
Observers for Cascaded Nonlinear and Linear Systems

Håvard Fjær Grip, Ali Saberi, and Tor A. Johansen

Abstract— In this paper we begin by assuming that an ob-
server with a corresponding quadratic-type Lyapunov function
has been designed for a given nonlinear system. We then
consider the problem that arises when the output of that
nonlinear system is not directly available; instead, it acts as
an input to a second, linear system from which a partial-
state measurement is in turn available. We develop an observer
design methodology for the resulting cascade interconnection,
based on estimating the unavailable output together with the
states of the linear system. Under a set of technical assumptions,
the overall error dynamics is proven to be globally exponentially
stable if the gains are chosen to satisfy an H1 condition. We
illustrate application of the methodology by considering the
integration of inertial and satellite-based measurements.

I. INTRODUCTION

Over the past decades, the topic of nonlinear state es-
timation has been extensively treated in the literature, and
many different design methodologies have been developed.
These include stochastic techniques such as the extended and
unscented Kalman filter [1], [2]; the use of nonlinear state
transformations to achieve linear error dynamics [3]; the use
of linear observer dynamics in combination with a nonlinear
transformation [4]; design of observer gains to achieve
robustness against Lipschitz continuous nonlinearities [5];
the application of high gain to suppress Lipschitz continuous
nonlinearities, both for left-invertible systems [6] and non-
left-invertible systems [7]; the exploitation of monotonic
nonlinearities [8]; sliding observers [9]; and moving-horizon
estimation [10]. This list is by no means exhaustive, and
in addition to general methodologies, application-specific
designs proliferate throughout the literature.

In those cases where stability of the observation error can
be explicitly proven, the main tool for doing so is often a
Lyapunov function, and very often this Lyapunov function
is of a quadratic type. Specifically, many continuous-time
designs enable the construction of a Lyapunov function
V.t; Qx/ with the properties that ˛1k Qxk2 � V.t; Qx/ � ˛2k Qxk2,
PV .t; Qx/ � �˛3k Qxk2, and kŒ@V=@ Qx�.t; Qx/k � ˛4k Qxk, where Qx

is the error variable (e.g., [3]–[8]). Quadratic-type Lyapunov
functions are also particularly well-suited for analyzing in-
terconnected and singularly perturbed systems [11].

In this paper we assume that an observer with a corre-
sponding quadratic-type Lyapunov function has already been
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Fig. 1. Nonlinear and linear systems in cascade interconnection

designed for a given nonlinear system. We then consider
the problem that arises when the output from that nonlinear
system is not available directly, but instead available via a
second, linear system. That is, the output from the nonlinear
system acts as the input to a linear system, from which a
partial-state measurement is in turn available. This situation
results in a cascade interconnection that is illustrated in Fig.
1, and it is described by the system equations

†1W
(
Px D f .u; x/;
´ D h.u; x/; (1a)

†2W
(
Pw D Aw C BuuC B´´;
y D Cw CDuuCD´´;

(1b)

where u is a vector of known time-varying signals, such as
control inputs, reference signals, and measured disturbances.
The partitioning of the system may stem from physical divi-
sions or it may be a convenient choice for design purposes.

A. Relationship to Previous Work

The main idea behind our design is simple: since an
observer is already available for the nonlinear †1 subsystem
with output ´, we try to implement that observer using an
estimate of ´, denoted by Ó . In order to produce such an
estimate, we extend the state space of the linear subsystem
†2 to include ´ as an additional state, and construct and
observer for this extended system.

The idea of extending the state space to obtain estimates of
system inputs is not new. In particular, high-gain designs with
an extended state space have been employed in recent years
by Freidovich and Khalil [12], [13] for monitoring the de-
crease of Lyapunov functions and for transient performance
recovery; and by the authors for the purpose of nonlinear
parameter estimation [14], [15].

Our design methodology, being sequential in nature, is
reminiscent of recursive observer design methodologies,
where an observer is designed in stages for a chain of
interconnected subsystems. We point in particular to the
work of Shim and Seo [16], who treat the interconnection
of a general nonlinear system—for which an observer with
a corresponding quadratic-type Lyapunov function already
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exists—with a second system consisting of MIMO chains
of integrators with additive lower-triangular nonlinearities.
Their problem formulation allows for nonlinearities in the
second system that we do not permit in our †2 subsystem; on
the other hand, our †2 subsystem covers a much wider range
of linear systems. More importantly, the design of Shim
and Seo [16] ensures stability through a fairly complicated
multi-stage procedure that leaves little room for performance
considerations, whereas our design only requires the con-
struction of linear gains to ensure that the H1 norm of a
particular transfer matrix is sufficiently small. This leaves the
designer with a rich set of linear design tools.

B. Preliminaries

We denote by R�0 the nonnegative real numbers. For a
vector or matrix X , X 0 denotes its transpose. The opera-
tor k � k denotes the Euclidean norm for vectors and the
Frobenius norm for matrices. For a symmetric positive-
semidefinite matrix P , the minimum eigenvalue is denoted
by �min.P /. We assume that all signals are sufficiently
smooth to allow differentiation when necessary. When con-
sidering systems of the form P� D F.t; �/, we assume that all
functions involved are sufficiently smooth to guarantee that
F.t; �/ is piecewise continuous in t and locally Lipschitz
continuous in �, uniformly in t , on R�0 � Rn. To simplify
notation, we shall omit function arguments when possible.

II. INITIAL ASSUMPTIONS

We consider the system (1), where x 2 Rnx , u 2 Rm,
´ 2 Rp´ , w 2 Rnw , and y 2 Rpy . Note that the system may
have been transformed from its original coordinate basis in
order to be better suited for observer design. We assume that
an observer has already been constructed for the system †1,
on the form

POx D f .u; Ox/C g.u; Ox; ´/: (2)

This design could be implemented if ´ were available,
yielding the error dynamics

PQx D e.t; Qx/; (3)

where Qx WD x � Ox and e.t; Qx/ WD f .u.t/; x.t// �
f .u.t/; x.t/ � Qx/ � g.u.t/; x.t/ � Qx; ´.t//.

Assumption 1: There exists a continuously differentiable
function V WR�0 � Rnx ! R�0 and positive constants
˛1; : : : ; ˛4 such that for all .t; Qx/ 2 R�0 �Rnx ,

˛1k Qxk2 � V.t; Qx/ � ˛2k Qxk2; (4)
@V

@t
.t; Qx/C @V

@ Qx .t; Qx/e.t; Qx/ � �˛3k Qxk
2; (5)@V@ Qx .t; Qx/

 � ˛4k Qxk: (6)

Assumption 1 readily ensures exponential stability of the
error dynamics (3) [17, Th. 4.10].

Because we will eventually replace ´ in (2) with an
estimate Ó , we need an assumption regarding the sensitivity
of g.u; Ox; ´/ to changes in ´.

Assumption 2: There exists an L1 > 0 such that for
all .t; Ox; Ó/ 2 R�0 � Rnx � Rp´ , kg.u.t/; Ox; ´.t// �
g.u.t/; Ox; Ó/k � L1k´.t/ � Ók.

For our analysis it is convenient to define a function

d.u; Pu; x/ D @h

@u
.u; x/ PuC @h

@x
.u; x/f .u; x/; (7)

corresponding to the time derivative of the output ´.
Assumption 3: There exists an L2 > 0 such that for all

.t; Ox/ 2 R�0�Rnx , kd.u.t/; Pu.t/; x.t//�d.u.t/; Pu.t/; Ox/k �
L2kx.t/ � Oxk.

Remark 1: Assumptions 2 and 3 specify global Lipschitz-
type conditions on the functions g and d . These conditions
are clearly restrictive; however, they can be made far less
restrictive if one assumes that x.t/ and ´.t/ have known
bounds and therefore belong to compact sets X and Z. This
assumption is usually reasonable for physically motivated
estimation problems. In particular, if g.u; Ox; ´/ is locally
Lipschitz continuous in ´, uniformly in .u; Ox/, then one
can saturate the argument ´ in g.u; Ox; ´/ outside of Z to
ensure that Assumption 2 holds. Similarly, the functions
f and h can be redefined by arbitrarily extending them
outside of X (e.g., through the use of saturations) to ensure
that Assumption 3 holds. This strategy is common in the
estimation literature (see, e.g., [7]).

Our final assumption specifies the requirements regarding
the linear system †2.

Assumption 4: The pair .A; C / is detectable; and the
quadruple .A;B´; C;D´/ is left-invertible with no invariant
zeros at the origin.

Remark 2: Left-invertibility of a linear system means that
two trajectories originating from the same initial condition
will produce identical outputs for all t � 0 only if the
inputs are also identical for all t � 0 [18, Ch. 3.2.2].
For example, every SISO system is left-invertible (unless its
transfer function is identically zero).

Remark 3: We also assume, without loss of generality,
that the matrices ŒB 0́ ;D 0́ �0 and ŒC;D´� are of maximal rank
p´ and py , respectively (i.e., there are no redundant elements
of ´ and the elements of y are linearly independent). If this
assumption does not hold, it is easily satisfied by redefining
´ or y to eliminate redundancies.

III. OBSERVER DESIGN

To introduce our methodology, we start by introducing an
extended version of the linear system †2, which includes ´
as an additional state. The extended system vector is given
by we D Œw0; ´0�0, with dynamics

Pwe D Awe CBuuCBdd.u; Pu; x/; (8a)
y D Cwe CDuu; (8b)

where

A D
�
A B´
0 0

�
; Bu D

�
Bu
0

�
; Bd D

�
0

I

�
; C D �C D´

�
:

We define an observer for the extended system in the
following way:

POw D A Ow C BuuC B´ Ó
3332



CKw.y � C Ow �Duu �D´ Ó/; (9a)

P� D �@h
@x
.u; Ox/g.u; Ox; Ó/

CK´.y � C Ow �Duu �D´ Ó/; (9b)
Ó D h.u; Ox/C �; (9c)

where Kw and K´ are observer gains to be determined. The
variables Ow and Ó are estimates of w and ´, and they are
gathered in a vector Owe D Œ Ow0; Ó 0�0. It is convenient to analyze
the observer with respect Owe, which constitutes a nonsingular
transformation from the original observer states . Ow; �/.

In addition to the observer (9), we implement the already
existing observer for the system †1; however, we do so not
based on ´, but the estimate Ó :

POx D f .u; Ox/C g.u; Ox; Ó/: (10)

By differentiating Ó it is now easily verified that the dynamics
of Owe is described by

POwe D A Owe CBuuCBdd.u; Pu; Ox/
CK.y � C Owe �Duu/; (11)

where K D ŒK 0w ; K 0́ �0.
A. Stability

Based on the dynamics of the extended system (8) and the
observer dynamics (11), we obtain the following dynamics
for the observation error Qwe WD we � Owe:

PQwe D .A �KC/ Qwe CBd
Qd.t; Qx/; (12)

where Qd.t; Qx/ WD d.u.t/; Pu.t/; x.t//�d.u.t/; Pu.t/; x.t/� Qx/.
Furthermore, the dynamics of the error Qx can be written as

PQx D e.t; Qx/C g.u; Ox; ´/ � g.u; Ox; Ó/: (13)

Our goal is now to choose an observer gain matrix K to
stabilize the error dynamics (12), (13). Toward this end, we
define

H.s/ D .I s �ACKC/�1Bd ; (14)

which is the transfer matrix from the input point of Qd.t; Qx/
in (12) to the error Qwe. Based on this transfer matrix, we can
state the following result, which is proven in the Appendix.

Theorem 1: If K is chosen such that A�KC is Hurwitz
and kH.s/k1 <  WD 4˛3=.4L

2
2 C ˛24L21/, then the error

dynamics (12), (13) is globally exponentially stable.
The next question is whether there exists a gain that

satisfies the conditions of Theorem 1.
Theorem 2: There exists a � > 0 such that, for all  >

�, K can be chosen such that A � KC is Hurwitz and
kH.s/k1 <  . Furthermore, if the quadruple .A;B´; C;D´/
is minimum-phase, then � D 0.

According to Theorem 2, which is proven in the Appendix,
we can design K such that kH.s/k1 comes arbitrarily close
to some lower limit � � 0. In general, this lower limit may
not be small enough to satisfy Theorem 1. However, if we
impose an additional minimum-phase condition on †2, then
the lower limit is zero.

B. Gain Synthesis and Tuning

Although Theorem 1 enables us to compute an explicit
numerical value of  such that kH.s/k1 <  ensures
stability, such a computation is likely to be conservative
and lead to poor performance. It is therefore preferable in
practice to tune the observer by starting with a large value
of  and decreasing it gradually until the desired stability
and performance is achieved. As a practical matter, ensuring
that A � KC is Hurwitz and that kH.s/k1 <  can
be achieved using several different H1 design methods;
specifically, Riccati-based methods, direct methods, and LMI-
based methods [18].

The use of LMIs is attractive, because it allows for easy
incorporation of additional performance criteria in the design
process. For a given  , it follows from the bounded-real
lemma [18, Th. 11.45] that kH.s/k1 <  is satisfied by
choosing K D P�1X , where X and P D P 0 > 0 are
solutions of the LMI�

PACA0P �XC � C 0X 0 C I PBd

B 0
d
P �2I

�
< 0: (15)

The solution of this LMI is far from unique—there are addi-
tional degrees of freedom in choosing K that can be used to
improve performance. In particular, it was shown by Chilali
and Gahinet [19] that by including additional LMIs based on
a common Lyapunov matrix P , it is possible to constrain
the closed-loop poles to some convex LMI region (assuming
the region is feasible for the given H1 objective), or to
incorporate additional H1 or H2 minimization objectives.

Of particular concern when designing observers is the
effect of measurement noise, which is amplified by large
gains. Using LMIs, we can incorporate an additional objective
to limit the effect of measurement noise. Suppose that y is
affected by additive noise n; that is, y D Cw C Duu C
D´´CNn. The transfer matrix from the input point of n to
Qwe is then G.s/ WD �.sI �ACKC/�1KN . We can limit

the effect of the measurement noise on Qwe by minimizing
a bound on kG.s/k1, while at the same time ensuring that
(15) is satisfied. This is done by minimizing a value 2n > 0
subject to the LMIs (15) and�

PACA0P �XC � C 0X 0 C I �XN
�N 0X 0 �2nI

�
< 0: (16)

As in other H1-based design problems, it may be benefi-
cial to pre-scale the various input and output channels of the
transfer function to the same order of magnitude (see, e.g.,
[20]). In most cases, one also has the freedom to adjust gains
in the observer for the †1 subsystem, which will affect the
performance of the overall observer and the best choice of
gain K in ways that are difficult to characterize precisely. In
general, a certain amount of tuning based on trial and error
is needed to find the best combination of gains.

C. Matrix Variables as States

In some cases, such as our navigation example in Section
IV, it is convenient to express the whole state or part of the
state of the †1 subsystem as a matrix X , rather than a vector.
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To cover this case, we simply define x D vecX , where the
vec operator stacks the columns of a matrix to form a vector.
Our assumptions and the observer for we are then defined in
terms of x.

IV. EXAMPLE: INERTIAL AND SATELLITE INTEGRATION

In this section we consider the problem of integrating
measurements from satellite-based navigation systems such
as GPS with inertial measurements. This problem, referred
to as GNSS/INS integration, has been studied for several
decades (see, e.g., [21]). Most solutions are based on the
extended Kalman filter, but recently there has been an interest
in constructing nonlinear observers with lower computational
complexity and with global or semiglobal stability proofs.

Most of the effort on nonlinear navigation observers has
been directed toward the problem of estimating the attitude.
An extensive survey of attitude estimation methods is given
by Crassidis, Markley, and Cheng [22]. Vik and Fossen
[23] studied the GNSS/INS integration problem with the
assumption that the attitude could be measured independently
from the position and velocity, whereas Hua [24] constructed
algorithms based only on GNSS position and velocity together
with inertial and magnetometer measurements. We consider
the same problem as Hua [24], within the theoretical frame-
work established in this paper.

Our goal is to illustrate the general methodology of this
paper in a simple manner, and we therefore ignore some
important aspects such as bias estimation and the effect of
various noise sources. It is nonetheless easy to extend the
design in several ways, as discussed briefly in Section IV-
E. These extensions will serve as the basis for a complete
design in a forthcoming application paper.

A. System Description

The dynamics of the system is described by the following
equations:

PR D RS.!b/; (17a)
Ppn D vn; (17b)
Pvn D an C gn; (17c)

where R 2 SO.3/ is a rotation matrix from the body-fixed
coordinate system to an earth-fixed reference frame, which
describes the attitude; pn and vn are the position and velocity
in the earth-fixed frame; !b is the angular velocity of the
body-fixed frame with respect to the earth-fixed frame, given
in body-fixed coordinates; gn is the gravity vector; and an

is the proper acceleration in earth-fixed coordinates.1 The
function S. � / generates a skew-symmetric matrix from its
argument, so that for any x; y 2 R3, S.x/y D x � y. We
assume that pn and vn are available as measurements from
the GNSS receiver. The inertial sensors provide measurements
of !b, as well as an accelerometer measurement ab, which
is related to an by an D Rab. We furthermore assume that

1In this model, the earth-fixed coordinate system is considered to be
inertial. For high-precision applications, the earth’s rotation must also be
accounted for in the model.

PR D RS.!b/
Ppn D vn

Pvn D an C gn

an D Rab .pn; vn/

.!b; ab; mb; mn; gn/ .!b; ab; mb; mn; gn/

Fig. 2. Structure of system containing attitude, position, and velocity

a magnetometer measurement mb is available, and that the
earth’s magnetic field mn at the corresponding location is
known.

B. Attitude Observer

Let us first consider the problem of estimating only the
attitude R, assuming for the time being that an is available
as a measurement. We construct an observer as

POR D ORS.!b/C �J.mb; mn; ab; an; OR/; (18)

where � is a symmetric positive-definite gain matrix and J
is defined as

J D AnA
0
b � ORAbA

0
b;

Ab D
�
mb mb � ab mb � .mb � ab/

�
;

An D
�
mn mn � an mn � .mn � an/

�
:

The definition of J is inspired by the TRIAD algorithm
[25], which allows the attitude to be algebraically determined
based on two body-fixed vector measurements and their
corresponding reference vectors, provided the body-fixed
vectors are non-parallel. To ensure that this is the case,
we assume that there exists a constant cobs > 0 such that
kmb � abk � cobs. We also assume that there is a positive
constant m such that kmbk � m, and that ab, Pab, mb, and
!b are uniformly bounded.

The dynamics of the estimation error QR D R � OR is

PQR D QRS.!b/ � �J.mb; mn; ab; an; R � QR/: (19)

Lemma 1: If � is chosen such that �min.�/ is sufficiently
large, then the error dynamics (19) is globally exponentially
stable.

The proof of Lemma 1 is found in the Appendix.

C. GNSS/INS Integration

The observer (18) cannot be implemented, because it
depends on the variable an, which is not measured. Instead,
an acts as an input to the linear system (17b), (17c). This
situation, which is illustrated in Fig. 2, corresponds to the
problem formulation studied in this paper by defining the †1
subsystem to contain the attitude and the †2 subsystem to
contain the position and velocity. In particular, let x D vecR
(see Section III-C), ´ D an D Rab, w D Œpn0; vn0�0, y D
Œpn0; vn0�0, and u D Œ!b0; ab0; mb0; mn0; gn�0. The following
lemma is proven in the Appendix.

Lemma 2: If � is chosen such that �min.�/ is sufficiently
large, then Assumptions 1–3 are satisfied by the observer
(18).
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The matrices A, B´, C , and D´ of †2 are given by

A D
�
0 I

0 0

�
; B´ D

�
0

I

�
; C D

�
I 0

0 I

�
; D´ D

�
0

0

�
;

It is trivial to verify that Assumption 4 holds for these ma-
trices, and furthermore, that the quadruple .A;B´; C;D´/ is
minimum-phase. We can therefore apply our design method-
ology, which results in the following complete observer:

POpn D Ovn C kpp.pn � Opn/C kpv.vn � Ovn/; (20a)
POvn D ORab C � C gn

C kvp.pn � Opn/C kvv.vn � Ovn/; (20b)
P� D ��J.mb; mn; ab; ORab C �; OR/ab

C k´p.pn � Opn/C k´v.vn � Ovn/; (20c)
POR D ORS.!b/C �J.mb; mn; ab; ORab C �; OR/: (20d)

The gain matrixK is made up of kpp , kpv , kvp , kvv , k´p , and
k´v , and it must be chosen to ensure stability of the observer
error dynamics. This is always possible, as stated in Theorem
3 below, which follows directly from our previous results.

Theorem 3: There exists a  > 0 such that if K is chosen
such that A � KC is Hurwitz and kH.s/k1 <  , then the
error dynamics corresponding to the observer (20) is globally
exponentially stable. Moreover, K can always be chosen to
satisfy these conditions.

D. Simulation Results

In order to verify the design, we test it on a simulated
takeoff, flight around a traffic pattern, and landing with a
Cessna 172, using the X-Plane® flight simulator. The inertial
measurements are available at a rate of 100Hz, whereas the
position and velocity measurements are available at a rate of
5Hz. We have also added noise to the GNSS measurements.
An example of true velocity versus the simulated GNSS
measurement is shown in Fig. 3.

The observer is implemented with the gain for the attitude
observer set to � D diag.20; 0:2; 0:2/. This gain is chosen to
emphasize the comparison between mn and mb, since these
vectors are both available directly. To make the observer
robust against the GNSS measurement errors, we follow the
LMI-based design strategy described in Section III-B, by
minimizing 2n subject to (15), (16) for some sufficiently
small  , with N selected as N D I . We find that we achieve
stable estimates by choosing  D 50, which yields the gains
kpp � 128:9I , kpv � 17:5I , kvp � 15:7I , kvv � 2:4I ,
k´p � 1:3I , and k´v � 0:2I .
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Fig. 4. True (blue, dashed) and estimated (red, solid) position in local
North-East-Down coordinates (ground track at zero altitude shown in gray)
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Fig. 5. True (blue, dashed) and estimated (red, solid) velocity in local
North-East-Down coordinates

Figs. 4 and 5 show the true and estimated position and
velocity of the vehicle. Fig. 6 shows the true Euler angles of
the vehicle attitude, together with estimates derived from OR
by inverse trigonometry (see, e.g., [26]).

E. Extensions

One advantage of our design is that the observer can
easily be adapted to changes in the linear part of the system.
Suppose, for example, that the GNSS receiver only provides
position measurements, which changes the measurement
equation such that C D ŒI; 0�. Assumption 4 is still satisfied
in this case, and .A;B´; C;D´/ is still minimum-phase.
Thus, we can apply our methodology with equal simplicity.

Another possibility is to include estimation of a constant
accelerometer bias based on the bias estimator presented
by Grip, Fossen, Johansen, and Saberi [27], [28]. Like
the attitude observer, this bias estimator cannot be directly
implemented because an is not available for measurement.
However, it can be combined with (18) as an observer for
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the †1 subsystem. Further details of this design are omitted
here due to space constraints. Adaptation of gyroscope bias
as part of the observer for the †1 subsystem is yet another
possibility.

A disadvantage of our design is that OR is in general not
a rotation matrix, even though it converges to one. Thus,
if one tries to extract the attitude in terms of Euler angles
or quaternions from OR—as is frequently desirable—one
might have an ill-defined problem, at least temporarily. An
alternative is to use the convergent estimate of an, together
with the other measurements, to estimate quaternions or a
true rotation matrix, using any of a number of available
methods (similar to one of the designs by Hua [24]).

V. CONCLUDING REMARKS

We have presented a design methodology that can be
used to implement observers for certain nonlinear systems
whose outputs are only indirectly available via a second,
linear system. Future research will focus on application of
the design methodology to a complete GNSS/INS integration
design.

APPENDIX

Proof of Theorem 1: By the bounded-real lemma [18,
Th. 11.45], the Hurwitz property of A � KC and the H1
bound kH.s/k1 <  implies that the LMI (15) with X D
PK is satisfied for some positive definite P . Define the
Lyapunov function W.t; Qx; Qwe/ D V.t; Qx/C Qw0eP Qwe. Using
Assumptions 1 and 2 we find that the derivative of W along
the trajectories of (12), (13) satisfies

PW � �˛3k Qxk2 C ˛4L1k Qxkk´ � Ók
C Qw0e.PACA0P �XC � C 0X 0/ Qwe C 2 Qw0ePBd

Qd
� �˛3k Qxk2 C ˛4L1k Qxkk Qwek � k Qwek2 C 2k Qdk2

C
� Qwe
Qd
�0 �

PACA0P �XC � C 0X 0 C I PBd

B 0
d
P �2I

� � Qwe
Qd
�
:

Using (15) and Assumption 3, we therefore have

PW � �˛3k Qxk2 C ˛4L1k Qxkk Qwek � k Qwek2 C 2L22k Qxk2

D �
� k Qxk
k Qwek

�0 �
˛3 � 2L22 �1

2
˛4L1

�1
2
˛4L1 1

� � k Qxk
k Qwek

�
:

The first- and second-order principal minors of the above
matrix are positive if  < 4˛3=.4L22C˛24L21/; thus the result
follows [17, Th. 4.10].

Proof of Theorem 2: We start by showing that the pair
.A;C/ is detectable. Consider any eigenvalue � of A that
is unobservable with respect to the pair .A;C/. There exist
w 2 Rnw and ´ 2 Rp´ , not both zero, such that�

A � �I
C

� �
w

´

�
D 0”

24.A � �I/w C B´´��´
Cw CD´´

35 D 0:
Clearly, either ´ D 0 or � D 0. If ´ D 0, then it follows that
w ¤ 0 and moreover

�
A��I
C

�
w D 0, which implies that � is

an unobservable eigenvalue of the pair .A; C /. Since .A; C /
is a detectable pair, � must be in the open left-half complex
plane. If ´ ¤ 0, then � D 0, and we have�

A � �I B´
C D´

� �
w

´

�
D 0; (21)

where left-hand side of (21) corresponds to the Rosenbrock
system matrix for the quadruple .A;B´; C;D´/. It follows
that the Rosenbrock matrix has rank less than nw C p´
for � D 0. The normal rank of the Rosenbrock matrix is
nw C p´, which follows from left-invertibility according to
[29, Property 3.1.6]. Hence, .A;B´; C;D´/ has an invariant
zero at the origin, which contradicts Assumption 4. Thus all
unobservable eigenvalues of the pair .A;C/ are in the open
left-half complex plane.

Since the pair .A;C/ is detectable, there exists a K such
that A �KC is Hurwitz, which implies that kH.s/k1 < N
for some N > 0. It follows that there exists a � � N such
that kH.s/k1 <  can be achieved for all  > �. This
proves the first statement of the theorem.

To prove the second statement, we first show that since
the quadruple .A;B´; C;D´/ is left-invertible and minimum-
phase, the same holds for the triple .A;Bd ;C/. This triple is
obtained from .A;B´; C;D´/ by adding an integrator at each
input point. Since integrators are left-invertible, it follows
from the definition of left-invertibility that .A;Bd ;C/ is left-
invertible. Let � be an invariant zero of .A;Bd ;C/. Then
the Rosenbrock system matrix corresponding to � is rank
deficient, so there exist w 2 Rnw , ´ 2 Rp´ , and d 2 Rp´ ,
not all zero, such that�
A � �I Bd

C 0

�24w´
d

35 D 0”
24.A � �I/w C B´´��´C d

Cw CD´´

35 D 0:
We must have Œw0; ´0�0 ¤ 0, for if this were not the case, we
would have d ¤ 0 and ´ D 0, which implies that ��´Cd D
d ¤ 0, which contradicts the above expression. From this
expression we also see that (21) holds, which implies, by the
same argument as above, that � is an invariant zero of the
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quadruple .A;B´; C;D´/. Hence � is in the open left-half
complex plane, which shows that .A;Bd ;C/ is minimum-
phase.

The error dynamics (12) is identical to the error dynamics
obtained by constructing a strictly proper filter of the CSS
architecture [18, eq. (9.12)], for a system Px D AxCBdu,
y D Cx, where x is the state to be estimated, u is
an unknown input, and y is the available output. Hence,
according to Saberi, Stoorvogel, and Sannuti [18, Th. 9.22],
the gain matrix K can be chosen such that A � KC is
Hurwitz and kH.s/k1 <  for arbitrarily small  > 0,
provided the triple .A;Bd ;C/ has no invariant zeros on
the imaginary axis and the subspaces S�0.A;Bd ;C ; 0/ and
V�.A;Bd ;C ; 0/, defined by Saberi et al. [18, Ch. 3.2.5],
intersect only at the origin. These conditions hold as a con-
sequence of .A;Bd ;C/ being left-invertible and minimum-
phase [18, Ch. 3.2.5], thus proving the second statement of
the theorem.

Proof of Lemma 1: We have that An D RAb, and we can
therefore write J D RAbA

0
b� ORAbA

0
b D QRAbA

0
b. Define the

Lyapunov function V. QR/ D 1
2
k QRk2. We have

PV D tr. QR0. QRS.!b/ � � QRAbA
0
b//

�
p
2k QRk2k!bk � k�1=2 QRAbk2

�
p
2k QRk2k!bk � �min.AbA

0
b/�min.�/k QRk2:

We can write Ab D Qƒ, where the columns of Q are
the normalized columns of Ab, and ƒ is a diagonal matrix
with elements corresponding to the norms of the columns of
Ab. Since mb and ab are non-parallel (i.e., kmb � abk �
cobs > 0), it follows from the definition of Ab that its
columns are linearly independent and orthogonal; hence,
the columns of Q are orthonormal. Thus AbA

0
b D Qƒ2Q0

specifies a spectral decomposition of AbA
0
b, which implies

that �min.AbA
0
b/ is equal to the smallest element of ƒ2;

that is, �min.AbA
0
b/ D minfkmbk; kmb � abk; kmb � .mb �

ab/kg2 D c2, where c D minfm; cobs; mcobsg > 0. Thus, PV �
�.�min.�/c

2 �p2!b/k QRk2, where !b is a bound on k!bk.
Clearly PV is negative definite provided �min.�/ >

p
2!b=c2.

The result now follows from application of the comparison
lemma [17, Lemma 3.4].

Proof of Lemma 2: Considering V. QR/ from the proof of
Lemma 1 and noting that V. QR/ D 1

2
Qx0 Qx, we see that (4) and

(6) of Assumption 1 are satisfied. It also follows from the
proof of Lemma 1 that (5) is satisfied. We have g.u; Ox; ´/ D
vec.�J.mb; mn; ab; an; OR//. It is therefore easy to confirm
that kg.u; Ox; ´/�g.u; Ox; Ó/k D k�Œ0;mn�.´� Ó/;mn�.mn�
.´ � Ó//�A0bk, and it follows from boundedness of mn and
Ab that Assumption 2 holds. Finally, we have d.u; Pu; x/ D
R Pab C RS.!b/ab, and hence kd.u; Pu; x/ � d.u; Pu; Ox/k D
k QR. PabCS.!b/ab/k. It follows from boundedness of !b, ab,
and Pab that Assumption 3 holds.
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