(X̃2, x̃2,1, µ)

=




F1(X̃1, x̃1,2, x̄2,1, µ)
M2z1,2 + Q̃1,2(X̃1, x̃1,2, x̄2,1, µ)
f̃1,2(X̃1, z1,2, x̃1,2, x̄2,1, µ) + b1,2(µ)ū1




Q̃2,1(X̃2, x̃2,1, µ) = Q2,1(X̄2, x̄2,1, µ)
f̃2,1(X̃2, z2,1, x̃2,1, µ) = f̄2,1(X̄2, z2,1, x̄2,1, µ).

System (29) is in the form of system (20) with ζ1 = X̃2, ζ2 =
z2,1, x = x̃2,1, u = ū2, y ∈ R0, ym = col(x̃1,1, x̃1,2, x̃2,1).
Because X̃2-subsystem satisfies inequality (21), by Lemma
3.2, with ν = 0, ȳm = col(x̃1,1, x̃1,2, x̃2,1), there exist
a smooth function ρ2,1(x̃1,1, x̃1,2, x̃2,1) and a C1 function
Ũ3(X̃3) satisfying α3(‖X̃3‖) ≤ Ũ3(X̃3) ≤ α3(‖X̃3‖) for
some class K∞ functions α3(·) and α3(·) such that, for all
µ ∈ Σ, Ũ3(X̃3) satisfies inequality (23). By Remark 3.4, a
control law of the form (26) solves the global stabilization
problem of system (11). Finally, by Remark 2.1, we obtain
the following main result.

Theorem 4.1: The state feedback control law of the fol-
lowing form

u1 = −ρ1,2(x̃1,1, x̃1,2)x̃1,2 + Ψ2T
−1
2 η2

u2 = −ρ2,1(x̃1,1, x̃1,2, x̃2,1)e2 + Ψ3T
−1
3 η3

η̇1 = M1η1 + N1g1(x, u) + N1b
−1
11 a12x1,2x2,1

η̇i = Miηi + Nigi(x, u), i = 2, 3 (30)

where x̃1,1 = x1,1 − v1, x̃1,2 = x1,2 − Ψ1T
−1
1 η1 +

ρ1,1(x̃1,1)e1, and x̃2,1 = x2,1 solves the robust output
regulation problem of system (4).

The control law (30) contains three design functions ρ1,1,
ρ1,2, and ρ2,1 and several design parameters Mi, Ni, i =
1, 2, 3, and T1, T2, T3. These design functions depends on the
nominal values and the boundaries of the uncertainties of the
motor parameters, as well as the specific Lyapunov functions
used in deriving Theorem 4.1. For the purpose of the
computer simulation, various certain parameters of the motor
are p = 3,Φv = 0.18V.sec/rad, Ld = 0.022H, Lq = 0.011H,
the nominal values of various uncertain motor parameters
are R̄s = 1.2Ω, B̄ = 0.0001N.m.sec/rad, J̄ = 0.006Kg.m2,
T̄L = 0.3N.m, and the real values of Rs, B, J, TL are
prescribed by Rs ∈ [0.5R̄s, 2R̄s], B ∈ [0.5B̄, 2B̄], J ∈
[0.5J̄ , 2J̄ ], TL ∈ [0.5T̄L, 2T̄L]. Also, we assume the fre-
quency of the reference input is ω = 3, and the amplitude
A ≤ 2rad/sec. Under the above setup, various control law
design functions and parameters are as follows:

ρ1,1(x̃1,1) = 1,

ρ1,2(x̃1,1, x̃1,2) = 20(1 + x̃2
1,2),

ρ2,1(x̃1,1, x̃1,2, x̃2,1) = 20(1 + e2
2 + e2

2x̃
4
1,2 + e4

1e
2
2 + e6

1),
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M1 =




0 1 0
0 0 1
−17 −19 −3


 , N1 =




0
0
1


 ,

M2 =




0 1 0
0 0 1
−10 −16 −7


 , N2 =




0
0
1


 ,

M3 =




0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

−2626 −4156 −1857 −357 −31




,

N3 =
[

0 0 0 0 1
]T

,

Ψ1T
−1
1 =

[
17 10 3

]
,Ψ2T

−1
2 =

[
10 7 7

]
,

Ψ3T
−1
3 =

[
2626 3832 1857 312 31

]
.

The performance of the control law is evaluated through
computer simulation with the uncertain motor parameters
taking the following values: Rs = 2R̄s, B = 1.5B̄, J =
0.8J̄ . The desired speed is yd(t) = 2 sin(3t + π

2 )rad/sec,
and the load TL = 0 for 0 ≤ t < 4s and TL = 0.8T̄L for
t ≥ 4s. Initial values for computer simulation are as follows:
ωr(0) = 0.1rad/sec, id(0) = 0.2A, iq(0) = 0.3A, v1(0) =
2, v2(0) = 0, v3(0) = 0, and η1(0) = η2(0) = η3(0) = 0.
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Fig. 1. Speed error with load at t = 4s
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Fig. 2. id current with load at t = 4s

V. CONCLUSION

In this paper, we have studied the speed tracking and load
torque disturbance rejection problem of PM synchronous
motor by internal model design. After formulating the prob-
lem into a global robust output regulation problem of a
special class of multivariable systems, we have developed

a systematic approach that decomposes two-input control
problem into two single-input control problems. As the
augmented system does not take any known special form,
we have developed a generalized changing supply function
technique which is applicable to non-ISS (input-to-state sta-
ble) systems. This technique, in conjunction with a particular
nonlinear internal model has led to an effective solution
to the problem. The control performance was verified by
simulation results. Compared with existing results about PM
synchronous motor control, our approach offers a better
robust property and allow the reference speed and load
torque disturbance to be a linear combination of finitely
many sinusoidal signals of different frequencies and constant
signal.
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