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Abstract— A linear output feedback controller is developed
for trajectory tracking problems defined on a modified ver-
sion of Chua’s circuit. The circuit modification considers the
introduction of a suitable external control input channel guided
by a) the induction of the flatness property on a measurable
output signal of the circuit and b) the physical viability
of the control input. A linear active disturbance rejection
control, based on a high gain linear disturbance observer, is
implemented on a laboratory prototype. We show that the state-
dependent disturbance can be approximately, but arbitrarily
closely, estimated through a linear, high-gain, observer, called
a Generalized Proportional Integral (GPI) observer, which
contains a linear combination of a sufficient number of extra
iterated integrals of the output estimation error. Experimental
results are presented in the output reference trajectory tracking
of a signal generated by an unrelated chaotic system of the
Lorenz type. Laboratory experiments illustrate the proposed
linear methodology for effectively controlling chaos.

I. INTRODUCTION

The problem of controlling chaotic systems has been

approached from many perspectives. Efforts have been pre-

sented outside the realm of feedback control (feedforward or

open loop schemes). In the seminal paper of Ott, Grebogi and

Yorke, [16], the control problem is solved using results from

perturbation theory. Those methodologies are suitable for fast

systems but they exhibit a lack of robustness. Regarding

feedback control methods, considerable attention has been

devoted to the control of chaotic systems using a variety

of nonlinear control strategies. Passivity based-control has

been proposed where chaotic dynamical system stabilization

can be analyzed in terms of energy properties (see [5], [18],

[19]). Other techniques include: active control [14], adaptive

control [26], backstepping design [17], flatness-based control

[15] and sliding mode control [28] among others.

The induction of the differential flatness property on the

controlled version of Chua’s circuit allows for the triviali-

zation of the controller design task, reducing the feedback

control problem to that of a linear controllable time-invariant

system. The introduction of the flatness concept is due to

Fliess and his colleagues in [3]. The reader is also referred

to the books [20], and [13], for background on flatness.

For an approximate, yet effective, disturbance observer de-

sign, the input-to-flat output relation can be simplified to
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a linear perturbed equation. The perturbation input lumps,

both, external disturbance inputs and state dependent non-

linear terms, into a single, uniformly absolutely bounded,

disturbance function. This viewpoint transforms the original

control task into one of robustly controlling, via a linear

output feedback controller, an externally perturbed chain of

integrators (see[21] and [22] for robotic applications and

[23] for a typical power electronics problem). The additive

disturbance input can be effectively, though approximately,

estimated via a linear, high gain, observer. This information

is used in approximately canceling, at the controller stage,

its effects on the trajectory tracking quality. The effects of

the unknown disturbance input on the output reconstruction

error dynamics, at the observer stage, may be attenuated via

a suitable linear combination of iterated integral injections

of the output estimation error. This is precisely the dual

procedure to that characterizing disturbance input attenuation

in Generalized Proportional Integral (GPI) Control (see [4])

and, hence, the observers we advocate may be properly called

GPI observers. Both in GPI control and GPI observer design,

the need for appropriate linear combinations of iterated

integral errors is completely equivalent to the hypothesis of

a, self-updating, internal model of the perturbation input as

a time polynomial approximation.

GPI observer-based, output feedback control of nonlinear

uncertain systems is very much related to methodologies

known as: Disturbance Accommodation Control (DAC), and

Active Disturbance Rejection Control (ADRC). These ap-

proaches deal with the problem of canceling, from the con-

troller’s actions, endogenous and exogenous unknown, ad-

ditive, disturbance inputs affecting the system. Perturbation

effects are made available via suitable linear, or nonlinear,

estimation efforts. The reader is invited to read the works of

Prof. C.D. Johnson (see [10], [11]), those of the late Prof.

Jingqing Han [8] and the contributions made by Z. Gao and

his colleagues (see [6], [7], [24], [25]). GPI observers are also

intimately related to a radically new viewpoint in nonlinear

state estimation, based on differential algebra, developed by

Fliess et al. [2]). GPI observers for chaotic system linear

state reconstruction is presented in Cortés et al. [1].

This article is organized as follows: Section II presents an

introduction to linear control of nonlinear differentially flat

systems using a GPI observer-based control. The description

of the controlled Chua’s circuit is given in Section III

where the main problem is formulated. The experimental

implementation of our proposed approach, in a laboratory

prototype, and the corresponding trajectory tracking results

are presented in Section IV. Finally, Section V presents some
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conclusions and suggestions for further work in this area.

II. LINEAR GENERALIZED PROPORTIONAL INTEGRAL

OBSERVER BASED CONTROL OF NONLINEAR FLAT

SYSTEMS

Consider the following problem: It is desired to estimate

the phase variables of the scalar, n-th order, nonlinear system

y(n) = φ(t, y, ẏ, ..., y(n−1)) (1)

for which it is assumed that a solution, y(t), exists, uni-

formly in t, for every given set of initial conditions:

y0, ẏ0, ..., y
(n−1)
0 , specified at time t = 0. Assume, however,

that the function φ(·) is completely unknown. Any solution,

y(t), of the above differential equation trivially satisfies:

y(n)(t) = φ(t, y(t), ẏ(t), ..., y(n−1)(t)). We assume based

on this fact that, as a time function, the n-th derivative of

the solution y(t), given by, y(n)(t), admits, m, further time

derivatives which are all uniformly absolutely bounded. In

other words, there exists a constant K such that, 1

sup
t

|φ(m)(t, y(t), ẏ(t), ..., y(n−1)(t))| ≤ K (2)

Setting y1 = y, y2 = ẏ,...,yn = y(n−1), a state space

model for such an uncertain system is given by,

ẏj = yj+1, j = 1, ..., n− 1

ẏn = φ(t, y1, y2, ..., yn) (3)

We propose the following observer for the phase variables,

{y1, y2, ..., yn}, associated with y, characterized by the states

ŷ1, ..., ŷn, and complemented by m output estimation error

iterated integral injections, characterized by the variable, z1.

We have

˙̂yj = ŷj+1 + λn+m−j(y1 − ŷ1), j = 1, ..., n− 1

˙̂yn = z1 + λm(y1 − ŷ1)

żi = zi+1 + λm−i(y1 − ŷ1), i = 1, ...,m− 1

żm = λ0(y1 − ŷ1) (4)

Let the estimation error, ey, be defined as ey = e1 = y1 −
ŷ1 = y − ŷ1 with e2 = y2 − ŷ2, etc.,

ėj = ej+1 − λn+m−je1, j = 1, ..., n− 1

ėn = φ(t, y1(t), y2(t), ..., yn(t)) − z1 − λme1

żi = zi+1 + λm−ie1, i = 1, ...,m− 1

żm = λ0e1 (5)

It is not difficult to see that the estimation error, ey = e1,

satisfies, after elimination of all variables z, the following

n+m-th order perturbed linear differential equation,

e(n+m)
y + λn+m−1e

(n+m−1)
y + · · · + λ1ėy + λ0ey

= φ(m)(t, y1(t), y2(t), ..., yn(t)) (6)

1This assumption cannot be verified a priori when φ(·) is completely
unknown. However, in cases where the nonlinearity is known except for
some of its parameters, as it is the case of the Chua’s system, its validity
can be assessed with some work.

Clearly, if φ(m)(·) is uniformly absolutely bounded, then

choosing the gain coefficients, λj , j = 0, 1, ..., n+m−1, so

that the characteristic polynomial in the complex variable s,

po(s) = sn+m + λn+m−1s
n+m−1 + · · · + λ1s+ λ0 (7)

exhibits all its roots sufficiently far from the imaginary axis,

in the left half of the complex plane, then the trajectories

for ey and for its time derivatives globally asymptotically

converge, in an exponentially dominated manner, towards

a small as desired vicinity of the origin of the estimation

error phase space, {ey, ėy, ..., e
(n+m−1)
y }, where they re-

main ultimately bounded. The further away the roots are

located in the left half of the complex plane the smaller

the vicinity of ultimate boundedness around the origin of

the estimation error phase space. To prove this result we

proceed as follows: Let x = (e1, ..., en+m)T denote the

phase variables of (6). The perturbed linear system (6) is

of the form: ẋ = Ax + bφ(m)(t), with A being a Hurwitz

matrix written in companion form and b is a vector of zeroes

except for the last component being equal to 1. The matrix

Q = A+AT is a symmetric negative definite matrix with the

largest (real negative) eigenvalue denoted by: σmax(Q) < 0.

The Lyapunov function candidate, V (x) = 1
2‖x‖

2, exhibits

a strictly negative time derivative everywhere outside the

sphere: ‖x‖2 ≤ K2/(σmax(Q))2. Hence, all trajectories

starting outside this sphere converge towards its interior, and

all those trajectories starting inside this sphere will never

abandon it. The more negative the real parts of all the

eigenvalues of A, the larger (σmax(Q))2 and smaller the

radius of the ultimate bounding sphere in the x space.

From (5) it follows that

z1 = φ(t, y1(t), y2(t), ..., yn(t)) − λme1 − ėn (8)

Hence, as e1 and en evolve towards the small bounding

sphere in the estimation error phase space, the trajec-

tory of z1 tracks arbitrarily close the unknown function,

φ(t, y1(t), y2(t), ..., yn(t)). Clearly, zi, converges towards a

vicinity of φ(i−1)(t), i = 1, ...,m. From the definition of the

estimation errors for y, and its time derivatives, it follows that

ŷj , j = 1, ..., n, reconstruct, in an arbitrarily close fashion,

the time derivatives of y.

Let u be a scalar input and let, ψ(t, y, u), be a per-

fectly known smooth scalar function with, ∂ψ/∂u, uniformly

bounded away from zero for all y; so that ψ(t, y, θ(t, y, v)) =
v with u = θ(t, y, v) whenever ψ(t, y, u) = v. The above

result extends immediately to nonlinear flat systems, with

flat output y, of the form: y(n) = φ(t, y, ẏ, ..., y(n−1)) +
ψ(t, y, u), by considering the observer:

˙̂yj = ŷj+1 + λn+m−j(y1 − ŷ1), j = 1, 2, ..., n− 1

˙̂yn = ψ(t, y, u) + z1 + λm(y1 − ŷ1)

żi = zi+1 + λm−i(y1 − ŷ1), i = 1, 2, ...,m− 1

żm = λ0(y1 − ŷ1) (9)

Given a smooth output reference trajectory, y∗(t), a GPI

observer-based controller, including an active disturbance
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rejection term z1, is readily given by,

u = θ(t, y1, v), (10)

v = −z1 + [y∗(t)](n) −
n−1
∑

i=0

κi(ŷi+1 − [y∗(t)](i))

where the set of parameters κi, i = 0, ..., n− 1 is specified

so that the associated polynomial, pc(s), in the complex

variables s:

pc(s) = sn + κn−1s
n−1 + · · · + κ1s+ κ0 (11)

is a Hurwitz polynomial with all roots located sufficiently

far from the imaginary axis in the complex plane.

The closed loop tracking error system, with e = y −
y∗(t), evolves according to the n-th order perturbed linearly

dominated dynamics

e(n) +
n−1
∑

i=0

κie
(i) = φ(t, y1(t), y2(t), ..., yn(t)) − z1

+

n−1
∑

i=0

κiei+1 (12)

where we have used, as before, the observer estimation

error vector components: ey = e1 = y1 − ŷ1 = y − ŷ1,

e2 = y2 − ŷ2, etc., Given the asymptotic, exponentially

dominated, convergence of z1 to an arbitrarily small neigh-

borhood of φ(t, y1(t), y2(t), ..., yn(t)) and the convergence

of the observer estimation errors ei, i = 1, ..., n to a small

vicinity of the origin of the estimation error phase space,

the linear dynamics (12) is perturbed by a right hand side

whose terms are signals uniformly absolutely bounded by a

sufficiently small neighborhood of the origin. The previous

Lyapunov stability result similarly applies and the tracking

error, e, converges to a small as desired vicinity of zero.

As a final remark, it should be pointed out that low

pass filtering is required for the implementation of the GPI

observer-based algorithm, along with appropriate “clutching”

of the observer output signals (see [21] and [22] for details).

Real life noises do not preclude the application of high gain

observers, as it can be inferred from the experimental results

here presented.

III. LINEAR CONTROL OF CHUA’S CIRCUIT

Consider the modified version of Chua’s circuit, depicted

in figure 1, including an external current source, of value u,

acting as a control input variable to the circuit,

x2 C2 x1L C1 ϕ(x1)
+

−

+

−
u

R

x3

Fig. 1. Controlled Chua’s circuit

The mathematical model of the circuit is given by:

C1ẋ1 =
1

R
(x2 − x1) − ϕ(x1) + u

C2ẋ2 =
1

R
(x1 − x2) − x3

Lẋ3 = x2, y = x3 (13)

with the nonlinear function, ϕ(x1), given by:

ϕ(x1) = m0x1 +
(m1 −m0)

2
(|x1 +Bp| − |x1 −Bp|)

where x1, x2, represent the voltages on the capacitors,

C1, C2. The variable x3 represents the current through the

inductor, L, while ϕ(x1) is the current through the nonlinear

resistor (known as Chua’s diode), m0,m1, Bp are fixed, but

possibly unknown, constants.

Notice that the controlled system is flat ([3]), with x3,

being the flat output, or the linearizing output. Indeed, all

the system variables, including the control input u, may be

expressed in terms of y = x3 and a finite number of its time

derivatives:

x1 = RLC2ÿ + Lẏ +Ry

x2 = Lẏ

x3 = y (14)

and

u = RLC1C2y
(3) + L(C1 + C2)ÿ + RC1ẏ + y

+ m0 (RLC2ÿ + Lẏ + Ry) +
(m1 − m0)

2
×

(

∣

∣RLC2ÿ + Lẏ + Ry + Bp

∣

∣ −

∣

∣RLC2ÿ + Lẏ + Ry − Bp

∣

∣

)

(15)

Under this complete differential parametrization, and for

the purposes of building a GPI observer based controller,

the resulting input-to-flat output dynamics, which is also

free of any zero dynamics, can be obtained from (15) as

the following simplified system:

y(3) =
1

RLC1C2
u+ ξ(t) (16)

where ξ(t) lumps the nonlinear state dependent terms in

(15) which contains the uncertain parameters of the Chua’s

diode. Due to the uniformly absolutely bounded responses of

the circuit, the input signal, ξ(t), may be considered as an

unknown, but uniformly absolutely bounded, input. As seen

above, this signal can be on-line approximately estimated

by means of a GPI observer. Such an on-line estimation

allows the subsequent canceling of ξ(t) from the input-to-

flat output dynamics, through the appropriately devised, GPI

observer-based, active disturbance rejection control law. The

nonlinear output trajectory tracking controller design task is,

thus, reduced to that of a linear output feedback controller

on a third order chain of integrators.
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A. Problem formulation:

Given as a smooth output reference signal, y∗(t), the

output, z(t), of the following perfectly known Lorenz system,

ż1 = σ(z2 − z1)

ż2 = rz1 − z2 − z1z3

ż3 = z1z2 − bz3 (17)

z(t) = ǫz1(t),

it is desired to force, the Chua’s circuit output, y = x3, to

accurately track the given trajectory, y∗(t) = z(t), indepen-

dently of the possible unmodeled external disturbance inputs

and regardless of the endogenous disturbance input, ξ(t),
affecting the input-to-flat output simplified dynamics (16).

B. A GPI observer-based disturbance rejection control for

Chua’s circuit

We propose the following GPI observer-based control,

using a lumped disturbance internal model requiring four

iterated output error integral injections for its approximate

cancellation, i.e, m = 5

u =RLC1C2

[

[y∗(t)](3) − κ2(y3 − ÿ∗(t)) − κ1(y2 − ẏ∗(t))

−κ0(y1 − y∗(t))] − ξ̂(t)
]

(18)

ẏ1 = y2 + λ7(y − y1)

ẏ2 = y3 + λ6(y − y1)

ẏ3 =
1

RLC1C2
u+ z1 + λ5(y − y1)

ż1 = z2 + λ4(y − y1)

ż2 = z3 + λ3(y − y1)

ż3 = z4 + λ2(y − y1)

ż4 = z5 + λ1(y − y1)

ż5 = λ0(y − y1)

ξ̂(t) = z1

ŷ(t) = y1, ˆ̇y(t) = y2 ˆ̈y(t) = y3

where the characteristic polynomial associated with the es-

timation error is given by,

pob(s) = s8 + λ7s
7 + λ6s

6 + . . .+ λ1s+ λ0 (19)

and the characteristic polynomial of the predominantly linear

closed loop tracking error is

pc(s) = s3 + κ2s
2 + κ1s+ κ0 (20)

By choosing, λ0, ..., λ7, such that pob(s) exhibits the form,

(s2+2ζo1ωno1s+ω
2
no1)

2(s2+2ζo2ωno2s+ω
2
no2)

2, with ζo1,

ζo2, ωno1, ωno2 strictly positive constants, the reconstruction

error e = y− y1 is ultimately confined to a small as desired

vicinity of the origin of the reconstruction error phase space,

provided the roots of pob(s) are located sufficiently to the left

of the imaginary axis in the complex plane. Analogously, se-

lecting κ0, κ1, κ2, based on the desired form of the dominant

characteristic polynomial, (s2 + 2ζcωcs+ ω2
c )(s+ pc), with

ζc, ωc, pc > 0, we ensure the tracking error to exponentially

converge to a small region around the origin of the tracking

error phase space. This vicinity becomes smaller as larger is

made, in absolute value, the real part of roots of pc(s) in the

left half of the complex plane.

IV. EXPERIMENTAL RESULTS

The previously described linear output feedback control

law was devised for an actual Chua’s circuit prototype,

constructed on the basis of the work of Tôrres and Aguirre,

[27], which handles low frequency chaotic oscillations, thus

avoiding time re-parameterizations in the model synthesis.

Figure 2 shows the Chua’s diode realization, based on

operational amplifiers (see [12]), and figure 3 shows the

schematic diagram of the inductor equivalent circuit. The

following set of circuit parameters was used: C1 = 23.5
[µF ], C2 = 235 [µF ], R = 1550 [Ω]. The equivalent

inductance of the realization was, L = Leq = 42.3 [H].

The nonlinear parameters of Chua’s diode were set to be:

m0 = −0.409 [ms], m1 = −0.758 [ms], Bp = 1.8 [V]. The

passive components, for the op-amp realization, were chosen

as: R1 = R2 = 220 [Ω], R3 = 2.2 [KΩ], R4 = R5 = 22
[KΩ], R6 = 3.3 [KΩ], R7 = R8 = R9 = 1 [KΩ],

R10 = 1.8 [KΩ] and C3 = 23.5 [µF ]. All operational

amplifiers were integrated circuits of the LF412 type. The

real-time processing was implemented in a MatLab xPC

Target environment with a sampling period of 0.1 [ms]. The

data acquisition facility and the analog control outputs were

provided by a National Instruments PCI-6259 DAQ card.

Figure 4 depicts the experimental implementation of the

modified Chua’s circuit.

Concerning the GPI observer-based control, the design

parameters of the characteristic polynomial of the observer

were set to be: ζo1 = 2, ωno1 = 50, ζo2 = 2, ωno2 = 70.

The characteristic polynomial of the closed loop control was

chosen to be of the form (s2 + 2ζcωcs+ ω2
c)(s + pc), with

ζc = 1, ωc = 50, and pc = 50.

We tested the performance of the GPI observer based feed-

back control in the challenging task of having the controlled

Chua’s circuit flat output, y, track a particular output, z(t),
of an uncontrolled (simulated) Lorenz chaotic system, with

σ = 10, r = 28, b = 8
3 and ǫ = 0.75 × 10−4.

We let z = y∗(t) become the reference signal for the

flat output y of the controlled Chua’s circuit and used the

observer based GPI control synthesis for the corresponding

output reference trajectory tracking problem. We let Chua’s

circuit evolve without any control action for a period of 30 [s]

and then, we switched on the GPI observer based controller.

Figure 5 depicts the performance of the controller in the

tracking task and it is evident how the tracking error signal,

y− y∗(t), remains in a small region around the origin of the

error space. On the other hand, figure 6 shows the behavior

of the x1, x2 state variables of the Chua’s circuit. Figure 7

illustrates the results of the disturbance estimation and the

acting feedback control input signal.
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Fig. 2. Operational Amplifier realization of Chua’s diode.
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R9

C3

R10

Fig. 3. Equivalent circuit for the inductor in Chua’s circuit.

V. CONCLUDING REMARKS

In this article, we have proposed a linear active disturbance

rejection feedback control approach for the output trajectory

tracking task in a controlled version of Chua’s circuit with

uncertain parameters. The proposed linear controller design

methodology is based on the facts that 1) the nonlinear

uncontrolled system is easily made to be flat, thanks to

the possibilities of choosing a physically meaningful control

input channel and 2) one can simplify, for observer design

purposes, the highly nonlinear input-to-flat output represen-

Fig. 4. Modified Chua’s circuit prototype.
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Fig. 5. Performance of the GPI observer based controller, on a Chua’s
circuit, in the tracking of an output of a Lorenz system.
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Fig. 6. Behavior of states x1, x2 of Chua’s circuit in a Lorenz system
output trajectory tracking task.

tation of the circuit to that of a linear perturbed chain of

integrations, in which only the order of integration of the

system and the control input gain need to be known. We

have shown, in an actual laboratory implementation, that the

proposed linear output feedback control method efficiently

results in a rather accurate closed loop trajectory tracking.

This was particularly valid in an output trajectory tracking,

on the part of the Chua’s circuit, of a chaotic system’s output

generated by an unrelated Lorenz system.

The proposed linear GPI observer-based control design

methodology can be extended to the linear feedback control

of some other controlled versions of chaotic, and even
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Fig. 7. Control input signal, u, and on-line GPI observer estimation, ξ̂(t),
of the lumped disturbance input.

hyper-chaotic, systems. The relative freedom of choosing the

control input channel, results in a controlled system which

is, generally speaking, “easy” to control when the flatness

property is either induced, or invoked on a certain measurable

output of the circuit. The use of the proposed controller

design method is specially suitable in forced chaotic synchro-

nization tasks, specially when a controlled chaotic system

output is made to behave as that of a given, different,

uncontrolled chaotic system. This particular possibility may

prove to be useful in “controlled chaotic encryption” tasks.
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