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Abstract—Air traffic management and airspace management
reduce air traffic congestion to maintain safety. Managing traffic
induces costs on airspace users and managing airspace causes
additional work for air traffic controllers. This paper proposes
and simulates algorithms for tactically reducing airspace con-
gestion with coordinated air traffic and airspace management.
A modified version of the Projective Cone Scheduling algorithm
performs tactical air traffic management. An algorithm based
on approximate dynamic programming accomplishes tactical
airspace management. Three types of coordination between these
air traffic and airspace management algorithms are investigated.
Monte Carlo simulations of a simple problem instance involving
severe congestion indicate that increased coordination between
air traffic and airspace management can lead to lower costs with
no increase in algorithm computation time.

I. INTRODUCTION

Congested airspace contains more aircraft than can be safely

and efficiently controlled by air traffic controllers. Congestion

can be reduced by managing air traffic or airspace. Traffic

Management Units tactically manage air traffic by delaying or

rerouting flights to reduce congestion over the next hour. These

delays or reroutes are costly for airspace users. Managing

airspace, on the other hand, involves altering how respon-

sibility for controlling aircraft is divided among controllers.

Controller supervisors accomplish tactical airspace manage-

ment by selecting sets of airspace volumes called sectors to be

controlled by each controller team. Changes in the assignment

of sectors to controller teams disrupt controller activities

and can degrade safety and efficiency. Traffic Management

Units and controller supervisors coordinate how to use air

traffic and airspace management to reduce congestion. Since

congestion, traffic management, and airspace management all

induce difficulties for controllers or costs for airspace users, it

is not always clear if or how traffic and airspace management

should work together to reduce congestion.

Procedures, tools, and algorithms have been proposed to

assist with tactical air traffic and airspace management. A

person called a Multi-Sector Planner could coordinate local

traffic and airspace management [1]. Procedures for human

decision-makers to tactically coordinate air traffic and airspace

management while using algorithm-suggested alterations to

sector geometries have been investigated in recent human-in-

the-loop simulations [2]. The Airspace Restriction Planner is

a tool that proposes and evaluates possible air traffic man-

agement actions by solving an integer program [3], [4]. More

recently, the MaxWeight algorithm from queuing theory has

been applied to tactical air traffic management [5]. For tactical

airspace management, algorithms based on myopic heuristics,

integer programming, and dynamic programming have been

proposed [6]–[8]. Some research has investigated the coor-

dination of air traffic and airspace management for strategic

time horizons of an hour or more [9]–[11]. However, most

air traffic management algorithms assume that airspace will

be held constant, and most airspace management algorithms

do not consider how delayed or rerouted traffic will impact

airspace quality. Furthermore, no publications have studied

algorithms for coordinated air traffic and airspace management

in the tactical timeframe of an hour or less.

This paper is a preliminary investigation of algorithms for

coordinated tactical air traffic and airspace management. These

algorithms suggest air traffic and airspace controls to reduce

congestion in a way that considers the cost of congestion,

traffic management, and airspace management. The algorithms

incorporate various degrees of coordination between air traffic

and airspace management.

The model and the problem statement are in Section II. Al-

gorithms for solving this problem are specified in Section III.

The experimental setup in Section IV is followed by the results

in Section V. Opportunities for future work are discussed in

Section VII before the conclusion in Section VI.

II. PROBLEM STATEMENT

A. Air Traffic and Airspace Model

A queuing network is used to model air traffic and airspace.

Despite the simplicity of queuing models, they have proven

proven themselves to be relatively accurate representations

of air traffic [12]–[14]. They also allow powerful controlled

queuing techniques to be leveraged. While it is not trivial

to translate control actions proposed by such techniques into

implementable directives to aircraft [15], controlled queuing

algorithms show promise for air traffic management [5], [16].

For this study, air traffic is modeled with an Eulerian

queuing model. Each queue represents aircraft with particular

characteristics (such as the same destination airport) traversing

part of the National Airspace System (such as a sector).

Sectors are the atomic units of airspace and the sector con-

figuration in use at each time step specifies how sectors and
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their associated queues are grouped into control positions. A

control position is a set of sectors that are managed by a team

of air traffic controllers.

1) State: Time is discretized into time steps of length T .

The system state X (k) = (Q(k), C(k)) at a time step k

consists of the number of aircraft in each queue Q(k) and the

sector configuration C(k). More precisely, Q(k) is a vector

in which an element Qij(k) denotes the number of aircraft

passing between boundary i and boundary j at time kT . These

boundaries can represent any location where traffic may be

rerouted or delayed. Separate queues could be defined for

flights bound for different destinations. The configuration state

at time kT is C(k), a set of control positions. Each control

position c is itself a set that contains one or more of the N

sectors in the set of sectors S.

2) Control: The control action at each time step also has

two parts. The air traffic control implemented between time

kT and time (k + 1)T is U(k). This control is also a vector

with an element for each possible transition from one queue

to another. Let Uijt(k) denote the number of aircraft in queue

Qij that are transitioned to queue Qjt during time step k. The

airspace control action selects the configuration for the next

time step. This action is denoted by u(k), and it is a set of

control positions that will be in place by time (k + 1)T . The

overall control action at time step k is U(k) = (U(k), u(k)).
3) Dynamics: The system dynamics for the air traffic state

depend on the dynamics of the arrivals to each queue. Let

Aij(k) be the number of exogenous arrivals passing through

sector boundary i from outside the system on the way to sector

boundary j during time interval [kT, (k + 1)T ). Then the

dynamics of the number of aircraft in each queue are Qij(k+
1) = Qij(k) + Aij(k) +

∑

s∈I(i) Usij(k) −
∑

t∈O(j) Uijt(k),
where I(i) is the set of all sector boundaries preceding bound-

ary i, and O(j) is similarly the set of all sector boundaries

following boundary j. With an appropriate B matrix, the

dynamics of all the queues can be specified as

Q(k + 1) = Q(k) + BU(k) + A(k). (1)

The system dynamics for the airspace are simply C(k+1) =
u(k). At each time step the configuration control specifies the

configuration for the next time step.

4) Constraints: Only those aircraft in each queue Qij

that would, in the absence of any traffic control, cross

airspace boundary j during time step k (Dij(k)) can tran-

sition out of the queue. This is expressed by the inequality
∑

t∈O(j) Uijt(k) ≤ Dij(k) ∀ i, j, t, k. The vector version of

these constraints is C1U(k) ≤ D(k), where C1 is a binary

matrix. The numbers of transitioning aircraft can only be non-

negative integers: U(k) ∈ ZnU

+ ∀ k, where nU is the number

of elements in the U(k) vector. For this research, the Dij(k)
values will be specified by a random process as in Ref. [5].

This random process is unique in that its expected value

increases as the number of aircraft in the queue increases, but

eventually saturates because of aircraft separation standards.

Rate constraints may also restrict the number of aircraft

that can cross a given sector boundary during a time step. Let

C2 be another binary matrix in which the 1 entries in each

row identify the elements of U(k) that must be added up to

determine the total number of aircraft transitioning across a

particular boundary. Let R be a column vector in which each

element expresses an upper bound on the number of aircraft

that can traverse the boundary affiliated with the corresponding

row of C2 during a time step. Then the vector inequality

capturing rate constraints is C2U(k) ≤ R.

A valid configuration assigns each sector to exactly one

control position, specifies only spatially contiguous control po-

sitions, and possibly meets other operational requirements [8].

Let C be the set of all valid configurations, and let Cp be the

set of all valid configurations that contain p control positions.

Due to staffing constraints, a prescribed number of control

positions must be used at each time step. Let d(k) specify the

time-varying number of control positions that must be used

at each time step. The configuration control must meet the

constraint that u(k) ∈ Cd(k+1) (i.e. |u(k)| = d(k + 1)).

B. Coordinated Tactical Air Traffic and Airspace Management

Problem

The coordinated tactical air traffic and airspace management

problem (CTATAMP) is to find a control policy that minimizes

the expected value of a weighted sum of congestion, traffic

control, and airspace control costs over a finite time horizon,

subject to the system dynamics and constraints specified in

sub-section II-A. The CTATAMP is

minimize
π=(µ0,...,µK−1)

E

[

K−1
∑

k=0

g(X (k),U(k),X (k + 1))

∣

∣

∣

∣

∣

X (0)

]

(2)

subject to Q(k + 1) = Q(k) + BU(k) + A(k), (3)

k = 0, . . . , K − 1

C1U(k) ≤ D(k), k = 0, . . . , K − 1 (4)

C2U(k) ≤ R, k = 0, . . . , K − 1 (5)

U(k) ∈ ZnU

+ , k = 0, . . . , K − 1 (6)

C(k + 1) = u(k), k = 0, . . . , K − 1 (7)

u(k) ∈ Cd(k+1), k = 0, . . . , K − 1 (8)

X (0) = X0, (9)

where π is a feedback control policy in which µ0, . . . , µK−1

indicate what control action to take at each time step, given

the state: U(k) = µk(X (k)). Therefore, the problem does not

require that open-loop control actions be specified for the K

time steps. Problem data include the distributions for A(k) and

D(k), the B, R, C1, and C2 matrices, the scheduled number

of control positions d(k), the set of sectors S, the sets of valid

configurations Cp, and a few other items required for the cost

function and described later.

The single time step cost function in the objective (2) is

a weighted sum of congestion, traffic control, and airspace

5288



control costs:

g(X (k),U(k),X (k + 1)) = βcgc(X (k)) (10)

+ βtgt(Q(k), U(k))

+ βaga(X (k),U(k),X (k + 1)).

A cost function was designed to capture the most important

cost-inducing quantities in simple functional forms.

1) Congestion Cost: This cost penalizes instances when

control positions contain more than the maximum number

of aircraft that they can safely contain. Let Q̄c denote this

capacity value for a control position c, and let Q̄C be a vector

containing the capacities for all the control positions in C.

The congestion cost depends on the airspace configuration.

The number of aircraft in a control position during a time step

is a sum of the number of aircraft in the queues corresponding

to sectors in that control position. Let Ec be a binary row

vector with a 1 corresponding to each sector that is in c.

Similarly, let EC be a binary matrix with a row for each

control position in C. Then ECQ is a vector in which each

element contains the number of aircraft in the control positions

in C when the number of aircraft in each queue is as specified

in the vector Q. The congestion cost is a sum of the number

of aircraft over the capacity in each control position:

gc(X (k)) = 1
T

[

EC(k)Q(k) − Q̄C(k)

]

+
. (11)

Here 1 is a column vector of ones and [a]+ is equal to a when

a ≥ 0 and equal to 0 otherwise.

2) Traffic Control Cost: The traffic control cost penalizes

airborne delay and reroutes. It is expressed as

gt(Q(k), U(k)) = 1
T (D(k) − C1U(k)) + fT U(k). (12)

The first term in this cost adds up all the flights that were able

to transition out of a queue but were instead delayed in the air.

The second term can impose a cost on rerouting flights. The

f vector contains non-negative elements that impose a cost on

control actions in U(k) that correspond to reroutes.

3) Airspace Control Cost: Finally, the airspace control cost

captures the operational cost of changing the airspace config-

uration. When the airspace configuration changes, controllers

must brief each other on the airspace that is moving from

one controller team to another, and the new team must gain

awareness of the air traffic situation in the new airspace.

During this approximately 5-minute transition, operations in

the airspace may become inefficient and less safe. The airspace

control cost is

ga(X (k),U(k),X (k + 1)) =
∑

c∈C−

EcQ(k) +
∑

c∈C+

EcQ(k + 1).

(13)

The first term is the number of aircraft in control positions at

the start of time step k that will not be used in the configuration

that will be implemented at the start of time step k + 1 (the

set C−). The second term is the number of aircraft in control

positions at the start of time step k + 1 that were not used

during time step k (the set C+). These two terms approximate

the number of aircraft that are controlled during or discussed in

the briefing and handed off to another controller team during a

transition, respectively, quantities shown in previous research

to be correlated with airspace transition workload [17]. It is

possible to change configurations at any time step, but this

cost incentivizes keeping the configuration constant.

III. ALGORITHMS

Some algorithms for solving the CTATAMP are developed

by connecting a traffic control algorithm with an airspace

control algorithm.

A. Traffic Control Algorithms

1) Null Traffic Control: One baseline option for traffic

control is to not interfere with flights as they traverse the

airspace, leaving any congestion problems to be solved by

airspace control. This option consists of always selecting

actions that myopically minimize the traffic control cost:

Φ0(Q(k)) ∈ argmin
U∈U(k)

gt(Q(k), U), (14)

where U(k) is the set of traffic control vectors that satisfy

constraints (4)–(6).

2) Projective Cone Scheduling Traffic Control: The Projec-

tive Cone Scheduling (PCS) algorithm maximizes throughput

and is computationally efficient [18]. It is a generalization of

the MaxWeight algorithm, which has been applied to tactical

air traffic management [5]. For this research, PCS is modified

to consider the impact of control actions on the number

of aircraft over a congestion threshold in control positions

rather than the total number of aircraft in single queues.

This modification is suitable for the CTATAMP because the

congestion cost only penalizes the number of aircraft over the

capacity in each control position. The modified PCS algorithm

is denoted by ΦPCS(Q(k), u(k)) and is specified as follows.

1: Θ = argmin
U∈U(k)

〈∆(U, u(k), α(k)), Gu(k)Π(Q(k), u(k))〉

2: return U ∈ argmin
U∈Θ

gt(Q(k), U)

In this algorithm α(k) is the expected number of arrivals

in time step k. Furthermore, ∆(U, u, α) and Π(Q, u) are

functions that output p × 1 vectors, where p is the number

of control positions in u.

Each element of the vector output by the Π(Q, u) function

specifies, for a control position in airspace configuration u

when the queue state is Q, the number of aircraft above a

threshold that are in the control position:

Π(Q, u) = [EuQ − (Q̄u − ǫu)]+. (15)

Here ǫu is a nonnegative p × 1 vector with an entry for each

control position in u. If ǫc, the entry in ǫu corresponding to

control position c, is set to 0, then the PCS algorithm selects

traffic control actions that reduce the aircraft in c when the

aircraft count in c is over Q̄c, the capacity of c. Larger ǫc

values encourage the PCS algorithm to reduce the aircraft
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count in c before the count reaches Q̄c. The value (Q̄c − ǫc)
will be referred to as the PCS congestion threshold.

The ∆(U, u, α) function is specified as

∆(U, u, α) = max{Eu(BU + α),−Π(Q, u)}. (16)

Each entry in the vector output by ∆ specifies the amount that

traffic control action U will increase the aircraft over capacity

in a control position, assuming α arrivals in this time step.

Finally, Gu(k) is a positive-definite symmetric matrix with

nonpositive off-diagonal elements that can be used to tune the

performance of the PCS algorithm [18].

From among the traffic control actions that minimize the

inner product, an action with a minimal traffic control cost is

selected by the modified PCS algorithm in step two.

B. Airspace Control Algorithms

1) Null Airspace Control: The null airspace control Ψ0

always uses a particular airspace configuration. When the

required number of control positions changes, this algorithm

selects a new airspace configuration that minimizes only the

current airspace control cost, assuming that α aircraft arrive

in each queue in the current time step.

2) Approximate Dynamic Programming Airspace Control:

A second airspace control algorithm is based on the rollouts

technique for approximate dynamic programming (ADP) and

is an extension of the algorithm presented in Ref. [8]. This

algorithm will select an airspace configuration that minimizes

the certainty equivalent estimate of the sum of the current

stage cost and an approximation of the optimal cost-to-go:

ΨADP(X (k), Φ, Ψ) ∈ argmin
u∈Cd(k+1)

{g(X (k), (Φ, u),EX (k + 1))

+ J̃k+1(X (k + 1), Φ, Ψ)}. (17)

Here J̃k(X (k), Φ, Ψ) is a certainty equivalent estimate of the

expected optimal cost-to-go from state X (k) at time step

k [19]. It is computed by simulating the system from time

step k to k + L, using Φ and Ψ to make traffic and airspace

control decisions, respectively. In this simulation the arrivals

to the system in time step k are α(k) and D(k) is set to its

expected value given the simulated queue state at time step k.

The equation describing the approximate optimal cost-to-go is

J̃k(X (k), Φ, Ψ) =

k+L
∑

j=k

g(X̃ h(j), (Φ, Ψ), X̃ h(j + 1)), (18)

where X̃ (j) is the value of the system state taken on at the jth

time step in the simulation. Any traffic and airspace control

algorithms can be used in the rollouts simulation. A variation

on this algorithm accepts a fourth input that specifies the traffic

control to be used when simulating time step k.

C. Algorithms for the Coordinated Tactical Air Traffic and

Airspace Management Problem

1) Null Control: One algorithm that serves as a baseline

will not attempt to manage congestion with traffic or airspace

control. It uses the null airspace and null traffic control

algorithms to independently select air traffic and airspace

control actions.

2) Independent PCS Traffic Control and ADP Airspace

Control: A second algorithm will select traffic control actions

with PCS and airspace control actions with the ADP controller,

but without any coordination between the two. Most traffic

control and airspace control algorithms developed in previous

research do not explicitly consider the impact that they have on

one another. Traffic control actions will be selected according

to ΦPCS(Q(k), Ψ0) and and the airspace control will be

selected according to ΨADP(X (k), Φ0, Ψ0).
3) Iterative PCS Traffic Control and ADP Airspace Control:

One way to address the issue of coordinating traffic and

airspace control is to use an iterative approach [9], [11]. Such

an iterative algorithm is specified as follows.

1: U0 = ΦPCS(Q, C)
2: u0 = ΨADP(X , Φ0, Ψ0, U0)
3: for i = 1 to Imax do

4: Ui = ΦPCS(Q, ui−1)
5: ui = ΨADP(X , Φ0, Ψ0, Ui)
6: gi = g(X , (Ui, ui), (Q + BUi + α, ui))
7: if |gi − gi−1| ≤ δ then

8: return U = (Ui, ui)
9: end if

10: end for

11: return U = (UImax
, uImax

)

Inputs to the iterative algorithm include the system state

X = (Q, C) and the expected number of arrivals in a time

step α. The algorithm outputs a traffic and airspace control

pair U . The δ parameter specifies how much the cost must

converge before a control is returned and the Imax parameter

specifies the maximum number of iterations.

4) Coordinated PCS Traffic Control and ADP Airspace

Control: A final algorithm will be referred to as the coordi-

nated algorithm because it explicitly coordinates air traffic and

airspace control by having the ADP airspace control approxi-

mate costs-to-go with the same traffic control algorithm that is

used to control the system. It first selects an airspace control

action according to u(k) = ΨADP(X (k), ΦPCS, Ψ0). Then it se-

lects a traffic control according to U(k) = ΦPCS(Q(k), u(k)).

IV. EXPERIMENTAL SETUP

A simple problem instance is developed to illustrate some

of the characteristics of the proposed algorithms. These char-

acteristics are more pronounced when congestion is more

severe, so the problem involves severe congestion that would

probably only be encountered in the tactical time horizon if

some unforeseen weather induced a significant reduction in

capacity or change in traffic flows.

The traffic queues and sectors used for this simple problem

instance are shown in Fig. 1. There are ten queues handling

flows of traffic traveling right-to-left and left-to-right. The

dashed rectangles indicate how queues are grouped into the six

sectors that partition the airspace. The D(k) random process
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for each queue is an approximation of the process shown in

Fig. 2 of Ref. [5], except for queues 1–4, which are assumed

to be twice as long as the other queues. Their D(k) processes

are modified as described in Ref. [5].

4

3

8

7 9

5

6

1

2

10

Fig. 1. The queueing network used in the simple problem instance.

Queues and flows at lower altitudes are shaded. The low-

altitude queues 2, 4, 6, and 8 lie below queues 1, 3, 5 and 10,

and 7 and 9, respectively. These six sectors can be assigned

to between three and five control positions in seven different

ways. The control position capacities Q̄c are set to 10 for any

control position containing just one of the the four sectors with

queues 5 and 10, 7 and 9, 6, or 8. Control positions with two

or more of these sectors have a capacity of 16. The capacity

is 18 for control positions with queues 1 and 2 or 3 and 4, and

these sectors cannot be in control positions with other queues.

The arrival process to queues 5–7 is binomial with 10 trials

and a time-varying probability of success that is different for

each queue [20]. The expected arrival rate for each queue is

shown in Fig. 2, as is the required number of control positions.
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Fig. 2. The (a) expected arrival rate into each queue and (b) required number
of control positions at each time step.

The values of various problem and algorithm parameters

used in this instance are shown in Table I. The experiment was

simulated in MATLAB. All minimizations were conducted by

an exhaustive search over the set of feasible solutions.

V. EXPERIMENTAL RESULTS

Average cost results broken down by cost type can be

seen in the stacked bar chart in Fig. 3. The average total

cost achieved by the coordinated algorithm is 18% and 9%

TABLE I
PROBLEM AND ALGORITHM PARAMETERS FOR SIMPLE PROBLEM

INSTANCE

Parameter Value

Monte Carlo simulations 100

T (time step duration in minutes) 10

K (time steps in problem instance) 108

N (number of sectors) 6

nU (dimension of traffic control vector) 12

βc (weight on congestion cost) 1

βt (weight on traffic control cost) 1

βa (weight on airspace control cost) 1/3

fi for queue 7 to 10 and queue 5 to 9 (reroute cost) 1/2

All other fi (reroute cost) 0
Gu (PCS weighting parameter matrix) I ∀ u ∈ C

ǫ (parameter vector in PCS congestion threshold) 0

L (ADP rollout simulation duration) 5

δ (iterative algorithm convergence threshold) 3

Imax (iterative algorithm maximum number of iterations) 5

lower than the costs achieved by the independent and iterative

algorithms. The coordinated algorithm also achieves lower

average congestion, traffic control, and airspace control costs

than the iterative or independent algorithms. Similarly, the

iterative algorithm achieves lower costs of all types than the

independent algorithm. These results suggest that increased

interaction and coordination between air traffic and airspace

control can lead to better performance.

Null Independent Iterative Coordinated
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Congestion
Traffic control
Airspace control

Fig. 3. Average weighted congestion, traffic control, and airspace control
costs achieved by each algorithm.

Each point in Fig. 4 represents a control position at a time

step during one sample Monte Carlo simulation. Dots in the

red region represent control positions that are over capacity.

The black vertical lines represent times where each algorithm

reconfigured the airspace. The coordinated algorithm reduces

the congestion with relatively few airspace reconfigurations.

As traffic arrival rates are decreased or control position

capacities increased, the costs achieved by the independent,

iterative, and coordinated algorithms converge.

The null algorithm takes 0.02 seconds to compute a control

action on average. The independent and coordinated algo-

rithms take 0.4 seconds per time step, while the iterative

algorithm takes 1 second per time step.

VI. CONCLUSION

A queuing network model of air traffic and airspace is

used to formulate the Coordinated Tactical Air Traffic and
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(a) (b)

(c) (d)

Fig. 4. Aircraft over capacity for each control position at each time step
during one of the Monte Carlo simulations when using the (a) null, (b)
independent, (c) iterative, and (d) coordinated algorithms.

Airspace Management Problem (CTATAMP). This problem

involves selecting tactical air traffic delays and reroutes and

airspace sector configurations that reduce control position

congestion. Algorithms for this problem are proposed by

combining a traffic control algorithm based on Projective Cone

Scheduling and an airspace control algorithm based on approx-

imate dynamic programming. A new coordinated approach is

proposed in which traffic is controlled with the modified PCS

algorithm and the rollouts approximate dynamic programming

algorithm for airspace control uses the same modified PCS

traffic control as part of the heuristic that helps it approximate

optimal costs-to-go. In Monte Carlo simulations of a simple

problem instance, the coordinated algorithm achieves average

total costs that are 18% and 9% lower than those achieved

by the independent and iterative algorithms, respectively, as

well as lower average congestion costs, traffic control costs,

and airspace control costs. The coordinated and independent

algorithms each compute solutions more than two times faster

than the iterative algorithm.

VII. FUTURE WORK

A major remaining challenge is to refine and tune the

cost function used in this research. The coordinated algorithm

should be run on a historical problem instance involving a

weather event and with weather and traffic prediction un-

certainties. Its performance should be compared to that of

historical air traffic and airspace control actions. The com-

putational efficiency of the modified PCS algorithm must

be improved. Finally, an effort should be made to prove

convergence, stability, or optimality results for the modified

PCS and coordinated algorithms.
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