
Decentralized and Fixed-Structure H∞ Control in MATLAB

Pascal Gahinet and Pierre Apkarian

Abstract— This paper presents two new MATLAB-based
tools for tuning linear control systems in the frequency domain:
HINFSTRUCT and LOOPTUNE. These tools can directly tune
control architectures with multiple feedback loops and multiple
fixed-order, fixed-structure control elements. The controller
parameters are tuned using non-smooth H∞ optimization
but little a-priori knowledge of H∞ theory is required to
use the tools. This makes them ideally suited for real-world
applications where the control system structure and complexity
are constrained.

I. INTRODUCTION

H∞ theory [1]–[4] provides powerful techniques for syn-

thesizing controllers in the frequency-domain. Typical design

requirements such as speed of response, control bandwidth,

disturbance rejection, and robust stability can be expressed

as constraints on the gain (H∞ norm) of well-chosen closed-

loop transfer functions. In turn, efficient algorithms and

software tools are available to synthesize MIMO controllers

that satisfy such gain constraints [1], [5], [6].

Yet existing H∞ synthesis tools have practical limitations

that have slowed their adoption in industry. H∞ controllers

are monolithic whereas most embedded control architectures

are decentralized collections of simple control elements such

as gains and PID controllers. H∞ controllers tend to be

opaque and complex (high number of states) whereas embed-

ded controllers tend to be intuitive and have low complexity.

And recasting the design requirements as a single aggregate

H∞ constraint can be challenging for engineers. As a result,

hand tuning and optimization-based tuning tend to remain

the norm for decentralized control systems.

This paper presents new MATLAB tools for Structured

H∞ Synthesis that overcome the limitations listed above.

These tools are part of MathWorks’ Robust Control Toolbox

[6] and leverage state-of-the-art nonsmooth optimizers [7],

[8] to directly and efficiently tune arbitrary control architec-

tures. By “arbitrary,” we mean any single- or multiple-loop

block diagram arrangement containing any number and type

of linear control elements, from simple gains and PIDs to

more complex notch filters and observer-based controllers.

Some of these tools also automate the H∞ formulation,

allowing users to tune the controller elements directly from

high-level specifications. Finally, despite the lack of convex-

ity, these tools perform well in practice, both in terms of

speed of execution and quality of the solutions.

P. Gahinet is with The MathWorks, 3 Apple Hill, Natick, MA 01760-
2098, USA Pascal.Gahinet@mathworks.com

Pierre Apkarian is with ONERA and Institut de Mathématiques,
Université Paul Sabatier, 2, av. Ed. Belin, 31055, Toulouse, France
Pierre.Apkarian@onera.fr

The paper is organized as follows. Section 2 discusses

the standard formulation of structured H∞ synthesis and the

representation of tunable control elements. Section 3 presents

HINFSTRUCT, a general-purpose tool for structured H∞

synthesis. Section 4 presents LOOPTUNE, a more special-

ized tool that automates mainstream tuning tasks. Finally,

Sections 5 and 6 illustrate the potential of this technology

with two non-trivial examples.

II. FRAMEWORK FOR TUNING DECENTRALIZED

CONTROL STRUCTURES

As mentioned earlier, our starting point is any linear

control architecture with one or more fixed-structure blocks

to tune, for example the feedback structure shown in Figure

6 where the shaded blocks are tunable. Since there are

infinitely many possible architectures, we use a standardized

representation called Standard Form that is both general and

convenient to work with. The Standard Form is depicted in

Figure 1 and consists of two main components:

• An LTI model P (s) that combines all fixed (non tun-

able) blocks in the control system

• A structured controller C(s) =
Diag(C1(s), . . . , CN (s)) that combines all tunable

control elements. Each control element Cj(s) is

assumed to be linear time invariant and to have some

prescribed structure.

w z

P(s)

C
1
(s)

.

 .

 .

.

.

.

0

0 . . .

.

.

.

 . . .

C
N
(s)

u y

C(s)

Fig. 1. Standard Form for Structured H∞ Synthesis

External inputs to the system such as reference signals

and disturbances are gathered in w and performance-related

outputs such as error signals are gathered in z. With the

partition

(

z
y

)

= P

(

w
u

)

=

(

P11 P12

P21 P22

)(

w
u

)

,

2011 50th IEEE Conference on Decision and Control and
European Control Conference (CDC-ECC)
Orlando, FL, USA, December 12-15, 2011

978-1-61284-799-3/11/$26.00 ©2011 IEEE 8205

the closed-loop transfer function from w to z is given by the

linear-fractional transformation (LFT) [9]:

Twz(s) = Fl(P,C) := P11 + P12C(I − P22C)−1P21. (1)

It is well known from Robust Control theory that any

block diagram can be rearranged into this Standard Form

by isolating the tunable blocks and collapsing the rest of

the diagram into P (s). The resulting model has the same

structure as the uncertain models used in µ analysis (with the

uncertainty blocks ∆j(s) replaced by the control elements

Cj(s)) [10]–[12]. Figure 1 is also reminiscent of standard

H∞ synthesis [1] but differs in one key aspect, namely, the

special structure of the controller C(s). Since systematic

procedures and automated tools are available to transform

any architecture to the Standard Form of Figure 1, we

henceforth assume that the control architecture is specified

in this form.

The next challenge is to describe the tunable control

elements. Again we are faced with a wide range of possible

structures, from simple gains and PIDs to more complex

lead-lag and observer-based controllers. Since our approach

is based on optimization, it is natural to use parameterizations

of such components. For example, a PID can be parameter-

ized by four scalars Kp,Ki,Kd, Tf as

Cj(s) = Kp +
Ki

s
+

Kds

Tfs+ 1
. (2)

Similarly, a state-space model with fixed order n can be

parameterized by four matrices A,B,C,D of suitable sizes.

This approach is useful to create a library of basic tunable

blocks that includes static gains, PIDs, fixed-order transfer

functions, and fixed-order state-space models. However, such

library leaves out many useful control elements. For example,

we cannot use the generic transfer function parameterization

to model the lowpass and notch filters

a

s+ a
,

s2 + 2ζ1ω0s+ ω2
0

s2 + 2ζ2ω0s+ ω2
0

(3)

because of the couplings between numerator and denomina-

tor parameters.

Rather than growing the library of pre-defined tunable

blocks, a more scalable approach is to let users create

custom parameterizations of control elements. To do this,

we introduce a basic building block called “real parameter”

(realp). If a is a real parameter, then any well-posed

rational function R(a) can be written as the LFT:

R(a) = Fl(M,a⊗ I) (4)

where M is a fixed matrix and a ⊗ I := Diag(a, . . . , a)
[13]. More generally, any rational function of the scalar- or

matrix-valued parameters a1, . . . , aM can be represented as

an LFT model involving repeated copies of the parameters

a1, . . . , aM . Moreover, such LFT models can be constructed

automatically by recasting realp arithmetic in terms of LFT

model interconnections [14, p. 165]. Since any interconnec-

tion of LFT models is an LFT model, and the Standard Form

of Figure 1 is itself an LFT model, it is easily seen that if the

control element Cj(s) is parameterized as a rational function

of a1, . . . , aM , the Standard Form can be rearranged so that

Cj(s) is replaced by a block-diagonal matrix with copies

of a1, . . . , aM along the diagonal. In other words, we can

absorb the specific structure of Cj(s) into P (s) and keep

only the low-level tunable parameters a1, . . . , aM in the C(s)
block of Figure 1. Note that unlike µ-analysis, “repeated”

blocks do not affect the optimization outcome and only incur

some small overhead.
To see how this comes together in MATLAB, first consider

the lowpass filter F (s) = a
s+a

where a is tunable. This
tunable element is specified by:

a = realp('a',1); % a is initialized to 1

F = tf(a,[1 a]); % creates a/(s+a)

This automatically builds the following LFT representation

of F (s):

F (s) = Fl









0 0 1
1/s −1/s 0
1/s −1/s 0



 ,

(

a 0
0 a

)



 . (5)

Next consider the observer-based controller

˙̂x = Ax̂+Bu+ L(y − Cx̂−Du)
= (A−BK − LC + LDK)x̂+ Ly

u = −Kx̂
(6)

where the gain matrices K,L are tunable. This observer
structure is specified as:

% For a plant with nx states, nu controls,

% and ny measurements:

K = realp('K',zeros(nu,nx));

L = realp('L',ones(nx,ny));

OBC = ss(A-B*K-L*(C-D*K),L,-K,0);

The resulting LFT parameterization OBC of the observer

structure has three copies of the parameter K and two copies

of the parameter L. Note that in both examples, it is possible

to construct more efficient parameterizations using a single

copy of a, K, L. Yet the convenience of the syntax shown

above more than makes up for the small overhead incurred

by the extra block copies.

III. STRUCTURED H∞ SYNTHESIS

Now that we have a framework for describing arbitrary

control architectures and linear control elements, we turn to

the question of using H∞ synthesis to tune the controller

parameters in the Standard Form of Figure 1. H∞ synthesis

is a frequency-domain method for enforcing typical control

design requirements. At the heart of the method is the H∞

norm, which measured the peak input/output gain of a given

transfer function:

‖H(s)‖∞ := max
ω

σ(H(jω)). (7)

In the SISO case, this norm is just the peak gain over

frequency. In the MIMO case, it measures the peak 2-norm

of the frequency response H(jω) over frequency.

It is well-known from robust control theory [15] that clas-

sical design requirements (bandwidth, roll-off, disturbance

8206

attenuation, stability margins) can be recast as normalized

H∞ constraints of the form

‖Wj(s)Tj(s)‖∞ < 1 (8)

where Tj(s) is some suitable closed-loop transfer function

and Wj(s) is a weighting function that reflects the require-

ment nature and parameters. So a typical controller tuning

task consists of adjusting the controller parameters to satisfy

the constraints

‖Wj(s)Tj(s)‖∞ < 1, j = 1, . . . ,M. (9)

Each transfer function Tj can be expressed as an LFT

model depending on the structured controller C(s) :=
Diag(C1(s), . . . , CN (s)). Now, introduce

H(s) := Diag(H1(s), . . . , HM (s)). (10)

Clearly (9) is equivalent to ‖H(s)‖∞ < 1 and the Standard

Form of H(s) is of the form

H(s) = Fl (P (s),Diag(C(s), . . . , C(s))) (11)

where P (s) is a fixed LTI model. So constraining two or

more closed-loop transfer functions Tj(s) leads to repeating

the controller C(s) multiple times in the Standard Form.

The resulting block-diagonal controller structure is beyond

the scope of standard H∞ algorithms but poses no problem

in our framework since this merely amounts to repeating

the tunable blocks along the diagonal (see Section II for a

discussion of repeated blocks). This is an important advan-

tage over traditional H∞ synthesis where all requirements

must be expressed in terms of a single closed-loop transfer

function.

Summing up, decentralized controller tuning can be recast

as a structured H∞ synthesis problem where the controller

has a block-diagonal structure, each block being parame-

terized and possibly repeated. In turn, we can use the non-

smooth algorithms described in [7], [16], [17] to optimize the

controller parameters and enforce the constraint ‖H(s)‖∞ <
1. The MATLAB sofware described here is based on [7], [18]

and consists of three main components:

• Simple objects to specify tunable parameters (realp)

and elementary control elements such as gains, low-

order transfer functions, and PIDs

• Overloaded arithmetic and interconnection algebra to

automatically build the Standard Form of H(s) by

combining/connecting together ordinary LTI models,

tunable elements, and weighting functions

• The hinfstruct function for minimizing the H∞

norm of H(s) with respect to the tunable controller

parameters. This function can be seen as the counterpart

of hinfsyn for structured H∞ synthesis

r
-

G(s)C(s) y

d

e+

+

+

Fig. 2. Elementary feedback loop.

To get a feel for these tools, consider the simple scenario

where the requirements for the feedback loop of Figure 2

can be expressed as

‖wSS‖∞ < 1, ‖wTT‖∞ < 1 (12)

where S = 1/(1 + L), T = L/(1 + L), L = GC, and
wS , wT are suitable frequency-weighting functions. Also
assume that C(s) is constrained to be a PID controller.
Using the sofware, you can construct a parametric model
of H(s) = Diag(wSS,wTT) as follows:

G = tf([1 2],[1 5 10]); % plant model

C = ltiblock.pid('C','pid'); % tunable PID

S = feedback(1,G*C);

T = feedback(G*C,1);

H0 = blkdiag(wS * S, wT * T);

The result H0 is a MATLAB representation of the (untuned)
Standard Form for H(s) and depends on the tunable PID
block C. Next invoke hinfstruct to tune the PID con-
troller gains so as to enforce ‖H(s)‖∞ < 1:

H = hinfstruct(H0);

The output H contains the tuned Standard Form of H(s).
Note that hinfstruct actually minimizes the H∞ norm
of H(s) but can be configured to terminate as soon as the
target value of 1 is achieved. You can now access the tuned
value of the PID controller C with

getBlockValue(H,'C')

or plot the magnitude of H(jω) with

bodemag(H)

Note that hinfstruct can be configured to automatically

run multiple optimizations from randomly generated starting

points. This helps mitigate the local nature of the optimizer

and increases the likelihood of finding parameter values that

meet the design requirements. See [19], [20] for more details

and examples regarding hinfstruct.

IV. AUTOMATIC TUNING OF FEEDBACK LOOPS

While hinfstruct addresses the first two practical

limitations of traditional H∞ synthesis tools, it still requires

expertise for turning typical design specifications into a

well-posed H∞ optimization problem. This difficulty is

exacerbated in multi-loop control systems because of scaling

and coupling issues. For example, a poor choice of units

in one feedback channel may skew the sensitivity function

and lead to an ill-posed H∞ problem [15, p. 5-8]. Also,

classical one-loop-at-a-time stability margins may be mis-

leading when cross-coupling exists between feedback loops

[21]. Such challenges led us to seek ways to automate the

H∞ formulation of high-level requirements. This turns out

to be possible and to often lead to satisfactory results. We

now discuss this “push-button” approach and the looptune

function that embodies it.

Our starting point is the generic MIMO feedback loop of

Figure 3 where G represents the “plant” and C represents the

overall controller. Any control structure can be rearranged in

this fashion by using the measurement signals y and control

signals u to separate the controller from the plant. Both G

8207

G

C

++
du dy

u

y

wG zG

wC
zC

Fig. 3. Generic MIMO feedback loop.

and C may contain tunable elements, which allows for co-

tuning of plant and controller parameters. To formulate an

H∞ synthesis problem for this feedback system, observe that

most controller tuning tasks involve some combination of the

following requirements:

1) Performance: The feedback loops should have high

gain at low frequency to reject disturbances and follow

setpoint changes

2) Roll off: The feedback loops should have low gain at

high frequency to guard against unmodeled dynamics

and measurement noise

3) Stability: The feedback loops should be stable with

enough margin to sustain typical amounts of gain and

phase variations at the plant inputs and outputs.

Typically, the first two requirements amount to shaping the

open-loop response to have integral action at low frequency

and roll off in excess of -20 dB/decade at high frequency.

The transition from high to low open-loop gain occurs in the

gain crossover band (an interval in the MIMO case since

in general it is neither possible nor desirable to make all

loops cross at the same frequency). The gain crossover band

determines the response time and bandwidth of the control

system. Using the standard “mixed-sensitivity” formulation,

we can express these loop-shaping requirements as
∥

∥

∥

∥

(

WLFSi

WHF (I − Si)

)∥

∥

∥

∥

∞

< 1 (13)

where Si is the sensitivity function at the plant inputs u and

the weighting functions WLF ,WHF reflect the desired loop

shape. Note that Si should be replaced by the sensitivity

So at the plant outputs if there are more controls u than

measurements y.

For the stability requirement, we use the notion of mul-

tivariable disk margins discussed in [21]. This measure

guarantees robustness against simultaneous gain and phase

variations at all plant inputs and outputs, which is much

stronger than one-loop-at-a-time stability margins. With the

notation

L(s) =

(

0 G(s)
C(s) 0

)

, X(s) = (I + L)(I − L)−1,

(14)

the robust stability condition is

µ(X(s)) < 1/α (15)

where µ(.) denotes the structured singular value for a diag-

onal block structure [4] and the parameter α is a function

of the desired gain and phase margins [21]. For tractability

reasons, we replace this condition by:

min
D

max
ω∈[ω1,ω2]

‖D−1X(jw)D‖ < 1/α (16)

where D is a constant and diagonal scaling matrix and

[ω1, ω2] is some interval containing the gain crossover band.

The rationale for this simplification is that (a) stability

margins are worst near the gain crossovers, and (b) the gain

crossover band is typically narrow enough that we can get

away with a constant rather than frequency-dependent D-

scaling in the µ(.) upper bound.

Note that the scaling D =

(

Do 0
0 Di

)

is equivalent

to the plant I/O scaling G → D−1
o GDi. In other words, D

automatically corrects scaling issues in the vector signals u
and y, e.g., u having both small and large entries due to a

poor choice of units. Because the H∞ norm is not invariant

under I/O scaling, this turns out to be essential to formulate a

meaningful H∞ synthesis problem [15, Remark 1]. Finally,

(16) is tractable in our framework if we treat the diagonal

entries of D as tunable parameters (D−1X(jw)D is an LFT

in the controller and scaling matrix D).

Summing up, for a given crossover frequency/band, tuning

the controller amounts to finding a scaling D and controller

parameter values that satisfy
∥

∥

∥

∥

(

WLFD
−1
i SiDi

WHF (I −D−1
i SiDi)

)∥

∥

∥

∥

∞

< 1 (17)

max
ω∈[ω1,ω2]

‖αD−1X(jw)D‖ < 1. (18)

Note that we use the scaled input sensitivity D−1
i SiDi

instead of Si to take advantage of the u scaling provided

by D.
The looptune function [6] formulates and solves this

H∞ optimization problem. The basic interface is

[G,C] = looptune(G0,C0,wc,Req1,Req2,...)

where G0,C0 are (untuned) parametric models of G and

C, wc is the target crossover frequency/band, and the op-

tional arguments Req1,Req2,... specify additional re-

quirements such as maximum gain or setpoint tracking. Note

that wc can be omitted and replaced by more sophisticated

loop shaping requirements, thus providing a fair amount of

flexibility.

Is this approach too simplistic to be useful? While we

made some generalizations and cannot expect good results in

all situations, looptune has proven very effective in many

realistic and non trivial applications (see examples below).

Meanwhile looptune brings some key benefits:

• It only requires a basic understanding of frequency-

domain notions such as bandwidth, gains, and open-loop

response

• It enforces a strong notion of stability margins

• It automatically takes care of subtle signal scaling

issues.

Altogether this makes looptune a valuable tool for quickly

tuning decentralized and fixed-structure control systems.

8208

V. DISTILLATION COLUMN EXAMPLE

This first example applies looptune to the control of a

distillation column [15]. The control architecture is shown

in Figure 4 and consists of a 2-by-2 decoupling matrix in

series with two PI controllers for the reflux L and boilup V.

The goal is to independently control the tops and bottoms

concentrations yD and yB with a response time of 10

minutes. The plant model is

G(s) =
1

75s+ 1

(

87.8 −86.4
108.2 −109.6

)

PI
L

PI
V

DM

y=

r

+

-

G

L

V

p
L

p
V

e

y
D

y
B

Fig. 4. Control architecture for distillation column.

To tune this control system, first create parametric models
for each control element:

DM = ltiblock.gain('Decoupler',eye(2));

PI_L = ltiblock.pid('PI_L','pi');

PI_V = ltiblock.pid('PI_V','pi');

Then construct a parametric model of the overall controller

with inputs

(

r
y

)

and outputs u =

(

L
V

)

:

I = eye(2);

C0 = blkdiag(PI_L,PI_V) * DM * [I,-I];

Finally, call looptune with [0.1, 1] as target gain crossover
band (0.1 rad/min corresponds to a 10 minutes response
time):

wc = [0.1,1];

[˜,C] = looptune(G,C0,wc);

0

0.2

0.4

0.6

0.8

1

1.2

1.4

From: D
sp

T
o

:
y
D

0 20 40 60 80 100

0

0.2

0.4

0.6

0.8

1

1.2

1.4

T
o

:
y
B

From: B
sp

0 20 40 60 80 100

Step Response

Time (minutes)

A
m

p
lit

u
d

e

Fig. 5. Response to setpoint changes in tops and bottoms concentrations.

Starting from the initial values PIL(s) = PIV (s) =
0.001/s and DM = I2, looptune minimizes the H∞

norms in (17)-(18) and terminates with a norm of 1.24, close

to the target value 1. The output C is the tuned controller with
the following values for the decoupling matrix and PI gains:

PIL(s) = 2.18 + 0.079/s

PIV (s) = 1.46 + 0.053/s.

DM =

(

1.09 −0.67
1.26 −1.30

)

.

The corresponding responses to step changes in tops and

bottoms setpoints are shown in Figure 5. Further analysis

shows that this design has good disturbance rejection proper-

ties and stays clear from inverting the plant at DC, a strategy

that yields excellent setpoint tracking but poor disturbance

rejection and stability margins (see demo in [6] for details).

VI. HELICOPTER EXAMPLE

This second example tackles a more challenging helicopter

control problem. We use an 8-state model of the Westland

Lynx helicopter at the hovering trim condition. The con-

troller generates commands ds, dc, dT in degrees for the

longitudinal cyclic, lateral cyclic, and tail rotor collective

using measurements of θ, φ, p, q, r (pitch and roll angles and

roll/pitch/yaw rates). For details and data, see [22] and the

demo in [6]. The controller structure is shown in Figure 6

and consists of two feedback loops:

• The inner loop (static output feedback SOF) provides

stability augmentation and decoupling

• The outer loop (PI controllers PI1-PI3) provides the

desired setpoint tracking performance.

The main control objective is to track setpoint changes in

θ, φ, r with zero steady-state error, settling times of about 2

seconds, minimal overshoot, and minimal cross-coupling.

Fig. 6. Control architecture for Westland Lynx helicopter.

Since the helicopter is modeled in Simulink we use the
slTunable interface to quickly set up the looptune op-
timization. With this interface you just specify the Simulink
blocks to tune, the measurement and control signals (con-
troller I/Os), and the I/O signals of interest for closed-loop
analysis:

ST0 = slTunable('helico',...

{'PI1','PI2','PI3','SOF'});

ST0.addControl('u')

ST0.addMeasurement('y')

ST0.addIO({'theta_ref','phi_ref','r_ref'},'in')

ST0.addIO({'theta','phi','r'},'out')

8209

This information is used to automatically parameterize the

tuned blocks and linearize the Simulink model to extract

the plant model G and a parametric model of the controller

C. Note that the static-output-feedback gain is initialized to

zero and the PI controllers to 1 + 1/s, values for which the

closed-loop response is unstable.
We want the outer loop to settle in about 2 seconds so

the open-loop bandwith should be at least 2 rad/s (based on
first-order characteristics). The inner loop must typically be
faster so we seek a gain crossover band between 10 and 30
rad/s:

wc = [10,30];

Because there are fewer actuators (3) than measurements
(5), integral action in the open-loop response is not enough
to guarantee that θ, φ, r will track the setpoint commands
θref , φref , rref . We therefore add an explicit tracking require-
ment stipulating a 2-second response time and a maximum
steady-state error of 0.001:

TR = TuningGoal.Tracking(...

{'theta_ref','phi_ref','r_ref'},...

{'theta','phi','r'},2,0.001);

We can now tune the controller parameters with looptune:

ST = ST0.looptune(wc,TR);

The final H∞ norm is 1.28, again close to 1, and the closed-
loop step responses are shown in Figure 7. These responses
settle in less than two seconds with no overshoot and small
cross-coupling. The tuned values are:

PI1(s) = 0.52 + 11.9/s

PI2(s) = −0.13− 9.27/s

PI3(s) = −0.86− 8.53/s

SOF =





6.24 −0.97 −0.0048 1.07 −0.046
−0.63 −2.47 −0.0062 −0.083 −0.18
−0.81 1.23 −1.44 −0.21 0.13





Tuning these 21 parameters starting from an unstable initial

guess took 20 seconds on a 64-bit PC with a 2.4 GHz dual-

core processor and 6 GB of RAM.

0

0.2

0.4

0.6

0.8

1
From: theta−ref

T
o

:
th

e
ta

0

0.5

1

1.5

T
o

:
p

h
i

0 1 2 3
−0.2

0

0.2

0.4

0.6

0.8

1

T
o

:
r

From: phi−ref

0 1 2 3

From: r−ref

0 1 2 3

Step Response

Time (seconds)

A
m

p
lit

u
d

e

Fig. 7. Closed-loop responses to θ, φ, r commands.

CONCLUSION

We have presented a new methodology and tool set for

tuning fixed-structure SISO or MIMO control systems. While

our approach is rooted in H∞ theory, it is clear that these

tools and techniques are not restricted to Robust Control

applications and can be seen as a systematic framework for

tuning decentralized control architectures and exploring the

trade-offs between performance and complexity.

REFERENCES

[1] J. Doyle, K. Glover, P. P. Khargonekar, and B. A. Francis, “State-space
solutions to standard H2 and H∞ control problems,” IEEE Trans. Aut.

Control, vol. AC-34, no. 8, pp. 831–847, Aug. 1989.
[2] G. Stein and J. C. Doyle, “Beyond singular values and loop shapes,”

J. Guidance and Control, vol. 14, pp. 5–16, 1991.
[3] D. McFarlane and K. Glover, “A loop shaping design procedure using

H∞ synthesis,” IEEE Trans. Aut. Control, vol. 37, no. 6, pp. 759–769,
1992.

[4] K. Zhou, J. C. Doyle, and K. Glover, Robust and Optimal Control.
Prentice Hall, 1996.

[5] P. Gahinet and P. Apkarian, “A linear matrix inequality approach to
H∞ control,” Int. J. Robust and Nonlinear Control, vol. 4, pp. 421–
448, 1994.

[6] Robust Control Toolbox 4.1. The MathWorks, Inc., Natick, MA, USA,
Sept 2011.

[7] P. Apkarian and D. Noll, “Nonsmooth H∞ synthesis,” IEEE Trans.

Aut. Control, vol. 51, no. 1, pp. 71–86, 2006.
[8] P. Apkarian, V. Bompart, and D. Noll, “Nonsmooth structured control

design with application to PID loop-shaping of a process,” Int. J.

Robust and Nonlinear Control, vol. 17, no. 14, pp. 1320–1342, 2007.
[9] R. M. Redheffer, “On a certain linear fractional transformation,” J.

Math. and Phys., vol. 39, pp. 269–286, 1960.
[10] J. Doyle, A. Packard, and K. Zhou, “Review of LFT’s, LMI’s and µ,”

in Proc. IEEE Conf. on Decision and Control, vol. 2, Brighton, Dec.
1991, pp. 1227–1232.

[11] A. Varga and G. Looye, “Symbolic and numerical software tools
for LFT-based low order uncertainty modeling,” in Proc. CACSD’99

Symposium, Cohala, 1999, pp. 1–6.
[12] A. Varga and J. Magni, “Enhanced LFR-toolbox for MATLAB,”

Aerospace Science and Technology, vol. 9, no. 2, pp. 173–180, 2005.
[13] C. J. Bett and M. Lemmon, “On linear fractional representations of

multidimensional rational matrix functions,” Eindhoven, University of
Technology, Tech. Rep., 1997.

[14] K. Zhou and J. Doyle, Essentials of Robust Control. Prentice-Hall
International, Inc., 1998.

[15] S. Skogestad and I. Postlethwaite, Multivariable Feedback Control -

Analysis and Design. Wiley, 1996.
[16] J. V. Burke, D. Henrion, A. S. Lewis, and M. L. Overton, “HIFOO

- a MATLAB package for fixed-order controller design and H∞

optimization,” in 5th IFAC Symposium on Robust Control Design,
Toulouse, France, July 2006.

[17] S. Gumussoy, M. Millstone, and M. L. Overton, “H∞ strong stabi-
lization via HIFOO, a package for fixed-order controller design,” in
Proc. IEEE Conf. on Decision and Control, Cancun, Mexico, 2008,
pp. 4135–4140.

[18] P. Apkarian and D. Noll, “Nonsmooth optimization for multiband
frequency domain control design,” Automatica, vol. 43, no. 4, pp. 724–
731, April 2007.

[19] P. Gahinet and P. Apkarian, “Structured H∞ synthesis in MATLAB,”
in Proc. IFAC, Milan, Italy, Aug. 2011.

[20] P. Apkarian, “Internet pages,” http://pierre.apkarian.free.fr, 2010.
[21] J. Blight, R. Dailey, and D. Gangsassi, “Practical control law design

for aircraft using multivariable techniques,” International Journal of

Control, vol. 59, no. 1, pp. 93–137, 1994.
[22] C. Luo, R. Liu, C. Yiang, and Y. Chang, “H∞ control design with

robust flying quality,” Aerospace Science & Technology, vol. 7, pp.
159–169, 2003.

8210

