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Abstract— In recent work, it was shown that the class of
distributed random access MAC schemes leveraging Carrier-
Sense Multiple Access (CSMA) is throughput-optimal. To fully
assess the potential of such schemes, it is challenging to study
their performance in terms of mean delays and compare it
against that of centralized scheduling.

In this paper, we present upper and lower bounds on the
performance of CSMA-based random access MAC. We modify
the ideal CSMA model to obtain one that further incorporates
queue length information and admits a product-form stationary
distribution. We analytically calculate its mean delay at the
steady-state, and show that it yields an upper bound on the
delay of ideal CSMA. We also derive a lower bound which is
independent of the scheduling algorithm. The derived bounds
coincide with the best known bounds for the popular max-
weight scheduling, whence the performance of such distributed
low-complexity schemes lies in the same regime as that of
the centralized, generally NP-hard max-weight scheduling. Our
results extend to slotted systems, as well as to a wide range
of arrival-service processes. Finally, we develop a method for
deriving upper and lower bounds on the performance of MAC
algorithms by use of Linear Programming (LP) and present
comparative simulation results.
Keywords: Wireless Networks, Medium Access Control
(MAC), Carrier-Sense Multiple Access (CSMA), Random-
access MAC, Resource allocation, Distributed algorithms

I. INTRODUCTION

In a wireless ad hoc network nodes forward packets in
a multi-hop fashion in order to deliver data to the de-
sired destinations. The decentralized nature of such systems
requires developing efficient distributed algorithms for re-
source allocation: power control, rate control, and Medium
Access Control (MAC), so as to provide high throughput,
low latencies and service differentiation to competing data
flows. This in turn requires the cooperation of the different
network layers; the transport layer is responsible for injecting
traffic within the capacity region [1] of the network based
on measured congestion; the MAC layer is responsible for
scheduling transmissions in order to serve the injected traffic
by minimizing collisions among concurrent transmissions.
In the realm of wireless, the traditional network stack
which separates routing, flow control, scheduling, and power
control is not optimal. A cross-layer design featuring the
coupling of the transport layer with the Network and MAC
layers through queue-length information-sharing was shown
to be optimal [2-7] via the Network Utility Maximization
(NUM) framework.

The bottleneck of the cross-layer design lies at the MAC
layer [6] which requires fast and efficient control of transmis-
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sions. There are two main approaches for MAC: a) determin-
istic scheduling, when the medium access controller selects
the set of links to be activated at each time slot, typically in a
centralized fashion by taking into account information about
the queue lengths corresponding to different flows [3-6], and
b) random access, where decisions are “soft,” i.e., each link
is activated with a certain probability defined by the medium
access controller; such schemes are typically distributed and
again, the controller considers queue-length information in
assigning probabilities [7], [8], [9].

An increasingly popular approach to multiple access is
based on Carrier-Sense Multiple Access (CSMA) random
access algorithms. In CSMA, a sending node can sense
whether the channel is busy before it initiates a packet
transmission; if it detects the channel to be busy, it waits
for a random amount of time (called back-off time) before it
attempts to reserve the channel again, otherwise it makes the
transmission. CSMA schemes are readily implementable in
a decentralized fashion and are widely used in practice (e.g.,
the four-phase handshake reservation mechanism of the IEEE
802.11 protocol [7]). It was recently established [8], [9] that
the class of CSMA-based random-access MAC protocols is
throughput-optimal.

In this work, we use a modification of the ideal CSMA
model [8], [10] to obtain a positive recurrent, reversible
Markov chain model that incorporates the queue lengths
as well as the independent set information and admits a
product-form stationary distribution. We show that the mean
delay of the new model yields an upper bound on the mean
delay of the original model and analytically derive an upper
bound on the mean system delay at the steady-state. We
also derive a fundamental lower bound which is independent
of the scheduling algorithm. The main result is that the
derived bounds coincide with those for the popular max-
weight scheduling algorithm [12]. We also develop another
method for obtaining upper and lower bounds on the mean
total delay of MAC protocols via solving linear programs
(LPs). Our results naturally extend to the slotted discrete-time
Markov model of [9], as well as to a wide range of arrival-
service processes through the analysis of [10]. Finally, we
briefly present simulation results for two different topologies
and two arrival rates in each case.

II. RELATED LITERATURE

It is well known that Maximum-Weight Scheduling
(MWS) [1] is throughput-optimal, in the sense that it can sta-
bilize the network queues for all arrival rates in the capacity
region, without knowledge of their values. However, MWS
amounts to solving a complex combinatorial optimization
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problem in each time slot; the problem is by nature central-
ized and additionally NP-hard [6] for general interference
models. As a consequence, MWS is impractical for many
actual implementations, which has motivated research for
efficient decentralized MAC protocols.

A low-complexity alternative to MWS is Maximal
Scheduling (MS), which can typically support only a fraction
of the capacity region [13]. Yet another low-complexity
alternative is Greedy Maximal Scheduling (GMS), which is
throughput-optimal if the network satisfies the local-pooling
condition [14]. A distributed greedy protocol similar to IEEE
802.11 was shown to support only a fraction (which depends
on the network topology and the interference model) of the
capacity region even if collisions are ignored [15].

Jiang and Walrand [8] established that the ideal distributed
CSMA random access scheme [10] is throughput-optimal;
they considered a continuous-time Markov chain model
which ignores collisions, and is also controllable by the mean
values of the back-off times. They developed a distributed
iterative scheme for adjusting the control parameters so that
the steady-state service rate can support any arrival rate
vector in the capacity region. Ni and Srikant [9] proposed
a slotted protocol with minimal communication overhead
to avoid collisions, and showed that it attains the same
steady-state distribution as ideal CSMA, hence is throughput-
optimal. Last but not least, an upper bound on the mean delay
of CSMA was derived by Ni et al. [11] who considered the
effect of the mixing time of the underlying Markov chains
in calculating mean total delays.

III. NETWORK MODEL

We model a single-channel wireless network as an (undi-
rected) interference graph G = (V,E), where V represents
the set of wireless links and (k, l) ∈ E if links k and l
cannot be simultaneously active. We denote the total number
of links by K := |V |, and consider a link enumeration
k = 1, . . . ,K. A feasible schedule is a subset of links
that can be simultaneously active without any two links
interfering with one another, i.e., an independent set [16] of
G. Let I denote the set of independent sets, and let N := |I|.
We will consider the enumeration I = {xi}Ni=1, where each
independent set is represented by a vector xi ∈ {0, 1}K with
the k−th entry, xik, equal to 1 if the k−th link is active, and
equal to 0 else. With some abuse of notation, we also treat
xi as a set and write k ∈ xi if xik = 1; by convention we set
x1 := ∅. A scheduling algorithm is a method of deciding
which independent set to activate at each time instant.

We consider K single-hop flows, one at each link k, and
assume that the arrivals at each link are independent Poisson
processes with mean arrival rate vector λ ∈ RK+ , while
the service times are independent exponentially distributed
random variables with mean service rate vector µ ∈ RK+ . 1

The unsent packets over a link k are stored in a queue whose
length is denoted by Qk; the vector of all queue lengths is

1Our results generalize to multi-hop traffic by means of the analysis in [8]
as well as to non-Markovian models through the analysis of [10]

Q := [Qk]Kk=1 ∈ NK . The capacity region of the network is
defined as the set of all arrival rates for which there exists a
scheduling algorithm such that the evolution of queue lengths
is described by a positive recurrent Markov chain (MC). This
is the set Λ defined by [1]:

Λ := {λ ∈ RK+ : λ <

N∑
i=1

pix
i · µ}, (1)

for some p ∈ RN+ :
∑N
i=1 pi ≤ 1, where · denotes entry-

by-entry multiplication of two vectors and the inequality is
also interpreted element-wise. We call a vector in Λ strictly
feasible and one in the closure of the capacity region, Λ,
as feasible. Note that Λ, Λ̄ are convex sets that can be fully
characterized by using only maximal independent sets in (1).

A. Model for ideal CSMA

The ideal CSMA model [8], [10] assumes that a link
can be active only if its corresponding queue is non-empty.
In this model, the activation set, i.e., the set of links that
are activated by MAC at a given time, is always a feasible
schedule and there are no collisions. For a given time, let the
activation set be xi; completion of service at a link k ∈ xi

renders the link inactive and the system moves to xi − ek,
where the vector ek ∈ {0, 1}K has all entries but the k− th
one equal to 0, and its k − th entry is equal to 1. In the
case that a) link k 6∈ xi (k is inactive), b) its corresponding
queue is non-empty, and c) xi + ek is a feasible schedule,
link k will be activated after a back-off time exponentially
distributed with mean 1

rk
; this corresponds to a transmitter

sensing the channel for interfering ongoing transmissions and
backing-off for an exponential waiting time before initiating
transmission, only when it senses the channel idle. If we
further assume that the system is fully backlogged [8] (i.e.,
that all queues are non-empty, or equivalently lower-bounded
by 1) and define the activation set as the system state, then
the system evolution is captured by a continuous-time finite
Markov chain shown in Figure 1(a).

(a)
Activation
set Markov
chain

(b) Joint queue-length and acti-
vation set Markov chain

Fig. 1. Idealized CSMA model.

IV. PERFORMANCE BOUNDS FOR CSMA

For the purpose of performance analysis, we define
Markov chains that incorporate queue-lengths in addition
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to the activation set information. We develop a modified
protocol which admits a product-form distribution, and show
that its mean delay yields an upper bound on the mean delay
of CSMA. We analytically calculate the joint stationary dis-
tribution for queue-lengths and activation set of the modified
protocol, and use it to obtain an upper bound on the mean
delay of ideal CSMA at the steady-state. We also derive a
fundamental lower bound based on the fact that for each
clique of the interference graph at most one link can be
activated at a given time. Finally, we derive linear programs
(LPs) to obtain upper and lower performance bounds for
CSMA-based random-access schemes, as well as for MWS.

A. Ideal CSMA

It is not hard to verify that the Markov chain (MC)
described in Figure 1(a) is irreducible. The detailed balance
equations [17] are satisfied and its stationary distribution is
a Markov random field (MRF) given by:

P (xi) =
1

C

∏
k:k∈xi

r̄k, (2)

where r̄k := rk
µk

and C :=
∑

xi∈I
∏
k:k∈xi r̄k. The main

result in [8] is that the map r ∈ RK+ → Λ is onto, hence the
ideal CSMA model is throughput-optimal.

Let us consider the composite state comprising the activa-
tion set xi and the queue-length vector Q ∈ NK . Under the
Poisson-Exponential assumption for the arrival, service and
back-off time distributions, the state evolution is captured by
the MC shown in Figure 1(b). The set of feasible states is
{(xi,Q) : xi ∈ I,Q ∈ NK ,xik = 1⇒ Qk > 0}.

From state (xi,Q), the system can make a transition to:
• state (xi,Q + ek), for any link k ∈ V , if there is an

arrival at link k; this happens with rate λk (cf. (1) in
Figure 1(b)).

• state (xi − ek,Q− ek), for any link k ∈ xi, if there is
a service completion at link k; this happens with rate
µk (cf. (2) in Figure 1(b)).

• state (xi + ek,Q), for any link k /∈ xi such that xi +
ek ∈ I, if the wait period (as defined by the random
back-off value) is concluded; this happens with rate rk
(cf. (3) in Figure 1(b)).

In Figure 1(b) we also show all possible transitions to a
feasible state (xi,Q); these are simply the counterparts
of the three cases above (respectively (1’), (2’), (3’)). We
summarize some properties of the“ideal CSMA MC”, in the
next lemma.

Lemma 1 (Properties of the ideal CSMA MC): The ideal
CSMA Markov chain is irreducible but admits no product-
form stationary distribution such that the queue lengths are
independent from one another and from the activation set;
this is true whether the system is assumed fully backlogged
or not.

Proof: To establish irreducibility, consider two feasible
states (xi,Q1) and (xj ,Q2); we will construct a path of
feasible transitions connecting the two states. First, consider
a series of arrivals (if necessary) such that the new state is

(xi,Q3) where Q3
k = Q2

k for all k ∈ V s.t. Q2
k < Q1

k, and
Q3
k = Q1

k, otherwise, whence we have Q3 ≥ Q2. There is a
path comprising of arrivals to followed by departures from
all links k ∈ xi that moves the system to state (∅,Q3).
Then, via a series of successive transitions to single-link
independent sets {k} for all k : Q3

k > Q2
k followed by

departures from these links, the system can move to (∅,Q2).
The system can move to (xj ,Q2) via

∑K
k=1 xjk transitions

corresponding to wait period completions.
The queue-length process Q is not independent from the

activation set process x since P (xi|Q = 0) = 0 < P (xi),
for any xi 6= ∅, where 0 denotes the all-zero vector.
For the case where the system is fully backlogged, let us
suppose by contradiction that P (x = xi,Q) = P (x =
xi)P (Q) = P (x = xi)

∏
k∈V P (Qk = qk). The global

balance equations yield∑
k∈K1

λkP (Q− ek)P (x
i
) +

∑
k∈K2

µkP (Q + ek)P (x
i

+ ek)

+
∑
k∈xi

rkP (Q)P (x
i − ek)

= P (x
i
)P (Q)(

∑
k∈V

λk +
∑

k∈xi ⋂
K1

µk +
∑

k∈K2

rk), (3)

where K1 := {k : Qk > 1},K2 := {k : k /∈ xi,xi + ek ∈
I}. Considering a state (xi,Q) with Q = 1 (the all-one
vector) and xi maximal schedule (whence K1 = K2 = ∅)
and applying (2), we get in the light of (2):∑

k∈V

λk =
∑
k∈xi

µk, (4)

which does not hold true for each λ ∈ Λ.

B. Modified CSMA model

Fig. 2. Modified CSMA: Joint queue-length and activation set Markov
chain.

For performance analysis purposes, we introduce a mod-
ified CSMA-based scheme, which we call Performance-
CSMA (PCSMA).2 PCSMA has three main differences from
the ideal CSMA. First, upon service completion at a given
link, the link is not “released” but remains active. Second,
an active link k is released after a random amount of time
which is exponentially distributed (independent of all other
processes) with mean 1

sk
, whether service at the link has

2Note that this scheme does not necessarily constitute a proposal for
actual implementation, but rather a tool for deriving bounds on the perfor-
mance of ideal CSMA.
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been completed or not. Third, an arrival at link k is only
admitted into the system if link k is currently active, and
is discarded otherwise. PCSMA is described by a Markov
chain with state-space {(x,Q) : x ∈ I,Q ∈ NK} (see also
Figure 2).

From state (xi,Q), the system can make a transition to:

• state (xi,Q + ek), for any link k ∈ xi, if there is an
arrival at link k; this happens with rate λk (cf. (1) in
Figure 2).

• state (xi,Q−ek), for any link k ∈ xi : Qk > 0, if there
is a service completion at link k; this happens with rate
µk (cf. (1’) in Figure 2).

• state (xi + ek,Q), for any link k /∈ xi,xi + ek ∈ I,
if the wait period (as defined by its random back-off
value) is concluded; this happens with rate rk (cf. (2)
in Figure 2).

• state (xi − ek,Q), for any link k ∈ xi, if the release
time (as defined by its random release value) is reached;
this happens with rate sk (cf. (2’) in Figure 2).

In PCSMA the queue lengths and independent sets are,
by construction, decoupled. Note that both PCSMA and ideal
CSMA feature idling, in the sense that they spend a non-zero
fraction of time in non-maximal independent sets. However,
unlike ideal CSMA, PCSMA has the additional property
of wasted resources, since a link can be active even if its
queue is empty. Finally, PCSMA has the additional feature
of discarding arrivals at non-active links.

Theorem 1 (Properties of PCSMA):
1) The Markov chain of PCSMA is irreducible.
2) Let λ < µ, then the Markov chain is positive-recurrent

and reversible. Its stationary distribution is

P (xi,Q) =
1

C

∏
k:k∈xi

r̄k
∏
k∈V

(1− ρk)ρQk

k , (5)

where r̄k := rk
sk
, C :=

∑
xi∈I

∏
k:k∈xi r̄k, and for

each link k ∈ V , ρk := λk

µk
. In particular, the queues

are mutually independent M/M/1 queues, independent
from the activation set process whose distribution is
the same as that of ideal CSMA.

3) If we consider the effective mean arrival rate into the
system, by ignoring discarded arrivals, then PCSMA
is throughput-optimal.

Proof: Consider two feasible states (xi,Q1) and
(xj ,Q2). We construct a path of feasible transitions con-
necting the two states. First, consider a series of release
events moving the system to (∅,Q1). Then, by successively
capturing each link k with Q1

k < Q2
k and considering an

arrival followed by a link release, and by successively cap-
turing each link l with Q1

l > Q2
l and considering a departure

followed by link release, we can move the system to (∅,Q2).
Finally, a series of

∑K
k=1 x

j
k transitions corresponding to

wait period completions moves the system to (xj ,Q2). This
proves the first part. The distribution (5) satisfies the detailed
balance equations whence the second part follows.

The effective mean arrival rate λ̄ into the system (after

ignoring discarded arrivals) is given by

λ̄ :=
∑
xi∈I

piλ · xi = λ ·
∑
xi∈I

pix
i, (6)

where pi := P (xi) is the activation set stationary distribution
(2). Consider λ̄ ∈ Λ arbitrary. By the definition of Λ, there
exists ε > 0 sufficiently small such that (1 + ε)λ̄ ∈ Λ. From
the result in [8], there exists r̄ ∈ RK+ , such that the stationary
distribution satisfies (1 + ε)λ̄ = µ ·

∑
xi∈I pi(r̄)xi. Picking

λ = 1
1+εµ and r, s such that rk

sk
= r̄k for all k ∈ V proves

the third part.

C. Upper bound on delays

Let us represent an ideal CSMA setup by the tuple
CSMA(λ,µ, r) and a PCSMA setup as PCSMA(λ,µ, r, s).
We will show that the latter gives an upper bound on the
delay of the former, which can be analytically calculated
through the product-form distribution (5).

Theorem 2 (Upper bound on mean delay of ideal CSMA):
The mean delay of PCSMA yields an upper bound on the
mean delay of ideal CSMA. In particular, for each link
k ∈ V , an upper bound on the mean delay E[Dk] is given
by:

E[Dk] ≤ 1

µk − λink
, (7)

where
λink :=

λk∑
i∈I pi(r)xik

, (8)

is the injected arrival rate used to attain an effective arrival
rate λ ∈ Λ. An upper bound on mean system delay of CSMA
E[D] is given by:

E[D] ≤ 1∑
k∈V λk

∑
k∈V

ρink
1− ρink

, (9)

where ρink :=
λin
k

µk
.

Proof: The proof is by a stochastic coupling argument
similar to [10]. First consider a variant of the ideal CSMA
protocol, where (xi,Q) is feasible even if Qk = 0, for
some k ∈ xi, that is to say the system has the “wasted
resources” property of PCSMA. It is clear that the mean
delay of this variant (which we call CSMAv) yields an
upper bound on the mean delay of ideal CSMA. Now let
us consider PCSMA(λin,µ, r,µ) and CSMAv(λ,µ, r). For
a sufficiently large interval [0, T ], the two systems spend
the same amount of time, modulo an o(T ) term (where
limT→∞

o(T )
T = 0), on each independent set. They also

make the same number of transitions between adjacent (i.e.,
differing by a single link) independent sets modulo an o(T )
term. The number of arrivals at link k is λkT + o(T ) in
both systems, where for PCSMA we consider the number of
accepted arrivals. Finally, the number of service completions
from a particular independent set is the same for both
systems, modulo an o(T ) term. Combining these arguments
and Little’s law, we get that the mean delay experienced at
each link is the same for both systems. The mean number

5948



of customers in queue for link k is given by ρink
1−ρink

[17] ,
and the upper bounds on mean delays (7), (9) are a simple
application of Little’s law.

Remark 1: It was shown in [10] that the independent set
stationary distribution (2) is insensitive to the inter-arrival
and inter-service time distributions, as long as the arrival
and service processes are modeled as renewal processes.
Based on the natural decoupling of the independent set
process from the queue-length process, we can extend the
upper bound (7) to more general queueing models, e.g.,
consider G/G/1 queues. In particular, consider independent
injected arrival, service and back-off renewal processes with
mean values (λin,µ, r). The stationary distribution for the
PCSMA variant is

P (xi, Q) =
1

C

∏
k:k∈xi

r̄k
∏
k∈V

Pk(Qk, λ
in
k , µk), (10)

where r̄k := rk
µk
, C :=

∑
xi∈I

∏
k:k∈xi r̄k, and

Pk(Qk, λ
in
k , µk) denotes the stationary distribution corre-

sponding to the particular queueing model used at the k−th
link. The mean delay for CSMA is upper bounded by

E[Dk] ≤ Dk(λink , µk), (11)

where Dk(λink , µk) is the mean delay of the k−th link as it
can be calculated by its corresponding queueing model, and
similarly for the mean system delay E[D].

Remark 2 (Upper bound for slotted system): Let us con-
sider a G/D/1 queueing model [17] for arrival/service at
each link; this corresponds to a slotted system with random
arrivals and deterministic service times. We further assume
that at each slot one customer is served at each active queue,
i.e., µ = 1. Let us denote the number of arrivals (at a given
slot) at link k by Ak with mean λk and variance V ar(Ak).
Then for λ ∈ Λ, the upper bound for PCSMA corresponding
to G/D/1 is [17]:

E[D] ≤
∑
k∈V

λk+V ar(Ak)−λ2
k

2(µ̄k−λk)(
∑

k∈V λk) , (12)

where µ̄ is an arbitrary vector in the capacity region that
can be achieved by a proper selection of r, s. Note also
that for the M/D/1 (as well as M/M/1) queueing model, the
bound becomes (9). This bound is tight, in the sense that it
goes to infinity only if λ converges to the boundary of the
capacity region. The important observation is that this upper
bound coincides with the upper bound derived in [12] for
MWS. This implies that the performance of the distributed,
efficient random access CSMA MAC lies in the same regime
as that of the centralized, generally NP-hard MWS. This is
a promising result on the performance of such schemes.

D. Lower bound on delays

We derive a fundamental lower bound on the performance
of CSMA-based MAC based solely on the collision-free
assumption; this is independent of the particular scheduling
algorithm (deterministic or random access).

Let us first consider the case of a complete interference
graph, where any two links mutually interfere. For simplicity,

we assume µk = 1, for each k ∈ V . Since at most one
link can be active at each time instant, the network, as
a whole, behaves like an M/M/1 queue with arrival rate
λ :=

∑
k∈V λk and service rate equal to µ = 1, whence

the mean number of customers in the network is given by
E[
∑
k∈V Qk] = λ

1−λ .
Now let us consider a partition of the links into cliques of

the interference graph. By ignoring the interference between
links that belong in different cliques, we can obtain a
lower bound on mean delay. Let us denote the finite set of
all clique-partitions, i.e., partitions where each subset is a
clique, by P; an atom of this set is a partition P = {Pj}|P|j=1

where each Pj is a clique. The lower bound on mean delay
is then given by:

E[D] ≥ max
P∈P

∑
Pj∈P

∑
k∈Pj

λk

(1−
∑
k∈Pj

λk)(
∑
k∈V λk)

. (13)

This lower bound is tight, e.g., it is exact for a network that
is a union of non-interfering cliques. Following the same
principle, we can derive fundamental lower bounds for other
queueing models e.g., the G/D/1 as in [12].

E. Linear programs for performance analysis
An alternative approach for obtaining upper and lower

bounds on the performance of CSMA-based queueing sys-
tems can be derived following the theory developed in [18],
[19]; We derive LPs for the performance analysis of CSMA-
based MAC schemes, both deterministic and random access.
For a given time instant, let wk = 1 if link k is active, and
0 else. Let vi = 1 if the system is at the i−th independent
set, and 0 else. Clearly,

∑N
i=1 vi = 1, and we also have

wk =
∑
i:k∈xi

vi. (14)

If we assume that the scheduling algorithm is non-idling, i.e.,
that the system cannot be at an independent set xi if there
exists some xj ⊃ xi and k ∈ xj \xi with Qk > 0, we obtain
the following maximality constraint:

vi
∑

k∈xj\xi

Qk = 0 ∀xj ⊃ xi,xj 6= xi. (15)

In particular, the activation set cannot be null when∑
k∈V Qk > 0, so we get

Qk =

N∑
i=2

Qkvi. (16)

By assuming that a stationary distribution exists (see [19]
for how to proceed in a self-contained way without mak-
ing assumptions) and considering the second moments of
the queue-length process, we can get the following linear
constraints that the system needs to satisfy at steady-state:

λk

N∑
i=2

yik + λk − µk
∑

i:k∈xi

yik = 0, (17)

λk

N∑
i=2

yil − µk
∑

i:k∈xi

yil + λl

N∑
i=2

yik − µl
∑

i:l∈xi

yik = 0, (18)

∑
k∈xj\xi

yik = 0, (19)
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where yik := E[viQk], The constraints (17), (18) hold
for k 6= l and are derived via Lippman’s uniformization
[18]. The constraints (19) hold for all xj ⊃ xi ∈ I, and
correspond to the non-idling property (15).

If we consider the MWS algorithm we get the additional
constraints ∑

k∈xi

yik ≥
∑
k∈xj

yik ∀xj 6= xi. (20)

It follows from (16) that E[Qk] =
∑N
i=2 yik, so we

can find lower/upper bounds on the mean number of cus-
tomers by numerically solving linear programs with objective
function

∑K
k=1

∑N
i=2 yik subject to nonnegativity constraints

yik ≥ 0, along with (17), (18), (19); the LPs are feasible if
the arrival rate vector lies in the capacity region [19]. For
MWS, we need to further consider (20).

There is no ordering relation between the upper (lower)
bound derived in the previous section and the ones acquired
by LPs. Consequently, both approaches can be exploited for
performance analysis; denoting the upper and lower delay
bounds derived via solving LPs by UBlp, LBlp, respectively,
we have that the mean system delay lies in:

max(LB,LBlp) ≤ E[D] ≤ min(UB,UBlp). (21)

V. SIMULATIONS

We have performed numerous experiments, with a wide
range of network topologies and arrival rates. For length
considerations, we present results corresponding to a network
of n = 5 nodes with µ = 1, and two different interference
topologies: a) cycle graph b) star graph. For each topology,
we consider two different feasible arrival rate vectors, and
summarize the results in Table I. For the cycle graph, UBlp
is the lowest upper bound for both cases, while the highest
lower bound is equal to LB in the first case, and is LBlp
in the second. For the star graph, note that the lower bounds
coincide, while UB is the lowest upper bound in both cases.
These results illustrate that none of the two lower (upper)
bounds derived above dominates the other in general.

TABLE I
DELAYS BOUNDS

Topology Arrivals LBlp UBlp LB UB
Cycle (0.2,0.3,0.2,0.3,0.2)’ 1.97 3.684 2.25 6.187

(0.1,0.2,0.4,0.2,0.1)’ 2.25 3.571 2.04 4.985
Star (0.8,0.8,0.8,0.8,0.1)’ 6.364 16.667 6.364 13.428

(0.3,0.5,0.6,0.8,0.15)’ 9.331 19.441 9.331 13.128

VI. CONCLUSION

We have introduced a modification of the ideal CSMA
model [10] which is described by a positive recurrent,
reversible Markov chain model that incorporates the queue
lengths as well as the activation set information. The mean
delay of such scheme is an upper bound on the mean
delay of ideal CSMA and can be calculated analytically.
We have also derived a fundamental lower bound that holds
for any CSMA-based MAC protocol. These bounds coincide
with those for max-weight scheduling, which is a promising

result on the performance of the low complexity, distributed,
random access MAC. Finally, we have developed a method
for obtaining upper and lower performance bounds via solv-
ing linear programs (LPs), and have presented comparative
simulation results.
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