
An axiomatic fluid-flow model for congestion control analysis

C. Briat
H. Hjalmarsson, K.H. Johansson, U.T. Jönsson, G. Karlsson, H. Sandberg and E.A. Yavuz

Abstract— An axiomatic model for congestion control is
derived. The proposed four axioms serve as a basis for the
construction of models for the network elements. It is shown
that, under some assumptions, some models of the literature can
be recovered. A single-buffer/multiple-users topology is finally
derived and studied for illustration.

Index Terms— Congestion control modeling; conservation-
law; time-delay systems; state-dependent delay

I. INTRODUCTION

Network modeling is challenging due to the very hetero-
geneous nature of communication networks, mixing physics,
electronics and computer science. This heterogeneity coupled
with intrinsic properties of the physical and mathematical
laws prevent the development of an efficient bottom-up
approach. This is the reason why finding macroscopic axioms
capturing the critical phenomena is of interest. These axioms
should provide an abstraction of the microscopic level by
identifying and relating the fundamental macroscopic net-
work parameters.

The network model is derived using four fundamental
axioms. The zeroth axiom defines a consistent notion of
time on which the network modeling problem is solvable
and admits a scalable solution. The first axiom is a packet
conservation law facilitating the derivation of models for
building blocks and simplifying their mathematical expres-
sion. The second axiom defines a model for queues. Finally,
the last axiom concerns the existence of a user model. We
will show that each axiom has implications in the network
modeling problem and, more importantly, will allow to solve
yet unresolved problems, especially at user level.

The proposed model will be developed in several steps.
The first one will be devoted to the modeling of lossless
transmission channels directly from the first axiom. The
second step is the derivation, again from the first axiom, of
the so-called ACK-clocking model [1], which relates flow,
flight-size and round-trip time (RTT) together. This result is
of great importance in network modeling.

Based on the first and second axioms, a causal RTT
expression is developed in the third step. This causal RTT
expression will however require an extension of the buffer
model. Indeed, there are two main limitations to the buffer
model usually considered in the literature (and as stated in
the second axiom). First, it does not explicitly define the
queue as a FIFO queue (i.e. order preserving) in which the
packets maintain their relative positions. An internal buffer

This work has been supported by the ACCESS project,
KTH, Stockholm, Sweden. http://www.access.kth.se/, e-mail:
{cbriat,hakan.hjalmarsson,gk,kallej,ulfj,hsan,emreya}@kth.se

description should capture this, at a flow level. Therefore,
the flows should be considered as very viscous repelling
liquids which do not mix. The second limitation concerns the
solving of the output flow separation problem, primordial for
the description of buffers interconnections and, as we shall
see later, for the derivation of an exact expression for the
acknowledgments flows.

Finally, the last step is devoted to the derivation of a
complete user model, based on the first and third axioms.
This part constitutes one the most important contributions of
the paper. Indeed, the conversion of windows size into flow
has been a major obstacle preventing the improvement of
network models. The static-link model [2] assumes a static
relationship between window sizes and queueing delays. It
has good modeling properties in the absence of cross-traffic
and when propagation delays are homogeneous. It is however
rather inaccurate in more realistic scenarios. This validity
domain is theoretically proved in this paper by showing
that the proposed model reduces to the static-link one when
some conditions are met. The integrator link model [3],
[4], [5] improves the description by correcting the irrelevant
behavior of the model when affected by cross-traffic. Yet,
some characteristics of the buffer response were not well
captured: the response speed and the high slope when the
window size increases. More recently, the joint-link model
[6], [7] consisting of merging the static-link and integrator-
link models has been introduced. This approach improves the
network model by capturing some characteristics unmodeled
by the previous descriptions. It has been shown that these
flow models can, in fact, be considered as approximations of
the ACK-clocking model [6], [7] from which higher order
approximations can also be defined. In this paper, we do not
make any approximations and use the ACK-clocking model
in a new fashion, leading to a new user model.

The last part of the paper will focus on the develop-
ment of a general model for networks using the building
blocks obtained in the paper. The modeling technique will
be applied to a single-buffer/multiple-users topology for
which it will be possible to show that, under some certain
conditions, the static-link model can be naturally recovered.
More importantly, the provided static-link model involves a
state-dependent time-delay modeling the queuing delay. In
this context, the local stability of the FAST-TCP protocol
[8] is analyzed.

II. NETWORKS AND GRAPHS

It is convenient to introduce here the particular network
graph representation considered in the paper. It is different

2011 50th IEEE Conference on Decision and Control and
European Control Conference (CDC-ECC)
Orlando, FL, USA, December 12-15, 2011

978-1-61284-799-3/11/$26.00 ©2011 IEEE 3122

Fig. 1. Example of graph with 4 edges: one user edge u = 〈u−, u+〉,
one buffer edge b = 〈b−, b+〉 and two transmission edge `1 = 〈u+, b−〉,
`2 = 〈b+, u−〉

from the regular ones since it places all network elements
on graph edges, leaving nodes with the role of connecting
points, as in electrical circuits. Four types of nodes are
distinguished: the input nodes u−i , b−j and output nodes u+i ,
b+j for user ui and buffer bj respectively. The superscripts
have to be understood as a temporal order of reaction or
causality: the data come (-) then leave (+). We will denote
any edge E of the graph by 〈x, y〉 where x and y are the
input and output nodes respectively. Moreover, given any
edge E, the input and output nodes are given by β(E) and
ε(E) respectively.

According to these definitions, a queue edge is always
denoted by 〈b−i , b

+
i 〉, a user edge by 〈u−i , u

+
i 〉 and a trans-

mission edge by 〈b+i , u
−
j 〉, 〈u

+
i , b
−
j 〉 or 〈b+i , b

−
k 〉, i 6= k. This

is illustrated in Fig. 1. We call a circuit, say C, a path from
the output to the input of a user, i.e. C = 〈u+, u−〉. In Fig. 1,
the only possible circuit is given by C = 〈u+, b−, b+, u−〉.

III. THE NETWORKING AXIOMS

A. Universal Clock Existence

In an asynchronous network like the Internet, each ele-
ment can be considered to have its own discrete-time clock
Ti ⊂ R+ where Ti is countable, ruling out the rhythm of
protocol decisions and packets transmission. When several
sources send data through the same buffer/path, a clock-
coupling takes place and clock-interferences arise. Modeling
this clock-coupling is of incredible complexity since the
number of clocks and their interactions grow very quickly
with the network complexity, leading then to a very compli-
cated structure for the interrelated local clocks Ti, see [6,
Equations (3.7)] for example. In communication networks,
clocks beat with the rhythms of acknowledgment reception
rates, which are influenced in turn by network congestion;
this is referred to as ACK-clocking1.

An idea to resolve this complex time-structural problem
is the definition of a universal clock Tu dictating a common
time to the entire network. This leads us to the zeroth axiom:

Axiom 0: There exists an ideal universal clock Tu embed-
ding any local clock Ti, i.e. Tu ⊃

⋃
i Ti. ∴

1The term self-clocking is also used but is less explicit.

According to the above axiom, it may seem reasonable
to assimilate the universal clock Tu to a clock running
over positive real numbers continuously, i.e. Tu ≡ R+.
This particular universal clock dramatically simplifies the
modeling problem and this is the reason why it will be
considered in this paper. Indeed, using such a time-scale,
well-established mathematical tools can be used to model and
analyze networks: real functions analysis, integration theory,
dynamical systems, difference and differential equations, etc.
A conclusion is that continuous-time models may be used to
describe networks [9], [3]. These are generally referred to as
fluid-flow models.

Within this framework, it is possible to provide a proper
definition for flows of data. Indeed, given any edge E of
the network, a nonnegative integrable flow φ(x, s), (x, s) ∈
E × Tu and time instants t0, t ∈ Tu, t ≥ t0, we have

Nx(t, t0) =

∫ t

t0

φ(x, s)ds (1)

where Nx(t, t0) is a packet counter, i.e. the number of
packets having passed through point x between t0 and t is
given by Nx(t, t0). The integral considered above is a very
standard one, e.g. the Lebesgue integral.

B. Spatial and Temporal Conservation

The first axiom is essentially a law of conservation relating
flow integration on two different domains. The overall idea
is to remark that we can count the total number of packets
in transit in any edge, simply by counting the number of
entering packets over a certain time horizon.

Axiom 1: Given any edge E of the network, then for all
t ∈ Tu there exists a time t0(t) ∈ Tu, t0(t) ≤ t such that

PE(t) :=
∫
E
φ(θ, t)dθ

=
∫ t
t0(t)

φ(β(E), s)ds

= Nβ(E)(t, t0(t))

(2)

The integration over E is an abstract integral which has to be
understood as a flow integration from β(E) to ε(E), that is,
the number of packets PE(t) in the edge E = 〈β(E), ε(E)〉
at time t. ∴

The axiom’s main features are the domain of integration
exchange and the discretization of the spatial domain to
nodes only. These considerations will dramatically simplify
the modeling since it is no longer necessary to consider the
flows at any point x ∈ E but only at input nodes β(E). This
is shown in the following proposition:

Proposition 1: The input flow φ(β(E), ·) and output flow
φ(ε(E), ·) of edge E verify

φ(ε(E), t) = t0(t)
′φ(β(E), t0(t)) (3)

where we have tacitly assumed that t0(t) is differentiable.
Proof: Since Nβ(E)(t, t0(t)) is the current number of

packets in the edge E at time t, then differentiation with
respect to time provides the corresponding rate of variation

Nβ(E)(t, t0(t))
′ = φ(β(E), t)− t0(t)′φ(β(E), t0(t)).

3123

Moreover, the variation of the number of packets verifies

Nβ(E)(t, t0(t))
′ = φ(β(E), t)− φ(ε(E), t)

which is nothing else but the difference between the input
and output flows. The result follows from identification of
the equalities.

This proposition will turn out to be very useful to derive
models for transmission channels and buffers.

C. Queues are flows integrators

The axiom given below defines the behavior of queues
involved, for instance, inside routers and servers. Following
past works and our understanding of the problem, the inte-
grator model for queues seems to be the most plausible.

Axiom 2: The queue dynamics of buffer i is governed by
the model

q̇i(t) =
∑
j

φj(b
−
i , t)− ri(t) (4)

with aggregated output flow rate

ri(t) =

{
ci if Ci(t)∑
j φj(b

−
i , t) otherwise.

(5)

Above, qi, ci and φj(b
−
i , t) represent the queue size, the

maximal output capacity and the flow of type j at the input
respectively. The condition Ci(t) is given by

Ci(t) :=

[qi(t) > 0] ∨

∑
j

φj(b
−
i , t) > ci

 . (6)

The corresponding queuing delay can be easily deduced
using the relation τi(t) = qi(t)/ci. ∴

The above model can indeed be refined to capture ad-
ditional features like finite maximal queue length, flow
priorities, multiple output capacities, etc.

D. Users model existence

The last axiom concerns the user protocol description
and the way it dynamically reacts to the congestion in the
network.

Axiom 3: There exist bounded functions/functionals Pi,
Wi and Ui such that the trajectories (zi(t), wi(t)) of the
following continuous-time model defined over Tu

żi(t) = Pi(zi(t), µi(t))
wi(t) = Wi(zi(t), µi(t))
φi(u

+
i , t) = Ui(wi(t), φi(u−i , t))

(7)

match the trajectories of the asynchronous protocol (defined
on Ti) at points in Tu ∩ Ti. Above, zi, µi, φi(u−i , ·) and
φi(u

+
i , ·) are the state of the protocol, the measurements,

the acknowledgment flow rate and the user sending flow
respectively. The window size wi is considered here as the
number of outstanding packets to track and is supposed to
be differentiable. ∴

A procedure to solve the above interpolation problem for
the FAST-TCP protocol is detailed in [10, Appendix C.].

IV. TRANSMISSION CHANNELS WITH CONSTANT
PROPAGATION DELAY

We start by the following result obtained from Axiom 1:
Result 2: Given a lossless transmission channel, corre-

sponding to an edge E, with constant propagation delay
T > 0, the output flow is given by

φ(ε(E), t) = φ(β(E), t− T). (8)
Proof: Following Axiom 1, the number of packets in

transit PE(t) in the edge E at time t ∈ Tu obeys

PE(t) =
∫
E
φ(x, t)dx

=
∫ t
t0(t)

φ(β(E), s)ds

= Nβ(E)(t, t0(t)),

(9)

where t0(t) = t−T since the propagation delay is constant.
Indeed, a packet sent at time t−T will be, at time t, still in
the circuit and about to leave. The result follows then from
Proposition 1.

Using the notation defined in Section II, we can build the
flow vectors φ(x, t), x ∈

⋃
i

⋃
j{u
−
i , u

+
i } ∪ {b

−
j , b

+
j } using

the ’col’ operator:

φ(x, t) = col
σ(x)
k=1 [φk(x, t)] (10)

where σ(x) is the number flows using node x.
We are now in position to introduce the transmission

channels operators.
Definition 3: The above vectors are related by the trans-

mission channels operators Rx, x ∈ {ub, bu, bb} as[
φ(u−, t)
φ(b−, t)

]
= R

[
φ(u+, t)
φ(b+, t)

]
+Dδ(t) (11)

where

R =

[
0 Rub
Rbu Rbb

]
and D =

[
0
Db

]
.

The matrix Rx, x ∈ {ub, bu, bb}, contains 0 entries except
for those corresponding to an existing transmission channel.
In this case, the entry contains a single delay operator DT ,
where T is the constant propagation delay corresponding
to the transmission channel. The vector δ(t) consists of
cross-traffic flows entering buffers. The full-rank matrix Db
contains 0 and 1 only.

V. THE ACK-CLOCKING MODEL

The ACK-clocking model [1] is certainly the most impor-
tant consequence of Axiom 1. This model characterizes the
flight-size2 zi(Ci, t) of a user i at any time t ∈ Tu over a
closed circuit Ci = 〈u+i , u

−
i 〉. The importance of the ACK-

clocking model lies in the semantic it adds to the model
by relating the RTT, flow and flight-size together. From this
result, it will be possible to derive a number of important
properties and rules for the network.

2The number of outstanding packets.

3124

Result 4 (ACK-Clocking): The ACK clocking model is
given by

zi(Ci, t+RTTi{t}) =

∫
Ci

φ(θ, t+RTTi{t})dθ

=

t+RTTi{t}∫
t

φi(u
+
i , s)ds

(12)
where RTTi{t} is the RTT of a packet sent at at time t in
the circuit Ci by user i. N

Proof: We assume here that the circuit is lossless for
simplicity. The flight-size is indeed a spatial integration of
flows since the number of packets in transit is equal to the
spatial integral of the flows over the circuit. Thus, following
Axiom 1, it is possible to convert the spatial integration into
a temporal one provided that we can determine its integration
domain. To obtain it, we use the notion of RTT and suppose
that a data sent by user i in the circuit Ci at time t has a
round-trip-time given by RTTi{t}. This means that the data
sent between t and t + RTTi{t} are unacknowledged and
thus, still in the circuit. Hence, the corresponding temporal
integration has bounds t and t+RTTi{t}.

VI. RTT EXPRESSION AND INTERNAL BUFFER MODEL

In the light of the discussion above, it turns out that a
model for the RTT is necessary in order to characterize and
compute the flight size zi(Ci, t+RTTi{t}). A step forward
towards a RTT expression is the analysis of queuing delays
in buffers.

A. Forward/Backward delays and Causal RTT expression

Since RTT directly depends on the queuing delays, the
computation of it essentially means calculating the queueing
delays. The results are taken from a previous work of us [11]
with the difference that we relate them here to Axiom 2.

Considering the buffer model (4) with queueing delay
τi(t), we define the forward delay operator fi(t) := t+τi(t)
which maps, at a flow level, any ’flow’ input time t to the
corresponding ’flow’ output time fi(t). Although it is easy
to derive and understand, this operator leads to a noncausal
RTT expression which is not desirable. To observe this, let
us consider a closed circuit C with N queues, indexed from
1 to N . The indices 0 and N+1 are used to denote the input
and output of the circuit respectively. Given a packet input
time t, the corresponding packet output time tC is given by:

tC(t) = FC(t)
FC = R−1N,N+1 ◦ fN ◦ R

−1
N−1,N ◦ fN−1 ◦ . . .

◦R−12,3 ◦ f2 ◦ R
−1
1,2 ◦ f1 ◦ R

−1
0,1 ◦ ev

(13)

where Ri,j is the entry of the routing matrix R corre-
sponding to the transmission channel between the network
elements i and j, ev is the evaluation map and ◦ the
composition operator.

It is clear that FC is noncausal since it requires the
knowledge of future information, which is not available. In
order to solve this problem, the backward delay operator
[11] expressing the input time t as a function of the output

time tC , is considered instead. Hence, the problem reduces
to inverting the forward delay operator. The existence of
this inverse operator and some of its properties are recalled
below:

Result 5 ([11]): The operator fi is invertible if and only
if the input flow of the corresponding buffer is almost
everywhere positive. N

Result 6 ([11]): The functions fi and gi obey:

fi(t) = t+ τi(t)

gi(t) = t− τi(gi(t))

g′i(t) =

 ci

σ(b−i)∑
k=1

φk(b
−
i , gi(t))

−1 if Ci(gi(t))

1 otherwise

f ′i(t) =

 c−1i

σ(b−i)∑
k=1

φk(b
−
i , t) if Ci(t)

1 otherwise

where f ′(t) stands for the the upper right Dini derivative of
f(t), i.e. D+[f](t) = lim suph↓0 h

−1 (f(t+ h)− f(t)). N
Using the backward delay operators gi, the packet sending

time t can be computed from the reception time tC through
the causal expression:

t(tC) = BC(tC)
BC = R0,1 ◦ g1 ◦ R1,2 ◦ g2 ◦ R2,3 ◦ . . .

◦gN−1 ◦ RN−1,N ◦ gN ◦ RN,N+1 ◦ ev.
(15)

Example 7: In the single-user/single-buffer case, the ex-
pressions reduce to

t(tC) = g(tC − Tb)− Tf
tC = t+ Tf + Tb + τ(t+ Tf)
RTT{t} = tC − t

= tC − g(tC − Tb) + Tf
= Tb + Tf + τ(g(tC − Tb))

(16)

where Tf and Tb are the forward and backward propagation
delays corresponding to R0,1 and R1,2.

Using the backward expression of the RTT, it easy to
obtain the following result:

Result 8: The flight size obeys

zi(Ci,FCi
(t)) =

FCi
(t)∫

t

φ(u+i , s)ds

zi(Ci, t) =

t∫
BCi

(t)

φ(u+i , s)ds.

(17)

O
This is a direct consequence of Axiom 1 (through the

ACK-clocking model) and Axiom 2. However, the problem is
not completely resolved yet since it is still rather unclear how
to compute the queuing delays along a given circuit. Indeed,
calculating the queueing delays requires the knowledge of
all the buffers input flows, and hence requires a way of

3125

splitting the upstream buffer aggregated output flows into
distinct ’atomic’ flows. Otherwise, a modular description of
buffers interconnections is not possible.

B. FIFO Buffer output flow separation

Without further consideration on the queue type, there
exists an infinite number of ways to separate the aggregated
output flow directly from the queuing model of Axiom 2.
When a FIFO queue (i.e. order preserving) is considered, it
turns out that the output flow separation problem is easily
solvable using Axioms 1 and 2. The FIFO characterization
and output flow separation problems have been fully solved
in [11]. In this section, we will recall and explain these results
and relate them to Axioms 1 and 2.

Result 9 ([11]): Let us consider the queueing model (4).
The output flow corresponding to the input flow φ`(b

−
i , t) is

given by

φ`(b
+
i , t) = g′i(t)φ`(b

−
i , gi(t))

=

ciφ`(b

−
i , gi(t))∑σ(b−i)

j φj(b
−
i , gi(t))

if Ci(gi(t))

φ`(b
−
i , t) otherwise

(18)
Proof: The proof is available in [11] and is based on

the analysis of the contribution of each input flow to the
queue size. Then, using Axioms 1 and 2, it is possible to
split the aggregate output flow into atomic output flows that
correspond to each input flow.

This model deserves interpretation: the output flows con-
sist of a scaling and shifting of the input flows. The delay
accounts for the high flow viscosity and captures the queue
FIFO behavior, at a flow level. This model also tells that
the output flow φ`(b

+
i , t) corresponding to the input flow

φ`(b
−
i , t) is expressed as a (delayed) ratio of the input flow

φ`(b
−
i , t) over the total input flow that entered the buffer

at the same time. Hence, the output flows are equal to the
relative flows proportions, scaled-up by the output capacity
in order to utilize the available bandwidth. This nonlinear
expression for the output flows describes the flow- and clock-
coupling phenomena discussed in Section III-A.

Definition 10: The buffer operator Bi with σ(b−i) input
flows is defined as

Bi : Rσ(b
−
i) → Rσ(b

−
i)

φ(b−i , t) → φ(b+i , t)
(19)

where the output flows and the buffer state are governed by
(4) and (18). Using these operators, we can build a matrix
of operators B connecting the φ(b−, t)’s to the φ(b+, t)’s as

φ(b+, t) = Bφ(b−, t) (20)

where B = diagi {Bi}.

VII. COMPLETE USER MODEL - WINDOW CONTROL

As explained in the introduction, the user modeling prob-
lem is partially an open question and a solution, based on
Axioms 1 and 3, is proposed here. The distinct notions of
flight-size, ACK-flow and window-size are clarified first and

associated with each other. Then, the problem of computing
users sending flow φ(u+i , t) is solved. Finally, the window-
to-flight-size conversion problem, accounting for flight-size
rate of variation constraints, is addressed.

A. ACK-clocking dynamics and user flow computation

The approach exposed here is based on the ACK-clocking
model of [6], obtained in Section V from Axioms 1 and 2.

Result 11: Let us consider a circuit Ci = 〈u+i , u
−
i 〉. Then

the ACK-flow the user ui receives is given by

φ(u−i , t) = B′Ci
(t)φi(u

+
i ,BCi

(t)). (21)

O
Proof: The key idea is to remark that zi(Ci, t) =

Nu+
i
(t,BCi

(t)). Hence, using Proposition 1 and noting that
the ACK-flow is the leaving flow from the circuit φ(u−i , t),
we have the result.

Note that differentiation of (17) also yields

φi(u
+
i , t) = z′i(Ci, t) + B′Ci

(t)φi(u
+
i ,BCi(t)) (22)

meaning that, to maintain the same flight size, the user has
to naturally send data at the same rate as receiving ACK
packets: this is exactly ACK-clocking but expressed at a flow
level. By flow integration, we can easily recover the ’packet-
level ACK-clocking’.

B. User flow and windows size

We clarify here the relation between the user sending flow
φ(u+i , t) and its window size wi(t). First, recall that the
window size corresponds to the desired flight-size while the
flight-size is the current number of packets in transit. The
window size is then a reference to track while the flight size
is the controlled output. The control input is the user sending
flow for which constraints must be considered.

Indeed, when the window size increases, the user can
immediately send a burst of new packets to equalize the
flight- and windows-sizes. In such a case, we can ideally
assimilate them to be equal (and so are their derivatives).
The small delay corresponding to the protocol reaction time
can be easily incorporated in the constant part of the RTT.
The problem is, however, slightly more difficult when the
window size decreases at a rate below a certain threshold
depending on the received ACK-flow. In such a case, we
cannot withdraw packets from the network and the only thing
we can do is waiting for new ACK packets until the flight
size becomes equal to the window size. Therefore, while
the slope of the flight-size is unbounded from above, it is
basically bounded from below. In [6], a rate-limiter is used
to control the slope of the flight size but is rather limited due
to the absence of any ACK-flow model and the time-varying
nature of the lower bound value. We provide here an explicit
approach based on a hybrid modeling of the user behavior.

According to the above discussion, the flight-size must
obey

zi(Ci, t)′ =
{
ẇi(t) if Ti(t)
−φ(u−i , t) otherwise

(23)

3126

where Ti(t) is a condition which is true when increasing the
flight-size is allowed and false otherwise.

Result 12: The flight-size zi(Ci, t) satisfies (23) if the
user sending rate is defined as

φ(u+i , t) =

{
ẇi(t) + φ(u−i , t) if Ti(t)
0 otherwise

(24)

where Ti(t) =
(
[πi(t) = 0] ∧ [ẇi(t) + φ(u−i , t) ≥ 0]

)
and

π̇i(t) =

{
0 if Ti(t)
ẇi(t) + φ(u−i , t) otherwise.

(25)

Moreover, this model is the simplest one. N
Proof: The virtual buffer πi, taking nonpositive values,

measures the number of ACK packets to retain in order
to balance the flight- and window-sizes. When the virtual
buffer has negative state, i.e. πi(t) < 0, the coming ACK-
packets have to be retained until the state reaches 0. Once
zero is reached, the user can now start sending again until
the window size decreases too fast, i.e. ẇi(t) < −φ(u−i , t).
Substitution of the user sending rate defined by (24) and (25)
in (22) yields the flight-size behavior (23). To see that the
model is minimal, it is enough to remark that both conditions
in Ti(t) are necessary.

The state of the extended user model consists of both the
state of the congestion control zi and the virtual buffer πi.
The user behavior also depends on the measurements µi(κt),
functions of the overall network state κ; this state will be
discussed in more details in Section VIII.

We are now in a position to derive the users operators
from the equations (24).

Definition 13: The users operators Ui(wi) : R+ → R+

mapping the ACK-flow φ(u−i , t) to the sending flow φ(u+i , t)
is given by

φ(u+, t) = U(w)φ(u−, t) (26)

where U(w) = diagi {Ui(wi)} and Ui satisfies (7).

VIII. GENERAL NETWORK MODEL

We have developed transmission channels, buffers and
users models in Sections IV, VI and VII respectively. We
summarize in this section the obtained results in a compact
form involving dynamical systems and operators:

κ̇(t) = N (κt, φ(u−, t), φ(b−, t))
zi(Ci, t) =

∫ t
BCi

(t)
φ(u+i , s)ds

(27)

along with
φ(u+, t)
φ(b+, t)
φ(u−, t)
φ(b−, t)

 =M

φ(u+, t)
φ(b+, t)
φ(u−, t)
φ(b−, t)

+

0
0
0
Db

 δ(t)
where

M =

0 0 U(w) 0
0 0 0 B
0 Rub 0 0
Rbu Rbb 0 0

 (28)

and κ = col(τ, z, π) is the state of the network. The hybrid
users and queues dynamics are described by the nonlinear

discontinuous functional N obtained from equations (4), (5),
(7) and (25). The notation κt is here to emphasize that the
evolution of the network state depends on past state values
[12]. Note that adjoining the flight-size expression is critical
to obtain a finite number of equilibrium points. Indeed, since
the user flow is computed from the derivative of the flight-
size, the equilibrium information is lost and can only be
recovered from the original expression of the flight-size. At
equilibrium we indeed have z∗i = w∗i = RTT ∗i φ

∗
i where

RTT ∗i and φ∗i are equilibrium values for the RTT and the
sending flow of user ui respectively.

This model thus takes the form of a descriptor non-
linear hybrid time-delay system with state-dependent and
constant delays about which many theoretical questions are
open: well-posedness, existence of solutions, uniqueness of
solutions, stability of solutions, etc. Note also that in this
paper, we have not discussed about the delays derivative
related constraints whose violation may lead to severe well-
posedness problems [13]. Some simple topologies have been
considered in [11] where it is shown that delay-derivative
may exceed one under certain conditions. For the moment, it
is unclear whether for arbitrary topologies and under certain
reasonable conditions, the delays perceived by the users
always have derivative smaller than one.

IX. THE SINGLE-BUFFER/MULTIPLE-USER TOPOLOGY
WITH FAST-TCP PROTOCOL

In this section, we consider a single-buffer/multiple-users
topology interconnected by lossless transmission channels.
The forward and backward propagation delays of user i are
denoted by T fi and T bi respectively. We propose to use the
FAST-TCP model as user model

ẇi(t) = γ

[
− τ(gi(t))

Ti + τ(gi(t))
wi(t) + α

]
(29)

where wi(t), Ti = T fi + T bi and gi(t) = g(t − T bi) are
the window size, the propagation delay and the backward
queuing delay respectively.

A. General Model

The general model is given by (27) with (29) and

τ̇(t) =

{
c−1η(t) + δ(t)− 1 if C(t)
0 otherwise

π̇i(t) =

{
0 if Ti(t)
ẇi(t) + φ(u−

i , t) otherwise.

zi(t) =
∫ t
gi(t)−T

f
i
φ(u+

i , θ)dθ

φ(u+
i , t) =

{
ẇi(t) + φ(u−

i , t) if Ti(t)
0 otherwise

φ(u−
i , t) =

cφ(u+

i ,gi(t)−T
f
i)

cδ(gi(t))+
∑

j φ(u
+
j ,gi(t)−T

f
j)

if C(gi(t))

φ(u+
i , t− T

b
i − T fi) otherwise

η(t) =
∑N
i=1 φ(u

+
i , t− T

f
i)

(30)
where δ(t) denotes the normalized cross-traffic δ(t) ∈ [0, 1).
The equilibrium point of this model is unique and is given

3127

by

w∗i = α

(
1 +

Ti
τ∗

)
, τ∗ =

Nα

c(1− δ∗)

where Ti = T fi + T bi , δ∗ ∈ [0, 1) and N are the equilibrium
normalized cross-traffic, the propagation delay and the num-
ber of users respectively. Note that the equilibrium point of
the network is both fair and efficient [14]. In what follows,
we will show that this model degenerates into models of the
literature when some particular conditions are met.

B. Homogeneous delays and no-cross traffic - The static link
model

In the case of homogeneous delays, i.e. T fi = T f , T bi =
T b, i = 1, . . . , N , and absence of cross-traffic, i.e. δ ≡ 0,
model (30) reduces to

τ̇(t) =

{
c−1η(t)− 1 if C(t)
0 otherwise

π̇i(t) =

{
0 if Ti(t)
ẇi(t) + φ(u−i , t) otherwise.

zi(t) =
∫ t
gb(t)−T f φ(u

+
i , θ)dθ

φ(u+i , t) =

{
ẇi(t) + φ(u−i , t) if Ti(t)
0 otherwise

φ(u−i , t) =

{
cφ(u+

i ,gb(t)−T
f)∑

j φ(u
+
j ,gb(t)−T f)

if C(gb(t))
φ(u+i , t− T b − T f) otherwise

η(t) =
∑N
i=1 φ(u

+
i , t− T f)

gb(t) = g(t− T b).
(31)

Assuming the buffer is always congested (i.e. both C(t),
C(gb(t)) hold true) and all the users are active (i.e. the Ti(t)’s
are true) we obtain

τ̇(t) = c−1
∑
i

ẇi(t− T f) (32)

which is the static-link model. Integrating the above equation
from 0 to t we obtain

τ(t) = c−1
∑
i

wi(t− T f)−$ (33)

where we assumed τ(0) = 0, wi(0) = 0, i = 1, . . . , N
and $ is a constant to be determined. This constant can
be determined by considering the equilibrium relationship
between the queueing delay and the window sizes and we
get $ = T = T b + T f . The static-link model of [2] is then
retrieved. Thus, according to the proposed model (30), the
static-link model is valid whenever
• the buffers are permanently congested, i.e. C(t) and
C(gb(t)) hold true;

• the propagation delays are homogeneous, i.e. T fi = T f ,
T bi = T b, i = 1, . . . , N ;

• the cross-traffic is absent, i.e. δ ≡ 0;
• the users are not in ACK-retaining mode, i.e. Ti(t) holds

true for all i = 1, . . . , N .
It is interesting to note that these conditions are necessary

and sufficient for the static-link model validity. The first
one ensures that the queue is a bottleneck and is always

congested. The second condition makes the sum of the ACK-
flow contribution in the user sending flows equal to the
queue output capacity, so that only the windows derivatives
remain in the delay dynamical model. Note that in presence
of heterogeneous delays, the sum may exceed the queue
maximal output capacity. The absence of cross-traffic also
ensures that only the windows derivatives remain. Finally,
if the user is in ACK-retaining mode, then it does not send
any flow and the window derivative term disappears from the
model.

By substituting the above static-link model (33) into the
user model (29) with homogeneous delays. This yields the
new model

ẇi(t) = γ

[(
cT∑

j wj(gb(t)− T f)
− 1

)
wi(t) + α

]
.

(34)
This model is very similar to the ones obtained in previous
works [2] at the difference that the delay is state-dependent.
A thorough study of the above model is made in Section X.

C. Homogeneous delays and cross-traffic

When a cross-traffic is added to the problem, the overall
picture is changed. The cross-traffic will act as a bandwidth
limiter both in the networking and control terminology.
Indeed, a nonzero δ(t) will reduce the maximal output
capacity c, creating then sort of ’varying-output-capacity’
c(1 − δ(t)) which will reduce the bandwidth perceived by
the users.

Result 14: To see the bandwidth reduction in the control
sense, note that the queue model rewrites (in the congested
mode)

τ̇(t) = c−1
∑
i ẇi(t− T f) + δ(t)− ϕ(t)

ϕ(t) =
cδ(gbf (t))

cδ(gbf (t)) +
∑
j φj(u

+
j , gbf (t)− T f)

(35)

where ϕ(t) is the output flow at time t corresponding to the
cross-traffic and is responsible of the bandwidth reduction.

Proof: Since the buffer is always congested and the
users are not in ACK-retain mode, then we have

φi(u
+
i , t) = ẇi(t) + φi(u

−
i , t) (36)

and

φi(u
−
i , t) =

cφi(u
+
i , gb(t)− T f)

cδ(gb(t)) +
∑
j φj(u

+
j , gb(t)− T f)

. (37)

Substituting the above expressions in the queue model and
noting that

∑
j φj(u

−
j , t− T f) + ϕ(t) = c yields the result.

Assume the network is at equilibrium (constant cross-traffic)
and one of the windows increases. Then the corresponding
flow grows and then, after one RTT, the value of ϕ decreases
in turn, slowing down the queue response.

X. STABILITY ANALYSIS OF A SIMPLE TOPOLOGY

We consider the case of homogeneous propagation delays
and no cross-traffic described in Section IX-B.

3128

A. Equilibrium point

Proposition 15: The equilibrium point of model (34) is
unique and given by

w∗(N) =
cT

N
+ α ∈ (α, cT + α]

τ∗(N) =
Nα

c
∈ [α/c,+∞)

(38)

where T = T b + T f . O
Proof: Simple computations show that the equilibrium

point verifies the set of symmetric equations(
cT∑
j w
∗
j

− 1

)
w∗i + α = 0, i = 1, . . . , N. (39)

Hence the equilibrium window sizes are identical, i.e. w∗i =
w∗, i = 1, . . . , N , and are given by

w∗ =
cT

N
+ α. (40)

The equilibrium value of the queueing delay is easily ob-
tained from (33).

B. Local stability analysis

Theorem 16: The network model (34) is locally exponen-
tially stable if one of the following statements hold:
• T < τ∗,
• T ≥ τ∗ and τ∗ + T < τc where

τc =
1

γ

√
Nα+ cT

Nα− cT
arcsin

√1−
(
τ∗

T

)2
 . (41)

Proof: The linear model [15] around the equilibrium
point determined above is given by

˙̃w(t) = Aw̃(t) +Bw̃(t− h) (42)

where w̃(t) = w(t) − w∗1N , h = τ∗ + T , T = T f + T b,
A = diag[−µ], B = −θ1N1TN , τ∗ = Nw∗/c − T , µ =

γ
Nα

Nα+ cT
, θ = γ

cT

N(Nα+ cT)
and 1N is a N-dimensional

column vector with entries equal to 1. The B matrix has rank
one, it hence interesting to exploit this structure to simplify
the problem analysis. The delay-independent stability of the
equilibrium model (42) can be analyzed by looking at the
H∞-norm of the transfer function H(s) := −θ1TN (sI −
A)−11N which is given by ||H||H∞ =

cT

Nα
. The system

is delay-independent stable if and only if cT < Nα [16]. If
cT ≥ Nα, then the system is not delay-independent stable
and the delay acts on stability.

To analyze delay-dependent stability, let us consider the
change of variables

y1(t) =
∑
k w̃k(t)

yi+1(t) = w̃i+1(t)− w̃i(t)
(43)

for i = 1, . . . , N − 1. The derivatives of the yi’s are given
by

ẏ1(t) = −µy1(t)−Nθy1(t− h)
ẏi+1 = −µyi+1(t)

(44)

for i = 1, . . . , N − 1 and we have decoupled the different
variables. Since µ > 0, the stability of the last N − 1
ordinary differential equations is ensured. It is therefore only
necessary to analyze the stability of y1. Using similar results
as in [17], it is possible to show that the system (44) is delay-
dependent stable provided that h < τc where τc is given in
(41).

It is interesting to note that when the equilibrium delay
is larger than the total propagation delay, the equilibrium is
locally exponentially stable. Hence, increasing the number
of users has a positive effect on stability. Increasing α also
has a positive effect on stability.

REFERENCES

[1] K. Jacobsson, L. Andrew, A. Tang, K. H. Johansson, H. Hjalmarsson,
and S. Low, “ACK-clock dynamics: Modeling the interaction between
ACK-clock and network,” in 27th IEEE Conference on Computer
Communications (INFOCOM), Phoenix, Arizona, USA, 2008, pp.
181–185.

[2] J. Wang, D. X. Wei, and S. H. Low, “Modelling and stability of
FAST TCP,” in 28th IEEE Conference on Computer Communications
(INFOCOM), 2005, pp. 938–948.

[3] C. Hollot, V. Misra, D. Towsley, and W. B. Gong, “A control
theoretic analysis of RED,” in 20th IEEE Conference on Computer
Communications (INFOCOM), Tel-Aviv, Israel, 2001, pp. 1510–1519.

[4] S. Low, F. Paganini, and J. C. Doyle, “Internet congestion control,”
IEEE Control Systems Magazine, pp. 28–43, February 2002.

[5] F. Paganini, Z. Wang, J. C. Doyle, and S. Low, “Congestion control
for high performance, stability, and fairness in general networks,”
IEEE/ACM Transactions on Networking, vol. 13, no. 1, pp. 43–56,
2005.

[6] K. Jacobsson, “Dynamic modeling of internet
congestion control,” Ph.D. dissertation, KTH School
of Electrical Engineering, 2008. [Online]. Available:
https://eeweb01.ee.kth.se/upload/publications/reports/2008/TRITA-
EE 2008 020.pdf

[7] N. Möller, “Window-based congestion control,” Doctoral
thesis, KTH, Stockholm, Sweden, 2008. [Online]. Available:
https://eeweb01.ee.kth.se/upload/publications/reports/2008/TRITA-
EE 2008 001.pdf

[8] D. Wei, C. Jin, S. Low, and S. Hedge, “FAST TCP: Motivation,
architecture, algorithms, performance,” IEEE/ACM Transactions on
Networking, vol. 14(6), pp. 1246–1259, 2006.

[9] D. V. Lindley, “The theory of queues with a single server,” Mathe-
matical Proceedings of the Cambridge Philosophical Society, vol. 48,
pp. 277–289, 1952.

[10] K. Jacobsson, L. Andrew, A. Tang, S. Low, and H. Hjalmarsson, “An
improved link model for window flow control and its application to
FAST TCP,” IEEE Transactions on Automatic Control, vol. 54(3), pp.
551–564, 2009.

[11] C. Briat, H. Hjalmarsson, K. H. Johansson, G. Karlsson, U. T.
Jönsson, and H. Sandberg, “Nonlinear state-dependent delay modeling
and stability analysis of internet congestion control,” in 49th IEEE
Conference on Decision and Control, Atlanta, USA, 2010.

[12] J. K.Hale and S. M. V. Lunel, Introduction to Functional Differential
Equations. New York, USA: Springer-Verlag, 1991.

[13] W. Michiels and E. Verriest, “A look at fast varying
and state dependent delays from a system theory point of
view,” K.U. Leuven,” Internal Report, 2011. [Online]. Available:
http://www.cs.kuleuven.be/publicaties/rapporten/tw/TW586.abs.html

[14] H. Sandberg, H. Hjalmarsson, U. Jönsson, G. Karlsson, and K. H.
Johansson, “On performance limitations of congestion control,” in 48th
IEEE Conference on Decision and Control, Shanghai, China, 2009, pp.
5869–5876.

[15] K. L. Cooke and W. Huang, “On the problem of linearization for state-
dependent delay differential equations,” Proceedings on the American
Mathematical Society, vol. 124(5), pp. 1417–1426, 1996.

[16] K. Gu, V. Kharitonov, and J. Chen, Stability of Time-Delay Systems.
Birkhäuser, 2003.

[17] S.-I. Niculescu, Delay effects on stability. A robust control approach.
Springer-Verlag: Heidelbeg, 2001, vol. 269.

3129

