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Abstract— This work focuses on economic model predictive
control of nonlinear systems. First, an economic model pre-
dictive control algorithm that efficiently handles asynchronous
and delayed measurements is presented and its application to
a chemical process example is demonstrated. This algorithm
uses suitable Lyapunov-based constraints to ensure closed-loop
stability for a well-defined set of initial conditions. Second,
a distributed economic model predictive control architecture
for nonlinear systems is presented. In this architecture, the
distributed controllers communicate in a sequential fashion,
optimize their inputs through maximizing a plant-wide (global)
economic objective function and guarantee practical stability
of the closed-loop system.

I. INTRODUCTION

Economic model predictive control (EMPC) refers to a

class of model predictive control formulations in which

the cost functional expresses directly economic optimization

considerations of the plant under consideration, rather than

penalizing (as it is usually the case, see, for example, [1],

[2]) the deviations of the plant states and of the manipulated

inputs from desired steady-state values. As a result, EMPC

may lead to the computation of time-varying optimal operat-

ing policies for the plant in contrast to MPC with traditional

cost functionals which typically leads to stabilization of the

plant at the desired steady state.

While there have been several calls, particularly within

process control, for the integration of model predictive

control (MPC) and economic optimization of processes (e.g.,

[3]) as early as two decades ago, the subject of EMPC has

received relatively little attention. Recently, in [4], general

ideas of a combined steady-state optimization and linear

MPC scheme were reported. In [5], MPC schemes using

an economics-based cost function were proposed and the

stability properties were established using a suitable Lya-

punov function. The MPC schemes in [5] adopt a terminal

constraint which requires that the closed-loop system state

settles to a steady-state at the end of each optimal input

trajectory calculation (i.e., end of the prediction horizon).

In a recent paper [6], the approach in [5] was extended to
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deal with cyclic process operation. Even though a rigorous

stability analysis is included in [5], [6], it is difficult, in

general, to characterize, a priori, the set of initial conditions

starting from where feasibility and closed-loop stability of

the proposed MPC schemes are guaranteed. In a recent work

[7], we presented an EMPC scheme for nonlinear systems

that utilizes suitable Lyapunov-based stability constraints.

The proposed EMPC is designed via Lyapunov-based tech-

niques and has two different operation modes. The first

operation mode corresponds to the periods in which the

cost function should be optimized (e.g., normal production

periods); and in this operation mode, the MPC maintains the

closed-loop system state within a pre-defined stability region

and optimizes the cost function to its maximum extent. The

second operation mode corresponds to operation in which the

system is driven by the MPC to an appropriate steady-state

within the closed-loop system stability region.

In this work, we extend the results in [7] into two direc-

tions. First, we present an EMPC algorithm for nonlinear

systems that efficiently handles asynchronous and delayed

measurements using suitable Lyapunov-based constraints to

ensure stability for a well-defined set of initial conditions,

and demonstrate its application to a chemical process ex-

ample. Second, we present a distributed EMPC (DEMPC)

architecture for nonlinear systems. In this architecture, the

distributed controllers communicate in a sequential fash-

ion, optimize their inputs through maximizing a plant-wide

(global) economic objective function and guarantee practical

stability of the closed-loop system.

II. PRELIMINARIES

A. Notation

The operator | · | is used to denote Euclidean norm of

a vector, and a continuous function α : [0, a) → [0,∞)
is said to belong to class K if it is strictly increasing and

satisfies α(0) = 0. The symbol Ωr is used to denote the

set Ωr := {x ∈ Rnx : V (x) ≤ r} where V is a scalar

function, and the operator ‘/’ denotes set subtraction, that is,

A/B := {x ∈ Rnx : x ∈ A, x /∈ B}. The symbol diag(v)
denotes a matrix whose diagonal elements are the elements

of vector v and all the other elements are zeros.

B. Class of nonlinear systems

We consider a class of nonlinear systems which is com-

posed of m subsystems where each of the subsystems can
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be described by the following state-space model:

ẋi(t) = fi(x, ui, wi) (1)

where i = 1, . . . , m, xi(t) ∈ Rnxi denotes the vector of

state variables of subsystem i, ui(t) ∈ Rnui and wi(t) ∈
Rnwi denote the set of control (manipulated) inputs and

disturbances associated with subsystem i, respectively. The

variable x ∈ Rnx denotes the state of the whole system

which is composed of the states of the m subsystems, that

is x = [xT
1 · · ·xT

i · · ·xT
m]T . The dynamics of x can be

described in a compact form as follows:

ẋ(t) = f(x(t), u1(t), . . . , um(t), w(t)) (2)

where w = [wT
1 · · ·wT

i · · ·wT
m]T is assumed to be bounded,

that is, w(t) ∈ W with W := {w ∈ Rnw : |w| ≤ θ, θ > 0}.

The m sets of inputs are restricted to be in m nonempty

convex sets Ui ⊆ Rnui , i = 1, . . . , m, which are defined

as Ui := {ui ∈ Rnui : |ui| ≤ umax
i } where umax

i , i =
1, . . . , m, are the magnitudes of the input constraints. We

assume that f is a locally Lipschitz vector function and that

the origin is an equilibrium point of the unforced nominal

system (i.e., system of Eq. 2 with ui(t) = 0, i = 1, . . . , m,

w(t) = 0 for all t) which implies that f(0, . . . , 0) = 0.

C. Lyapunov-based controller

We assume that there exists a Lyapunov-based controller

h(x) = [h1(x) · · · hm(x)]T which renders the origin of

the nominal closed-loop system asymptotically stable with

ui = hi(x), i = 1, . . . , m, while satisfying the input

constraints for all the states x inside a given stability region.

Using converse Lyapunov theorems [8], [9], this assumption

implies that there exist class K functions αi(·), i = 1, 2, 3, 4
and a continuously differentiable Lyapunov function V (x)
for the nominal closed-loop system which is continuous and

bounded in O ⊆ Rnx where O is an open neighborhood of

the origin, that satisfy the following inequalities:

α1(|x|) ≤ V (x) ≤ α2(|x|)
∂V (x)

∂x
f(x, h1(x), . . . , hm(x), 0) ≤ −α3(|x|)∣∣∣∣∂V (x)

∂x

∣∣∣∣ ≤ α4(|x|), hi(x) ∈ Ui, i = 1, . . . , m

(3)

for all x ∈ O. We denote the region Ωρ ⊆ O (Ωρ is

a level set of V (x)) as the stability region of the closed-

loop system under the Lyapunov-based controller h(x). Note

that explicit stabilizing control laws that provide explicitly

defined regions of attraction for the closed-loop system

have been developed using Lyapunov techniques for spe-

cific classes of nonlinear systems, particularly input-affine

nonlinear systems; the reader may refer to [10], [9], [11] for

results in this area including results on the design of bounded

Lyapunov-based controllers by taking explicitly into account

constraints for broad classes of nonlinear systems.

By continuity, the local Lipschitz property assumed for the

vector field f and taking into account that the manipulated

inputs ui, i = 1, . . . , m are bounded, there exists a positive

constant M such that:

|f(x, u1, . . . , um, w)| ≤ M (4)

for all x ∈ Ωρ and ui ∈ Ui, i = 1, . . . , m. By the continuous

differentiable property of the Lyapunov function V (x) and

the Lipschitz property assumed for the vector field f , there

exist positive constants Lx, Lw, L′
x and L′

w such that:

|f(x, u1, . . . , um, w) − f(x′, u1, . . . , um, 0)|
≤ Lx |x − x′| + Lw |w|∣∣∣∂V (x)

∂x f(x, u1, . . . , um, w)−∂V (x′)
∂x f(x′, u1, . . . , um, 0)

∣∣∣
≤ L′

x |x − x′| + L′
w |w|

(5)

for all x, x′ ∈ Ωρ, ui ∈ Ui, i = 1, . . . , m and w ∈ W .

III. LYAPUNOV-BASED ECONOMIC MPC WITH

ASYNCHRONOUS AND DELAYED MEASUREMENTS

In this section, we consider the design of Lyapunov-based

EMPC (LEMPC) for nonlinear systems subject to asyn-

chronous and delayed measurements. We assume that the

state of the system of Eq. 2, x(t), is available at asynchronous

time instants {ta≥0} which is a random increasing sequence

of time and the interval between two consecutive time

instants is not fixed. We also assume that there are delays

involved in the measurements. In order to model delays

in measurements, an auxiliary variable da is introduced to

indicate the delay corresponding to the measurement received

at time ta, that is, at time ta, the measurement x(ta − da)
is received. In order to study the stability properties in a

deterministic framework, we assume that there exists an

upper bound Tm on the interval between two successive

measurements (i.e., max
a

{ta+1 − ta} ≤ Tm) and an upper

bound D on the delays (i.e., da ≤ D). These assumptions are

reasonable from a process control perspective. Because the

delays are time-varying, it is possible that at a time instant

ta, the controllers may receive a measurement x(ta − da)
which does not provide new information (i.e., ta − da <
ta−1 − da−1) and the maximum amount of time the system

might operate in open-loop following ta is D+Tm−da. This

upper bound will be used in the formulation of LEMPC for

systems subject to asynchronous and delayed measurements.

The reader may refer to [12] for more discussion on the

modeling of asynchronous and delayed measurements.

A. LEMPC implementation strategy

At each asynchronous sampling time, when a delayed

measurement that contains new information is received, we

propose to take advantage of the nominal system model and

the manipulated inputs that have been applied to estimate

the current system state from the delayed measurement.

Based on the estimate of the current system state, an MPC

optimization problem is solved in order to decide the optimal

future input trajectory that will be applied until the next

measurement containing new information is received. We
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introduce an LEMPC design which maximizes a cost func-

tion accounting for specific economic considerations. This

LEMPC has two operation modes.

Specifically, we assume that from the initial time t0 up

to a specific time t′, the LEMPC operates in the first

operation mode to maximize the economic cost function

while maintaining the closed-loop system state in the stability

region Ωρ. In this operation mode, in order to account for

the asynchronous and delayed measurement as well as the

disturbances, we consider another region Ωρ̂ with ρ̂ < ρ.

When a delayed measurement containing new information

is received at a sampling time, the current system state is

estimated. If the estimated current state is in the region Ωρ̂,

the LEMPC maximizes the cost function within the region

Ωρ̂; if the estimated current state is in the region Ωρ/Ωρ̂, the

LEMPC first drives the system state to the region Ωρ̂ and then

maximizes the cost function within Ωρ̂. The relation between

ρ and ρ̂ will be characterized in Eq. 13 in Theorem 1.

After time t′, the LEMPC operates in the second operation

mode and calculates the inputs in a way that the state of

the closed-loop system is driven to a neighborhood of the

desired steady-state (i.e., x = 0) while taking into account

asynchronous and delayed measurements.

The implementation strategy of the proposed LEMPC for

systems subject to asynchronous and delayed measurements

can be summarized as follows:

1. If a measurement x(ta − da) containing new infor-

mation is received at ta, the controller estimates the

current system state, x̌(ta). Else, go to Step 5.

2. If ta < t′, go to Step 3. Else, go to Step 4.

3. If x̌(ta) ∈ Ωρ̂, go to Step 3.1. Else, go to Step 3.2.

3.1. The controller maximizes the economic cost

function within Ωρ̂. Go to Step 5.

3.2. The controller drives the system state to the

region Ωρ̂ and then maximizes the economic cost

function within Ωρ̂. Go to Step 5.

4. The controller drives the system state to a small

neighborhood of the origin.

5. Go to Step 1 (a ←− a + 1).

B. LEMPC formulation

When a measurement containing new information is re-

ceived at ta, the MPC is evaluated to obtain the future

input trajectories based on the received system state value

x(ta − da). Specifically, the optimization problem of the

proposed LEMPC for systems subject to asynchronous and

delayed measurements at ta is as follows:

max
u1,...,um∈S(Δ)

∫ ta+NΔ

ta

L(x̌(τ), u1(τ), . . . , um(τ))dτ (6a)

s.t. ˙̌x(t) = f(x̌(t), u1(t), . . . , um(t), 0) (6b)

ui(t) = u∗
i (t), i = 1, . . . ,m, t ∈ [ta − da, ta) (6c)

ui(t) ∈ Ui, i = 1, . . . , m, t ∈ [ta, ta + NΔ) (6d)

x̌(ta − da) = x(ta − da) (6e)

˙̂x(t)=f(x̂(t), h1(x̂(ta + lΔ)), . . . , hm(x̂(ta + lΔ)), 0),

∀t ∈ [ta + lΔ, ta + (l + 1)Δ), l = 0, . . . , N − 1 (6f)

x̂(ta) = x̌(ta) (6g)

V (x̌(t)) ≤ ρ̂, ∀t ∈ [ta, ta + NΔ),
if ta ≤ t′ and V (x̌(ta)) ≤ ρ̂ (6h)

V (x̌(t)) ≤ V (x̂(t)), ∀t ∈ [ta, ta + NDaΔ),
if ta > t′ or ρ̂ < V (x̌(ta)) ≤ ρ (6i)

where x̌ is the predicted trajectory of the system with control

inputs calculated by this LEMPC, u∗
i (t) with i = 1, . . . , m

denotes the actual inputs that have been applied to the

system, x(ta − da) is the received delayed measurement,

x̂ is the predicted trajectory of the system with the control

inputs determined by h(x) implemented in a sample-and-

hold fashion, and NDa is the smallest integer that satisfies

Tm + D − da ≤ NDaΔ. The optimal solution to this

optimization problem is denoted by ua,∗
i (t|ta), i = 1, . . . , m,

which is defined for t ∈ [ta, ta + NΔ).
There are two types of calculations in the optimization

problem of Eq. 6. The first type of calculation is to estimate

the current state x̌(ta) based on the delayed measurement

x(ta −da) and input values have been applied to the system

from ta − da to ta (constraints of Eqs. 6b, 6c and 6e). The

second type of calculation is to evaluate the input trajectory

of ui (i = 1, . . . ,m) based on x̌(ta) while satisfying the

input constraint of Eq. 6d and the stability constraints of

Eqs. 6h-6i. Note that the length of NDa depends on the

current delay da, and thus, it may have different values at

different time instants and has to be updated before solving

the optimization problem of Eq. 6.

The manipulated inputs of the LEMPC of Eq. 6 for

systems subject to asynchronous and delayed measurements

are defined as follows:

uj(t) = ua,∗
j (t|ta), ∀t ∈ [ta, ta+i) (7)

for all ta such that ta −da > maxl<a tl −dl and for a given

ta, the variable i denotes the smaller integer that satisfies

ta+i − da+i > ta − da and j = 1, . . . , m.

C. Stability analysis

In this subsection, we present the stability properties of the

proposed LEMPC of Eq. 6 in the presence of asynchronous

and delayed measurements. In order to proceed, we need the

following propositions.

Proposition 1 (c.f. [13]): Consider the systems:

ẋa(t) = f(xa(t), u1(t), . . . , um(t), w(t))
ẋb(t) = f(xa(t), u1(t), . . . , um(t), 0) (8)

with initial states xa(t0) = xb(t0) ∈ Ωρ. There exists a K
function fW (·) such that:

|xa(t) − xb(t)| ≤ fW (t − t0), (9)

for all xa(t), xb(t) ∈ Ωρ and all w(t) ∈ W with fW (τ) =
Lwθ(eLxτ − 1)/Lx.

Proposition 1 provides an upper bound on the deviation

of the state trajectory obtained using the nominal model,

from the actual system state trajectory when the same control
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input trajectories are applied. Proposition 2 below bounds the

difference between the magnitudes of the Lyapunov function

of two different states in Ωρ.

Proposition 2 (c.f. [13]): Consider the Lyapunov function
V (·) of the system of Eq. 2. There exists a quadratic function
fV (·) such that:

V (x) ≤ V (x̂) + fV (|x − x̂|) (10)

for all x, x̂ ∈ Ωρ with fV (s) = α4(α−1
1 (ρ))s + Mvs2 where

Mv is a positive constant.
Proposition 3 below ensures that if the nominal system

controlled by h(x) implemented in a sample-and-hold fash-

ion and with open-loop state estimation starts in Ωρ, then it

is ultimately bounded in Ωρmin .

Proposition 3 (c.f. [13]): Consider the nominal sampled
trajectory x̂(t) of the system of Eq. 2 in closed-loop for
a controller h(x), which satisfies the condition of Eq. 3,
obtained by solving recursively:

˙̂x(t) = f(x̂(t), h1(x̂(tk)), . . . , hm(x̂(tk)), 0) (11)

where t ∈ [tk, tk+1) with tk = t0 + kΔ, k = 0, 1, . . .. Let
Δ, εs > 0 and ρ > ρs > 0 satisfy:

−α3

(
α−1

2 (ρs)
)

+ L′
xMΔ ≤ −εs/Δ. (12)

Then, if x̂(t0) ∈ Ωρ and ρmin < ρ where ρmin =
max{V (x(t + Δ)) : V (x(t)) ≤ ρs}, the following in-
equality holds: V (x̂(t)) ≤ V (x̂(tk)), ∀t ∈ [tk, tk+1) and
V (x̂(tk)) ≤ max{V (x̂(t0)) − kεs, ρmin}.

Theorem 1 below provides sufficient conditions under

which the LEMPC of Eq. 6 guarantees that the closed-

loop system state is always bounded in Ωρ and is ultimately

bounded in a small region containing the origin.

Theorem 1: Consider the system of Eq. 2 in closed-loop
under the LEMPC design of Eq. 6 based on a controller
h(x) that satisfies the condition of Eq. 3. Let εs > 0, Δ > 0,
ρ > ρ̂ > 0 and ρ > ρs > 0 satisfy the condition of Eq. 12
and satisfy:

ρ̂ ≤ ρ − fV (fW (NDΔ)) (13)

and

−NRεs + fV (fW (NDΔ)) + fV (fW (D)) < 0 (14)

where fW and fV are defined in Propositions 1 and 2
respectively, ND is the smallest integer satisfying NDΔ ≥
Tm + D and NR is the smallest integer satisfying NRΔ ≥
Tm. If N ≥ NR, ρ̂ ≥ ρs, x(t0) ∈ Ωρ, d0 = 0, then
the closed-loop state x(t) of the system of Eq. 1 is always
bounded in Ωρ and is ultimately bounded in Ωρa

⊂ Ωρ where
ρa = ρmin+fV (fW (NDΔ))+fV (fW (D)) with ρmin defined
in Proposition 3.

The detailed proof of Theorem 1 is provided in [14] and

it is omitted here due to space limitations and our decision

to include an application example in this manuscript.

D. Application to a chemical process example

Consider a well-mixed, non-isothermal continuous stirred

tank reactor (CSTR) where an irreversible second-order

exothermic reaction A → B takes place [15]. A is the

reactant and B is the product. The feed to the reactor

consists of pure A at flow rate F , temperature T0 and

molar concentration CA0. Due to the non-isothermal nature

of the reactor, a jacket is used to remove/provide heat to the

reactor. The dynamic equations describing the behavior of

the system, obtained through material and energy balances

under standard modeling assumptions, are given below:

dCA

dt
=

F

V
(CA0 − CA) − k0e

−E
RT C2

A (15a)

dT

dt
=

F

V
(T0 − T ) +

−ΔH

σCp
k0e

−E
RT C2

A +
Q

σCpV
(15b)

where CA denotes the concentration of the reactant A, T
denotes the temperature of the reactor, Q denotes the rate of

heat input/removal, V represents the volume of the reactor,

ΔH, k0, and E denote the enthalpy, pre-exponential constant

and activation energy of the reaction, respectively and Cp

and σ denote the heat capacity and the density of the fluid

in the reactor, respectively. The process model of Eq. 15

is numerically simulated using an explicit Euler integration

method with integration step hc = 10−4 hr. For a detailed

description of this chemical process including the values of

the process parameters, please refer to [14]. The process

model has one unstable and two stable steady-states. The

control objective is to regulate the process in a region

around the unstable steady-state (CAs, Ts) to maximize the

production rate of B. There are two manipulated inputs.

One of the inputs is the concentration of A in the inlet

to the reactor, CA0, and the other manipulated input is the

external heat input/removal, Q. The steady-state input values

associated with the steady-state are denoted by CA0s and

Qs, respectively. The process model of Eq. 15 belongs to

the following class of nonlinear systems:

ẋ(t) = f(x(t)) + g1(x(t))u1(t) + g2(x(t))u2(t) + w(t)

where xT = [CA−CAs T−Ts] is the state, u1 = CA0−CA0s

and u2 = Q − Qs are the inputs, f = [f1 f2]T and

gi = [gi1 gi2]T (i = 1, 2) are vector functions. The inputs are

subject to constraints as follows: |u1| ≤ 3.5 kmol/m3 and

|u2| ≤ 5 × 105 KJ/hr. w = [w1 w2]T is the bounded dis-

turbance vector (Gaussian white noise with variances σ1 =
0.5 kmol/m3 and σ2 = 10 K) with |w1| ≤ 0.5 kmol/m3

and |w2| ≤ 10 K. The economic measure that we consider

in this example is as follows [15]:

L(x, u1, u2) =
1
tf

∫ tf

0

k0e
− E

RT (τ) C2
A(τ)dτ (16)

where tf = 1 hr is the final time of the simulation. This

economic objective function corresponds to maximizing the

average production rate over process operation for tf = 1 hr.

We also consider that there is limitation on the amount of

material which can be used over the period tf . Specifically,
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the control input trajectory of u1 should satisfy the following

constraint:

1
tf

∫ tf

0

u1(τ)dτ = 1 kmol/m3. (17)

This constraint means that the average amount of u1 during

one period is fixed. For the sake of simplicity, we will refer

to Eq. 17 as the integral constraint. In the simulations, we

consider a quadratic Lyapunov function V (x) = xT Px with

P = diag([1 0.01]). The LEMPC horizon is N = 10.

We assume that the state measurements of the process

are available asynchronously at time instants {ta≥0} with an

upper bound Tm = 6Δ on the maximum interval between

two successive asynchronous state measurements, where Δ
is the controller and sensor sampling time and is chosen to

be Δ = 0.01 hr = 36 sec. To model the time sequence

{ta≥0}, we use an upper bounded Poisson process. The

Poisson process is defined by the number of events per unit

time W . The interval between two successive concentration

sampling times (events of the Poisson process) is given by

Δa = min{−lnχ/W, Tm}, where χ is a random variable

with uniform probability distribution between 0 and 1. This

generation ensures that max
a

{ta+1 − ta} ≤ Tm. In this

example, W is chosen to be W = 25. A gaussian random

process is used to generate the associated delay sequence

{da≥0} with da ≤ D while D = 3Δ. To ensure that the

integral constraint is satisfied through the period tf , at every

sampling time in which the LEMPC obtains the optimal

control input trajectory, it utilizes the previously computed

inputs u1 to constrain the first step value of the control

input trajectory u1 at the current sampling time. Based on

the cost function formulation, for maximization purposes,

it is expected that CA and T should be increased which

results in the fact that at the beginning of the closed-loop

simulation u1 should rise to its maximum value and after a

while it will go down to its lowest value to satisfy the integral

constraint. We assume that the decrease of the Lyapunov

function starts from the beginning of the simulation (i.e.,

t′ = 0) for part of the system state (i.e., temperature). To

maximize the production rate, we pick a temperature set-

point near the boundary of the stability region (T = 430 K),

considering the constraints on the control input Q. Due to the

fact that the first differential equation (CA) in Eq 15 is input-

to-state-stable (ISS) with respect to T , and the contractive

constraint of Eq. 18h (see Eq. 18) ensures that the tempera-

ture converges to the set-point, the stability of the closed-loop

system is guaranteed in the operating range of interest. To

this end, we define VT (tk) = (T (tk) − 430)2. The LEMPC

formulation for the chemical process example in question

subject to asynchronous and delayed state measurements has

the following form:

max
u1,u2∈S(Δ)

1
NΔ

∫ ta+NΔ

ta

[
k0e

− E
RT (τ) C2

A(τ)
]
dτ (18a)

s.t. ˙̌x(t) = f(x̌(t)) +
2∑

i=1

gi(x̌(t))u∗
i (t),
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Fig. 1. State trajectories of the process under the LEMPC design of Eq. 18
for initial condition (CA(0), T (0)) = (2 kmol/m3, 400 K) subject to
asynchronous and delayed measurements and bounded disturbances.

∀t ∈ [ta − da, ta) (18b)

˙̌x(t) = f(x̌(t)) +
2∑

i=1

gi(x̌(t))ui(t),

∀t ∈ [ta, ta + NΔ) (18c)

u1(t) ∈ gζ ,∀t ∈ [ta, ta + NΔ) (18d)

x̌(ta − da) = x(ta − da) (18e)

x̌(t) ∈ Ωρ̂ (18f)

ui(t) ∈ Ui, i = 1, 2 (18g)

VT (ta + (l + 1)Δ) ≤ βVT (ta + lΔ),
l = 0, . . . , NDa − 1 (18h)

where x(ta) is the measurement of the process state at

sampling time ta and β = 1/1.1 = 0.909 and the constraint

of Eq. 18d implies that the first NDa steps value of u1 should

be chosen to satisfy the integral constraint where the explicit

expression of gζ can be computed based on Eq. 17 and the

magnitude constraint on u1. The constraint of Eq. 18h forces

the Lyapunov function, based on the temperature, to decrease

for NDa sampling times.

The simulations were carried out using Java programming

language in a Pentium 3.20 GHz computer. The optimization

problems were solved using the open source interior point

optimizer Ipopt [16]. Figures 1 and 2 show the state and

manipulated input profiles, respectively, starting from the

initial condition (2 kmol/m3, 400 K) under bounded pro-

cess disturbances and subject to delayed and asynchronous

measurement samplings. From these figures, we can see that

u1 goes up to its allowable maximum value to increase the

reactant concentration as much as possible early on (due to

the second-order dependence of the reaction rate on reactant

concentration) and the temperature rises as fast as possible

when the temperature initial condition is below 430 K to

maximize the reaction rate to maintain the maximum possible

reaction rate. From these figures, we can also see that the

practical stability of the closed-loop system is ensured in the

presence of asynchronous and delayed measurements. This is

because in the design of the LEMPC of Eq. 18, asynchronous

and delayed measurements are taken explicitly into account.

Also, we have carried out a set of simulations to confirm

that the application of the LEMPC design with the integral

constraint on u1 improves the economic objective function
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Fig. 2. Manipulated input trajectories under the LEMPC design of Eq. 18
for initial condition (CA(0), T (0)) = (2 kmol/m3, 400 K) subject to
asynchronous and delayed measurements and bounded disturbances.

compared to the case that the system operates at a steady-

state satisfying the integral constraint. It should be mentioned

that this comparison is performed under the case that there is

no process disturbance and under synchronous state feedback

sampling. This steady-state is computed by assuming that the

reactant material amount is equally distributed in the interval

[0, tf ]. To carry out this comparison, we have computed the

total cost of each scenario based on the index as follows:

J =
1

tM

M∑
i=0

[
k0e

− E
RT (ti) C2

A(ti)
]

where t0 = 0 hr, tM = 1 hr and M = 100. To be consistent

in this comparison, we set u1 to a constant value over the

simulation time, tf = 1 hr, such that it satisfies the integral

constraint while letting u2 be computed by the controller.

By comparing the cost function values, we find that in

the proposed LEMPC design via time-varying operation

(starting from (CA, T ) = (2 kmol/m3, 400 K)), the cost

function achieves a higher value (19299.47) compared to

the case of steady-state operation (17722.07) (i.e., equal in

time distribution of the reactant). Also, by starting from

(CA, T ) = (2 kmol/m3, 440 K), the cost function achieves

a higher value (19459.67) compared to the case of steady-

state operation (17852.85).

IV. DISTRIBUTED LEMPC

As the number of manipulated inputs increases as it is the

case in the context of control of large-scale chemical plants,

the evaluation time of a centralized MPC may increase

significantly. This may impede the ability of centralized MPC

to carry out real-time calculations within the limits imposed

by process dynamics and operating conditions. Moreover,

a centralized control system for large-scale systems may

be difficult to organize and maintain and is vulnerable to

potential process faults. To overcome these issues, in this

work, we propose to utilize a sequential distributed EMPC

architecture as shown in Fig. 3. In this architecture, each

set of the m sets of control inputs is calculated using an

LEMPC. The distributed controllers are connected using one-

directional communication network, evaluated in sequence.

We will refer to the controller computing ui associated

with subsystem i as LEMPC i. In this section, we propose

two different implementation strategies for the sequential

distributed EMPC architecture and we assume that the state x

Process

LEMPC 1

LEMPC 2

LEMPC m − 1

LEMPC m

Sensors

x

x

um

um−1

.

.

.

u2

u1

um

.

.

.

um, um−1

um, . . . , u3

um, . . . , u2

Fig. 3. Distributed LEMPC architecture.

of the system is sampled synchronously and the time instants

at which we have state measurements are indicated by the

time sequence {tk≥0} with tk = t0 + kΔ, k = 0, 1, . . .
where t0 is the initial time and Δ is the sampling time.

A. Implementation strategy I

In this implementation strategy for the distributed EMPC

architecture, all the distributed controllers are evaluated in

sequence and once at each sampling time. Specifically, at

a sampling time, tk, when a measurement is received, the

distributed controllers evaluate their future input trajectories

in sequence starting from LEMPC m to LEMPC 1. Once a

controller finishes evaluating its own future input trajectory,

it sends its own future input trajectory and the future input

trajectories it received to the next controller (i.e., LEMPC j
sends input trajectories of ui, i = m, . . . , j, to LEMPC j−1).

This implementation strategy implies that LEMPC j, j =
m, . . . , 2, does not have any information about the values

that ui, i = j − 1, . . . , 1 will take when the optimization

problem of LEMPC j is solved. In order to make a decision,

LEMPC j, j = m, . . . , 2 must assume trajectories for ui,

i = j − 1, . . . , 1, along the prediction horizon. To this end,

the Lyapunov-based controller h(x) is used. In order for

the distributed EMPC to inherit the stability properties of

the controller h(x), each control input ui, i = 1, . . . , m
must satisfy a constraint that guarantees a given minimum

contribution to the decrease rate of the Lyapunov function

V (x). Specifically, the proposed design of the LEMPC j, j =
1, . . . , m, is based on the following optimization problem:

max
uj∈S(Δ)

∫ tk+N

tk

L(x̃j(τ), u1(τ), . . . , um(τ))dτ (19a)

s.t. ˙̃xj(t) = f(x̃j(t), u1(t), . . . , um(t), 0) (19b)

ui(t) = hi(x̃j(tk+l)), i = 1, . . . , j − 1,

∀t ∈ [tk+l, tk+l+1), l = 0, ..., N − 1 (19c)

ui(t) = u∗
i (t|tk), i = j + 1, . . . , m (19d)

uj(t) ∈ Uj , i = 1, . . . ,m (19e)

x̃j(tk) = x(tk) (19f)

V (x̃j(t)) ≤ ρ̃, ∀t ∈ [tk, tk+N ),
if tk ≤ t′ and V (x(tk)) ≤ ρ̃ (19g)

∂V (x(tk))
∂x

f(x(tk), un
1 (tk), . . . , un

j−1(tk), uj(tk), . . . ,

um(tk)) ≤ ∂V (x(tk))
∂x

f(x(tk), un
1 (tk), . . . , un

j (tk),
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uj+1(tk), . . . , um(tk)),
if tk > t′ or ρ̃ < V (x(tk)) ≤ ρ (19h)

where x̃j is the predicted trajectory of the nominal system

with ui, i = j + 1, . . . , m, the input trajectory computed by

the LEMPC controllers of Eq. 19 evaluated before LEMPC j,

ui, i = 1, . . . , j − 1, the corresponding elements of h(x)
applied in a sample-and-hold fashion, u∗

i (t|tk) denotes the

future input trajectory of ui obtained by LEMPC i of the

form of Eq. 19, and un
i (tk), i = 1, . . . , m, are inputs

determined by hi(x(tk)) (i.e., un
i (tk) = hi(x(tk))). The

optimal solution to the optimization problem of Eq. 19 is

denoted u∗
j (t|tk) which is defined for t ∈ [tk, tk+N ). The

relation between ρ̃ and ρ is characterized in Theorem 2

below.

In the optimization problem of Eq. 19, the constraint of

Eq. 19g is only active when x(tk) ∈ Ωρ̃ in the first operation

mode and is incorporated to ensure that the predicted state

evolution of the closed-loop system is maintained in the

region Ωρ̃ (thus, the actual state of the closed-loop system

is in the stability region Ωρ). Due to the fact that all of the

controllers receive state feedback x(tk) at sampling time tk,

all of the distributed controller operate in the same operation

mode by verifying whether V (x(tk)) ≤ ρ̃; the constraint

of Eq. 19h is only active in the second operation mode

or when ρ̃ < V (x(tk)) ≤ ρ in the first operation mode.

This constraint guarantees that the contribution of input uj

to the decrease rate of the time derivative of the Lyapunov

function V (x) at the initial time (i.e., tk), if uj = u∗
j (tk|tk)

is applied, is bigger than or equal to the value obtained when

uj = hj(x(tk)) is applied.

The manipulated inputs of the proposed distributed control

design from time tk to tk+1 (k = 0, 1, 2, . . .) are applied in

a receding horizon scheme as follows:

ui(t) = u∗
i (t|tk), i = 1, . . . , m, ∀t ∈ [tk, tk+1). (20)

Theorem 2 below provides sufficient conditions under

which the LEMPC of Eq. 19 guarantees that the state of the

closed-loop system is always bounded in Ωρ and is ultimately

bounded in a small region containing the origin.

Theorem 2: Consider the system of Eq. 2 in closed-loop
under the distributed LEMPC design of Eq. 19 based on
a controller h(x) that satisfies the conditions of Eq. 3. Let
εw > 0, Δ > 0, ρ > ρ̃ > 0 and ρ > ρs > 0 satisfy:

ρ̃ ≤ ρ − fV (fW (Δ)) (21)

and
−α3(α−1

2 (ρs)) + L′
xMΔ + L′

wθ ≤ −εw/Δ. (22)

If x(t0) ∈ Ωρ, ρs ≤ ρ̃, ρmin ≤ ρ and N ≥ 1, then the
state x(t) of the closed-loop system is always bounded in
Ωρ and is ultimately bounded in Ωρmin with ρmin defined in
Proposition 3 .

Proof: The proof consists of three parts. We first prove

that the optimization problem of Eq. 19 is feasible for all

states x ∈ Ωρ. Subsequently, we prove that, in the first

operation mode, under the LEMPC design of Eq. 19, the

closed-loop state of the system of Eq. 2 is always bounded

in Ωρ. Finally, we prove that, in the second operation mode,

under the LEMPC of Eq. 19, the closed-loop state of the

system of Eq. 2 is ultimately bounded in ρmin.

Part 1: When x(t) is maintained in Ωρ (which will

be proved in Part 2), the feasibility of the DEMPC of

Eq. 19 follows because input trajectory uj(t), j = 1, . . . , m,

such that uj(t) = hj(x(tk+q)), ∀t ∈ [tk+q, tk+q+1) with

q = 0, . . . , N − 1 is a feasible solution to the optimization

problem of Eq. 19 since such trajectory satisfy the input

constraint of Eq. 19e and the Lyapunov-based constraints

of Eqs. 19g and 19h. This is guaranteed by the closed-loop

stability property of the Lyapunov-based controller h(x); the

reader may refer to [17] for more detailed discussion on the

stability property of the Lyapunov-based controller h(x).
Part 2: We assume that the LEMPC of Eq. 19 operates in

the first operation mode. We prove that if x(tk) ∈ Ωρ̃, then

x(tk+1) ∈ Ωρ; and if x(tk) ∈ Ωρ/Ωρ̃, then V (x(tk+1)) <
V (x(tk)) and in finite steps, the state converges to Ωρ̃ (i.e.,

x(tk+j) ∈ Ωρ̃ where j is a finite positive integer).

When x(tk) ∈ Ωρ̃, from the constraint of Eq. 19g, we

obtain that x̃1(tk+1) ∈ Ωρ̃. By Propositions 1 and 2, we

obtain the following inequality:

V (x(tk+1)) ≤ V (x̃1(tk+1)) + fV (fW (Δ)). (23)

Note that LEMPC 1 has access to all of the optimal input

trajectories of the other distributed controllers evaluated

before it. Since V (x̃1(tk+1)) ≤ ρ̃, if the condition of Eq. 21

is satisfied, we can conclude that:

x(tk+1) ∈ Ωρ.

When x(tk) ∈ Ωρ/Ωρ̃, from the constraint of Eq. 19h and

the condition of Eq. 3, we can obtain:

∂V (x(tk))
∂x

f(x(tk), u∗
1(tk|tk), . . . , u∗

m(tk|tk), 0)

≤ ∂V (x(tk))
∂x

f(x(tk), h1(x(tk)), u∗
2(tk|tk), . . . , u∗

m(tk|tk), 0)

≤ · · ·
≤ ∂V (x(tk))

∂x
f(x(tk), h1(x(tk)), . . . , hm(x(tk)), 0)

≤ −α3(|x(tk)|).
(24)

The time derivative of the Lyapunov function along the actual

system state x(t) for t ∈ [tk, tk+1) can be written as follows:

V̇ (x(t)) =
∂V (x(t))

∂x
f(x(t), u∗

1(tk|tk), . . . , u∗
m(tk|tk), w(t))

(25)

Adding and subtracting
∂V (x(tk))

∂x
f(x(t), u∗

1(tk|tk), . . . ,
u∗

m(tk|tk), 0) to/from the above equation and accounting for

Eq. 24, we have:

V̇ (x(t)) ≤ −α3(|x(tk)|)
+

∂V (x(t))
∂x

f(x(t), u∗
1(tk|tk), . . . , u∗

m(tk|tk), w(t))

−∂V (x(tk))
∂x

f(x(t), u∗
1(tk|tk), . . . , u∗

m(tk|tk), 0)

(26)
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Fig. 4. Distributed controller evaluation sequence.

Due to the fact that the disturbance is bounded (i.e., |w| ≤ θ)

and the Lipschitz properties of Eq. 5, we can write:

V̇ (x(t)) ≤ −α3(α−1
2 (ρs)) + L′

x|x(t)− x(tk)|+ Lwθ. (27)

Taking into account Eq. 4 and the continuity of x(t), the

following bound can be written for all τ ∈ [tk, tk+1)

|x(τ) − x(tk)| ≤ MΔ. (28)

Since x(tk) ∈ Ωρ/Ωρ̃, it can be concluded that x(tk) ∈
Ωρ/Ωρs . Thus, we can write for t ∈ [tk, tk+1)

V̇ (x(t)) ≤ −α3(α−1
2 (ρs)) + L′

xMΔ + Lwθ. (29)

If the condition of Eq. 22 is satisfied, then there exists εw > 0
such that the following inequality holds for x(tk) ∈ Ωρ/Ωρ̃:

V̇ (x(t)) ≤ −εw/Δ, ∀t = [tk, tk+1).

Integrating this bound on t ∈ [tk, tk+1), we obtain that:

V (x(tk+1)) ≤ V (x(tk)) − εw

V (x(t)) ≤ V (x(tk)), ∀t ∈ [tk, tk+1)
(30)

for all x(tk) ∈ Ωρ/Ωρ̃. Using Eq. 30 recursively, it is proved

that, if x(tk) ∈ Ωρ/Ωρ̃, the state converges to Ωρ̃ in a finite

number of sampling times without leaving Ωρ.

Part 3: We assume that the DEMPC of Eq. 19 operates in

the second operation mode. We prove that if x(tk) ∈ Ωρ, then

V (x(tk+1)) ≤ V (x(tk)) and the system state is ultimately

bounded in an invariant set Ωρmin . Following the similar steps

as in Part 2, we can derive that the inequality of Eq. 30 hold

for all x(tk) ∈ Ωρ/Ωρs
. Using this result recursively, it is

proved that, if x(tk) ∈ Ωρ/Ωρs
, the state converges to Ωρs

in

a finite number of sampling times without leaving Ωρ. Once

the state converges to Ωρs
⊆ Ωρmin , it remains inside Ωρmin

for all times. This statement holds because of the definition

of ρmin. This proves that the closed-loop system under the

LEMPC of Eq. 19 is ultimately bounded in Ωρmin .

B. Implementation strategy II

In the implementation strategy introduced in the previous

subsection, the evaluation time of the distributed LEMPC at

a sampling time is the summation of the evaluation times

of all the distributed controllers. For applications in which

a small sampling time needs to be used and fast controller

evaluation is required, we may distribute the evaluation of

the distributed controllers into multiple sampling periods. In

this implementation strategy, the distributed controllers are

evaluated in sequence but over several sampling times and

only one controller is evaluated at each sampling time. Fig-

ure 4 shows a possible evaluation sequence of the distributed

controllers in this implementation strategy. In Fig. 4, at tk,

LEMPC m is evaluated and it sends the input trajectories of

um to LEMPC m − 1; at tk+1, LEMPC m − 1 is evaluated

and it sends um and um−1 to LEMPC m − 2; from time

tk+2 to tk+m, LEMPC m − 2 to LEMPC 1 are evaluated

in sequence and one complete distributed control system

evaluation cycle is carried out. Another controller evaluation

cycle starts at tk+m+1 with the evaluation of LEMPC m
again. In order to guarantee the closed-loop stability of

this implementation strategy, the design of the distributed

LEMPC of Eq. 19 needs to be modified to account for the

multiple sampling time evaluation cycle; details are omitted

due to space limitations.
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