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Abstract— We develop the formal series technique for analy-
sis of the time-optimal control problem. We introduce a concept
of equivalence of symmetric control systems in the sense of
time optimality. Our approach is based on the consideration of
a free algebra of iterated integrals and structures induced in
this algebra by control systems. It is close to a homogeneous
approximation problem and, in essence, yields that under
certain conditions a homogeneous approximation of a system
is equivalent to this system in the sense of time optimality.

I. INTRODUCTION.

In this paper we discuss some advantages of the series
method for the analysis of the nonlinear time optimal control
problem.

In [1] we considered an approximation of nonlinear affine
control systems in a neighborhood of an equilibrium in
the sense of the time optimality. Our method was based
on the representation of an affine control system in the
form of a series of nonlinear power moments [2]. We
succeeded in constructing the “algebraic theory” for such
systems and used this language, in particular, to describe
the homogeneous approximation. Briefly, to any system we
associate a right ideal in the free algebra of nonlinear power
moments; a homogeneous system corresponding to this ideal
is a homogeneous approximation of the initial nonlinear
control system. Moreover, it turns out that the homogeneous
approximation is closely connected with the approximation
in the sense of time optimality.

In this paper we present analogous algebraic constructions
for the partial case of symmetric systems. We introduce and
discuss algebraic tools and formulate the main theorem on
approximation in the sense of time optimality.

II. SERIES METHOD IN A LOCAL BEHAVIOR ANALYSIS OF
SYMMETRIC CONTROL SYSTEMS

A. The endpoint map

Consider symmetric control systems of the form

ẋ =
m∑
i=1

uiXi(x), x ∈ Rn, ui ∈ R, (1)

where X1(x), . . . , Xm(x) are real analytic vector fields in a
neighborhood of the origin in Rn. Below we are interested

The work was partially supported by Polish Ministry of Science and High
Education grant N N514 238438.

G.M. Sklyar is with the Institute of Mathematics, University
of Szczecin, Wielkopolska str. 15, Szczecin, 70-451 Poland
sklar@univ.szczecin.pl

S.Yu.Ignatovich is with the Department of Differential Equations and
Control, Kharkov National University, Svobody sqr. 4, Kharkov, 61077
Ukraine ignatovich@ukr.net

in the behavior of trajectories starting at the origin,

x(0) = 0. (2)

We admit controls u(t) = (u1(t), . . . , um(t)) ∈
L∞([0, T ]; Rm) such that ‖u‖ ≤ 1 where ‖u‖2 =∑m
i=1(ess supt∈[0,T ]|ui(t)|)2; there exist T0 > 0 such that

for 0 ≤ T ≤ T0 trajectories of (1), (2) corresponding to
such controls are well defined.

It is convenient to “stretch” all controls to the same time
interval, say, [0, 1]. Namely, for a control u(t), t ∈ [0, 1], and
a number 0 < θ ≤ T0 let us use the notation uθ(t) = u( tθ ),
t ∈ [0, θ]. Below we denote by x(t) = x(t;uθ), t ∈ [0, θ],
the solution of the Cauchy problem

ẋ =
m∑
i=1

uθi (t)Xi(x), x(0) = 0. (3)

Let B1 be the unit ball in L∞([0, 1]; Rm).
Definition 1: We say that the mapping EX1,...,Xn

:
[0, T0]×B1 → Rn defined by

EX1,...,Xn
(θ, u) = x(θ;uθ)

is the endpoint map defined by the Cauchy problem (1), (2).

B. Series representation

In order to study the behavior of the map EX1,...,Xn(θ, u),
the explicit expression of EX1,...,Xn

(θ, u) would be helpful
which does not include a trajectory x(t;uθ) as in the
definition of EX1,...,Xn

, but depends only on θ and u.
Such expression (a generalization of the well-known Cauchy
formula for linear differential equations) was firstly proposed
by M. Fliess. Namely, the following theorem holds [3].

Theorem 1: Consider a system of the form (1) and sup-
pose that the vector fields X1, . . . , Xm are real analytic in a
neighborhood of the origin. Then there exists 0 < T ≤ T0

such that for any 0 < θ ≤ T and any control u ∈ B1 the
endpoint map is represented in the form of an absolutely
convergent series

EX1,...,Xn
(θ, u) =

∞∑
k=1

∑
1≤i1,...,ik≤m

ci1...ikηi1...ik(θ, u), (4)

where

ηi1...ik(θ, u) =
∫ θ

0

∫ τ1

0

· · ·
∫ τk−1

0

k∏
j=1

uθij (τj)dτk · · · dτ2dτ1

(5)
are “iterated integrals” and

ci1...ik = XikXik−1 · · ·Xi1E(0) (6)
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are constant vector coefficients (where we denote E(x) = x).
Let us briefly discuss Theorem 1. The right hand side

of (4) includes “objects” of two kinds. The objects of the
first kind are the constant coefficients – vectors in Rn –
of the form (6). They are determined by the vector fields
X1, . . . , Xm (more precisely, by the values of these vector
fields and their derivatives at the origin) and, moreover,
they depend on local coordinates. The objects of the second
kind are the iterated integrals (5). They are “completely
independent” in the sense that they are the same for all
systems of the form (1). It turns out that the set of iterated
integrals can be regarded as a free associative algebra (w.r.t.
the certain operation); we introduce it in the next subsection.

C. Iterated integrals and free associative algebras

Suppose θ > 0 is fixed. Let us consider iterated integrals
as functionals of u(t) defined on the space L∞([0, 1]; Rm).
Then the linear span (over R) of all such iterated integrals
is the associative algebra with the product operation defined
as

ηi1...ik(θ, ·) ∨ ηj1...js(θ, ·) = ηi1...ikj1...js(θ, ·). (7)

Notice that one-dimensional integrals are the generators of
the algebra, so one can write

ηi1...ik(θ, ·) = ηi1(θ, ·) ∨ · · · ∨ ηik(θ, ·).

Substituting uθ(t) = u( tθ ) to (5) we easily get

ηi1...ik(θ, u) = θkηi1...ik(1, u).

Hence, k equals the asymptotic order of the iterated integral
ηi1...ik(θ, u) w.r.t. θ as θ → 0 for any fixed control u ∈ B1

such that ηi1...ik(1, u) 6= 0. This justifies the following
Definition 2: We say that the number k is the order of the

iterated integral ηi1...ik(θ, ·).
This “length order” naturally generates the filtered struc-

ture in the algebra of iterated integrals.
Definition 3: Suppose θ > 0 is fixed. The associative

algebra of functionals Fθ =
∑∞
k=1 Fkθ (over R) where

Fkθ = Lin{ηi1...ik(θ, ·), 1 ≤ i1, . . . , ik ≤ m}, k ≥ 1,

with the product operation (7) is called the algebra of
iterated integrals. The natural filtration is given by the set
of subspaces

∑q
k=1 Fkθ , q ≥ 1.

One can show that this associative algebra is free [3]. More
specifically, if

∑
i1...ik

αi1...ikηi1...ik(θ, u) = 0 for all u ∈
B1, where αi1...ik ∈ R and the sum is taken over an arbitrary
finite set of indices i1, . . . , ik such that 1 ≤ i1, . . . , ik ≤ m,
then all coefficients αi1...ik vanish.

This motivates introducing an abstract free associative
graded algebra generated by m elements which is isomorphic
to any Fθ.

Namely, let us consider the set of m abstract free elements
called letters ; we denote them by η1, . . . , ηm. Strings of
the letters are called words; we denote them by ηi1...ik =
ηi1 ∨ · · · ∨ ηik (we use the same sign ∨ as in Fθ to denote
the concatenation operation). All finite linear combinations
of words (over R) form a free associative algebra with the

natural gradation F =
∑∞
k=1 Fk, where the homogeneous

subspace Fk is defined as a linear span of products of k
generators

Fk = Lin{ηi1...ik = ηi1 ∨ · · · ∨ ηik , 1 ≤ i1, . . . , ik ≤ m},
(8)

k ≥ 1. Then F is naturally isomorphic to Fθ for any θ > 0.
Definition 4: The free associative algebra F over R with

the abstract generators η1, . . . , ηm, the product operation

ηi1 ∨ · · · ∨ ηik = ηi1...ik , k ≥ 2,

and the graded structure (8) generated by the “length order”is
called the Fliess algebra.

Sometimes it is convenient to extend the algebra F and
consider the algebra F+R with the unity element (which can
be thought of as the empty word) assuming 1∨a = a∨1 = a
for any a ∈ F + R.

Taking into account the graded structure, we introduce the
following convenient notation.

Definition 5: We say that an element a ∈ F is of order k
and write ord(a) = k iff a ∈ Fk. If an element is of some
order we say that it is homogeneous.

In the free associative algebra F , the free Lie algebra L
is defined which is generated by the same set of generators
η1, . . . , ηm, and the bracket operation is defined in the usual
way as [`1, `2] = `1 ∨ `2 − `2 ∨ `1. Then F is the universal
enveloping for L.

Thus, along with the endpoint map and its series represen-
tation (4) we can consider its “abstract analog”, the formal
series (with coefficients in Rn) of elements of F of the form

EX1,...,Xm
=
∞∑
k=1

∑
1≤i1,...,ik≤m

ci1...ikηi1...ik . (9)

D. Changes of variables and shuffles

Notice that a change of variables in system (1) leads
to some transformation of the series representation of the
endpoint map. More specifically, suppose we know the series
representation of the endpoint map EX1,...,Xm , i.e.,

EX1,...,Xm
(θ, u) =

∞∑
k=1

∑
1≤i1,...,ik≤m

ci1...ikηi1...ik(θ, u),

where ci1...ik are constant vector coefficients. This represen-
tation coincides with (4), however, here we “forget” that
the coefficients ci1...ik can be found via the vector fields
X1, . . . , Xm by formula (6).

Suppose y = Q(x) is a real analytic change of vari-
ables defined in a neighborhood of the origin and such
that Q(0) = 0. Then in the new coordinates the initial
system takes the form ẏ =

∑m
i=1 uiYi(y) where Yi(y) =

Q′(x)Xi(x)|x=Q−1(y), i = 1, . . . ,m. Then we obviously get

EY1,...,Ym
(θ, u) = Q(EX1,...,Xn

(θ, u))

for any rather small θ > 0 and any u ∈ B1. Since Q(x)
is real analytic, the series representation of EY1,...,Ym can
be found directly using the series of EX1,...,Xn , without
explicit calculating of vector fields Yi(y). Namely, suppose
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Q(x) =
∑∞
p=1

1
p!Q

(p)(0)xp. Hence, in order to express
EY1,...,Ym(θ, u) as a series of iterated integrals of the form
(4), we need to find the product of iterated integrals. Cal-
culating the product of two iterated integrals (considered as
functionals of u) we get

ηm1...mk
(θ, u) · ηmk+1...mk+r

(θ, u) =
∑′

ηmj1 ...mjk+r
(θ, u),

where the sum
∑′ is taken over elements (j1, . . . , jk+r) ∈

Sk,r of the set of all shuffle permutations Sk,r = {σ ∈ Sk+r :
σ−1(1) < · · · < σ−1(k), σ−1(k + 1) < · · · < σ−1(k + r)}
(here Sk+r is the set of all permutations of (1, . . . , k+r)). In
fact, to multiply two integrals over domains 0 ≤ τ1 ≤ · · · ≤
τk ≤ θ and 0 ≤ τk+1 ≤ · · · ≤ τk+r ≤ θ we should “shuffle”
two sets of variables {τ1, . . . , τk} and {τk+1, . . . , τk+r} in
all possible ways but keeping their “interior orders”.

In the associative algebra, the corresponding operation is
called the shuffle product [4].

Definition 6: The shuffle product xxy in F is defined on
basis elements by the rule

ηm1...mk
xxyηmk+1...mk+r

=
∑

(j1,...,jk+r)∈Sk,r

ηmj1 ...mjk+r
.

Thus, the “usual product” of iterated integrals as function-
als corresponds to the shuffle product in the abstract algebra.
One can express this statement as follows:

ηm1...mk
(θ, u) · ηs1...sr

(θ, u) = (ηm1...mk
xxyηs1...sr

)(θ, u)

where in the right hand side we mean that one calculates the
shuffle product in F and then substitutes iterated integrals
from Fθ instead of the corresponding elements of F . This
equality also implies that the shuffle product is commutative
and associative.

Sometimes it is more convenient to use another definition
of the shuffle product. It can be easily shown that Defini-
tions 6 and 7 are equivalent.

Definition 7: The shuffle product in F is defined on basis
elements by the recurrent formula

ηm1...mk
xxyηs1...sr

= (ηm1...mk−1 xxyηs1...sr
) ∨ ηmk

+(ηm1...mk
xxyηs1...sr−1) ∨ ηsr ,

(10)

where 1xxya = axxy1 = a for any a ∈ F + R.
With this concept in hands, we get the formula for

transformation of the endpoint map,

EY1,...,Ym =
∞∑
p=1

1
p!
Q(p)(0)(E)xxyp =

=
∞∑
p=1

1
p!

∑
j1+···+jn=p

∂Qj1+···+jn(0)
∂xj11 · · · ∂x

jn
n

(E)xxyj1
1 xxy · · · xxy (E)xxyjn

n

(11)
where we used the notation E = EX1,...,Xn

for brevity. Here
the shuffle product of the series is calculated termwise, and
axxyp = axxy · · · xxya (p times), axxy0 = 1.

III. STRUCTURES IN THE FREE ALGEBRA INDUCED BY
THE CONTROL SYSTEM

A. Lie algebra of vector fields

Consider the (filtered) Lie algebra L̂ =
∑∞
k=1 L̂k gener-

ated by the set of vector fields X1, . . . , Xm as

L̂1 = Lin{X1, . . . , Xm}, L̂k+1 = [L̂1, L̂k], k ≥ 1,

where [·, ·] means the Lie bracket operation, [Xi, Xj ] =
XiXj −XjXi. The Lie algebra L̂ encodes the information
on the “small-time” behavior of the system, in particular,
on its homogeneous approximation. Let us explain this point
more specifically. For convenience, denote

L̂k = {V (0) : V ∈ L̂k} ⊂ Rn, k ≥ 1.

In other words, L̂k is a subspace (in Rn) of values at the
origin of all vector fields from L̂k.

Then the subspace
∑∞
k=1 L̂

k defines the dimension of the
orbit of the system through the origin. In particular, the orbit
is of full dimension iff the Rashevsky-Chow condition

∞∑
k=1

L̂k = Rn (12)

holds. For symmetric control systems like (1) this condition
also implies local controllability what means that any point
from a certain neighborhood of the origin can be reached
from any other point from this neighborhood. Throughout of
the paper, we suppose this property to be satisfied.

B. Core Lie subalgebra

For a given system of the form (1), consider the linear
map c : F → Rn defined as

c(ηi1...ik) = Xik · · ·Xi1E(0) = ci1...ik

where ci1...ik are vector coefficients of series (9). Consider
the subspaces of L of the form

Pk = {` ∈ Lk : c(`) ∈ L̂1 + · · ·+ L̂k−1}, k ≥ 1,

and put

LX1,...,Xm
=
∞∑
k=1

Pk.

Lemma 1: LX1,...,Xm is a (graded) Lie subalgebra of L.
Lemma 2: The Lie subalgebra LX1,...,Xm

is invariant
w.r.t. nonsingular changes of variables in the system.

Definition 8: We call LX1,...,Xm
the core Lie subalgebra

corresponding to system (1).
The core Lie subalgebra LX1,...,Xm

is intrinsic, coordinate
independent object. Just this subalgebra is responsible for the
homogeneous approximation of the system. Let us explain
the term “core Lie subalgebra”. Let N be a degree of non-
holonomy, i.e. the minimal integer such that

∑N
k=1 L̂

k = Rn.
First, notice that the map c : L → Rn induces the filtration
in Rn defined by Rn = L̂1 + · · · + L̂N . Let us introduce
the associated graded linear space. Namely, consider factor
subspaces [L1] = L̂1 and [Li] = L̂i/(L̂1 + · · · + L̂i−1),
i = 2, . . . , N , then the direct sum [L1]u· · ·u[LN ] is a graded
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linear space isomorphic to the initial filtered space Rn. Let
us consider the induced graded homomorphism g : L → Rn
defined for ` ∈ Li by g(`) = [c(`)] if i = 1, . . . , N , and
g(`) = 0 if i ≥ N+1. Then LX1,...,Xm equals the core of g,
i.e. LX1,...,Xm

= Ker(g). Hence, Im(g) = Rn is isomorphic
to L/Ker(g).

Lemma 3: The subspace LX1,...,Xm
is of codimension

n in the space L. Hence, if elements `1, . . . , `n are
such that L = Lin{`1, . . . , `n} + LX1,...,Xm

then vectors
c(`1), . . . , c(`n) are linearly independent.

Some other properties of the core Lie subalgebra can be
found in [5].

C. Left ideal generated by the system

The following concept proposed in [1] is closely connected
with the core Lie subalgebra.

Definition 9: We say that

JX1,...,Xm
= (F + R) ∨ LX1,...,Xm

is the left ideal generated by the system (1).
Notice that, due to its definition, the left ideal is graded,

JX1,...,Xm =
∞∑
k=1

(JX1,...,Xm ∩ Fk). (13)

Moreover, it is invariant w.r.t. nonsingular changes of vari-
ables in the system what follows directly from Lemma 2.
The following property of the left ideal is crucial for further
considerations.

Lemma 4: If a ∈ JX1,...,Xm ∩ Fk then c(a) ∈ c(F1 +
· · ·+ Fk−1).

The next lemma uses the well known concept of the
Poincaré-Birkhoff-Witt basis. Suppose {`i}∞i=1 is a basis of
L which consists of homogeneous elements. Recall that, due
to the Poincaré-Birkhoff-Witt Theorem, the set

{`j1 ∨ · · · ∨ `jr : 1 ≤ j1 ≤ · · · ≤ jr, r ≥ 1} (14)

forms a basis of F . Let us return to our series. Recall that,
due to Lemma 3, LX1,...,Xm

is of codimension n in L.
Below we use the following notations. Let {`1, . . . , `n}

be any set of homogeneous elements of L such that

L = Lin{`1, . . . , `n}+ LX1,...,Xm . (15)

Assume that ord(`i) ≤ ord(`j) if 1 ≤ i < j ≤ n. Denote
by {`j}∞j=n+1 any (homogeneous) basis of LX1,...,Xm .

Lemma 5: The set

{`j1∨· · ·∨`jr : 1 ≤ j1 ≤ · · · ≤ jr, r ≥ 1, jr ≥ n+1} (16)

forms a basis of the left ideal JX1,...,Xm .
Lemma 6: JX1,...,Xm ∩ Lk = Pk for any k ≥ 1 and,

therefore,
JX1,...,Xm

∩ L = LX1,...,Xm
.

As a corollary, we get that two structures induced by the
control system, LX1,...,Xm

and JX1,...,Xm
, define each other

uniquely.
Below we introduce the inner product 〈·, ·〉 in F assuming

that the basis {ηi1...ik : k ≥ 1, 1 ≤ i1, . . . , ik ≤ m} is

orthonormal. Denote by ˜̀i the orthogonal projection of `i
on the subspace J⊥X1,...,Xm

.
The following lemma follows from the remarkable the-

orem by R. Ree [6] on a connection of Lie elements and
shuffles.

Lemma 7: The set

{˜̀xxyq11 xxy · · · xxy ˜̀xxyqn
n : q1 + · · ·+ qn ≥ 1}

forms a basis of J⊥X1,...,Xm
.

IV. HOMOGENEOUS APPROXIMATION FROM THE
ALGEBRAIC VIEWPOINT

A. Definition of homogeneous approximation

The concept of a homogeneous approximation is one of
the central ones in the nonlinear control theory [7], [8], [9],
[10], [11], [12]. Let us give a definition of a homogeneous
approximation in terms of the endpoint map.

Definition 10: Suppose a bracket generating affine system
of the form (1) is given. The (bracket generating) system

ż =
m∑
i=1

uiZi(z), z ∈ Rn, ui ∈ R, (17)

with real analytic Z1(z), . . . , Zm(z) is called a homogeneous
approximation for system (1) if

(i) its endpoint map EZ1,...,Zm
is homogeneous,

EZ1,...,Zm(θ, u) = Hθ(EZ1,...,Zm(1, u)), θ > 0, u ∈ B1,

where Hθ(z) = (θw1z1, . . . , θ
wnzn) is a dilation and 1 ≤

w1 ≤ · · · ≤ wn are some integers;
(ii) there exists a real analytic change of variables y =

Q(x) in the initial system (Q(0) = 0, detQ′(0) 6= 0) such
that EZ1,...,Zm

approximates the endpoint map of the initial
system in the new coordinates; namely, for any u ∈ B1

H−1
θ (Q(EX1,...,Xm

(θ, u))− EZ1,...,Zm
(θ, u))→ 0

as θ → 0.

B. A principal part of the series

For the further arguments, it is convenient to introduce the
dual basis for (14). Let us re-write the basis (14) as

{`p1
j1
∨ · · · ∨ `ps

js
: s ≥ 1, j1 < · · · < js, pi ∈ N} (18)

where `p = ` ∨ · · · ∨ ` (p times). Suppose

{dq1...qr

i1...ir
: r ≥ 1, i1 < · · · < ir, qi ∈ N}

is the dual basis for (18), i.e. 〈`p1
j1
∨ · · · ∨ `ps

js
, dq1...qr

i1...ir
〉 =

1 if s = r, jk = ik, pk = qk, k = 1, . . . , s, and
= 0 otherwise. Then, as it was proven in [13], dq1...qr

i1...ir
=

1
q1!...qr! d

xxyq1
i1

xxy · · · xxydxxyqr

ir
where di = d1

i . This dual basis
gives us another basis of J⊥X1,...,Xm

.
Lemma 8: The set

{dxxyq1
1 xxy · · · xxydxxyqn

n : q1 + · · ·+ qn ≥ 1} (19)

forms a basis of J⊥X1,...,Xm
.
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Now let us re-expand the series EX1,...,Xm
w.r.t. the dual

basis. We get
EX1,...,Xm = S + T , (20)

where

S =
∑

1≤i1<···<ir≤n

1
q1! . . . qr!

c(`q1i1∨· · ·∨`
qr

ir
) dxxyq1

i1
xxy · · · xxydxxyqr

ir
,

T =
∑

1≤i1<···<ir
ir≥n+1

1
q1! . . . qr!

c(`q1i1 ∨· · ·∨`
qr

ir
) dxxyq1

i1
xxy · · · xxydxxyqr

ir
.

Notice that T is a sum of elements of JX1,...,Xm .
Let us return to the transformation of the endpoint map.

Suppose y = Q(x) is a nonsingular change of variables, then

EY1,...,Ym
= Q(EX1,...,Xm

) =
∞∑
p=1

1
p!
Q(p)(0)(S + T )xxyp =

= Q(S) + T ′,

where

T ′ =
∑
j≥1

1
p!j!

Q(p+j)(0)(S)xxyp xxy (T )xxyj

is a sum of elements of JX1,...,Xm . Due to Lemma 4, this
means that the “main part” of the series EY1,...,Ym

(deter-
mining the homogeneous approximation) is contained in the
series Q(S). Hence, it is sufficient to find a homogeneous
approximation for the series S. It can be shown that there
exists a change of variables y = Q(x) such that

(Q(S))i = di + “elements of order > wi”

where wi = ord(di) = ord(`i), i = 1, . . . , n. This means
that di are principal terms for (Q(S))i and, therefore, for
(EY1,...,Ym)i. So, we get the following theorem.

Theorem 2: For any (bracket generating) system (1) there
exist a nonsingular real analytic change of variables y =
Q(x) such that series (11) (which describes the endpoint
map of the system in the new coordinates) has the form

(EY1,...,Ym
)i = (

∞∑
p=1

1
p!Q

(p)(0)(EX1,...,Xn
)xxyp)i = di + ρi,

(21)
where ρi ∈

∑∞
j=wi+1 F j , wi = ord(`i), i = 1, . . . , n.

Now recall that elements di belong to J⊥X1,...,Xm
, hence,

can be expressed as polynomials of elements of basis (19).
For practical purposes, it is more convenient to use this form
of a principal part.

Theorem 3: There exist such coordinates y = Q(x) that

(EY1,...,Yn
)i = ˜̀

i + ρi, i = 1, . . . , n, (22)

where ρi ∈
∑∞
j=wi+1 F j , wi = ord(`i), i = 1, . . . , n.

A complete description of all such coordinates y = Q(x)
(so-called “privileged coordinates” [10]) can be found in
[14]. In the very partial case of free systems a close approach
was proposed in [15].

Theorem 3 means that the principal part of the series
EX1,...,Xn

can be constructed in a purely algebraic way by the
“standard” procedure of finding of the orthogonal projection
of elements `1, . . . , `n.

C. Algebraic definition of homogeneous approximation
Now we are ready to give an algebraic analog of Defini-

tion 10.
Lemma 9: System (17) is a homogeneous approximation

for system (1) in the sense of Definition 10 if and only
if its series is of the form (EZ1,...,Zm

)i = Pi(d1, . . . , dn),
i = 1, . . . , n, where P is a polynomial vector function with
nonsingular linear part and Pi are such that Pi(d1, . . . , dn) ∈
Fwi (where wi = ord(`i)).

Thus, the series of a system which is a homogeneous
approximation is defined, in essence, uniquely (up to a
polynomial change of variables preserving homogeneity).
One can show that series EZ1,...,Zm

described in Lemma 9
is realizable [16], [17], so, the approximating system exists
and, in essence, is defined uniquely.

It can be shown that LZ1,...,Zm
= LX1,...,Xm

. Moreover,
Definition 10 is equivalent to the following “algebraic”
coordinate-free definition of a homogeneous approximation.

Definition 11: Suppose two bracket generating symmetric
systems (1) and (17) are given. System (17) is called a
homogeneous approximation for (1) if

(i) cZ1,...,Zm
(LZ1,...,Zm

) = 0;
(ii) LX1,...,Xm = LZ1,...,Zm .
Emphasize that (i) and (ii) mean the homogeneity and the

approximation properties respectively.
Taking into account the connection between the core Lie

subalgebra LZ1,...,Zm
and the left ideal JZ1,...,Zm

we get that
conditions (i) and (ii) can be substituted by the equivalent
conditions

(i ′) cZ1,...,Zm
(JZ1,...,Zm

) = 0;
(ii ′) JX1,...,Xm

= JZ1,...,Zm
.

V. TIME OPTIMALITY

A. Time-optimal controls
From now on, we consider the time-optimal control prob-

lem for system (1) of the form

ẋ =
m∑
i=1

uiXi(x), x(0) = 0, x(θ) = x0,

m∑
i=1

u2
i (t) ≤ 1, t ∈ [0, θ] a.e., θ → min .

(23)

Definition 12: We say that a pair (θx0 , ux0) ∈ R+ × B1

is a solution of time-optimal control problem (23) if θx0 is
the optimal time and v(t) = ux0

(
t
θx0

)
, t ∈ [0, θx0 ] is a

time-optimal control for (23).
Our first observation concerns the character of the optimal

control.
Lemma 10: Consider a time-optimal control problem of

the form (23) where vector fields X1, . . . , Xm are real
analytic in a neighborhood of the origin, and suppose that the
Rashevsky-Chow condition (12) holds. Then there exists a
neighborhood of the origin U(0) such that for any x0 ∈ U(0)
any optimal control u(t) = ux0(t) satisfies the condition

m∑
i=1

u2
i (t) = 1 a.e., t ∈ [0, 1]. (24)
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Let (θx0 , ux0) be a solution of problem (23). Notice that
the function u(t) = θx0ux0(tθx0), t ∈ [0, 1], minimizes also
the “length functional” `(u) =

∫ 1

0

√∑m
i=1 u

2
i (t)dt and the

“energy functional” J(u) =
∫ 1

0

∑m
i=1 u

2
i (t)dt. Recall that

the length functional is closely connected with a concept of
the sub-Riemannian metrics [10].

B. Approximation in the sense of time optimality
In this subsection we introduce the concept of approxi-

mation in the sense of time optimality following the ideas
of [1] and show the connection with the homogeneous
approximation considered above.

Definition 13: Let vector fields X1(x), . . . , Xm(x) and
Y1(x), . . . , Ym(x) be real analytic in a neighborhood of the
origin. Suppose there exists an open domain Ω ⊂ Rn\{0},
0 ∈ Ω, such that the time-optimal control problem

ẋ =
m∑
i=1

uiYi(x), x(0) = 0, x(θ) = x0,

m∑
i=1

u2
i (t) ≤ 1, t ∈ [0, θ] a.e., θ → min

(25)

has the unique solution (θ∗x0 , u∗x0) for any x0 ∈ Ω. Denote
by {(θx0 , ux0) : ux0 ∈ Ux0}, the set of solutions of time-
optimal control problem (23). We say that the time-optimal
control problem (25) approximates the time-optimal control
problem (23) (in the domain Ω) if the exists a nonsingular
transformation Φ of a neighborhood of the origin of Rn,
Φ(0) = 0, such that for any uΦ(x0) ∈ UΦ(x0)

θΦ(x0)

θ∗x0

→ 1,

1
θ

∫ θ

0

|vΦ(x0)(t)− v∗x0(t)|dt→ 0 as x0 → 0, x0 ∈ Ω,

where vΦ(x0)(t) = uΦ(x0)( t
θΦ(x0)

), v∗x0(t) = u∗x0( t
θ∗

x0
) are

optimal controls for (23) and (25) and θ = min{θ∗x0 , θΦ(x0)}.
Thus, the definition means that after a certain change

of variables in system (23) the optimal times and optimal
controls of problems (23) and (25) become asymptotically
equivalent as functions of the end point. Notice that the
equivalence of optimal times for a system and its homo-
geneous approximation was, in essence, studied in [10].

Let us consider the time-optimal control problem for
system (17) which is a homogeneous approximation for a
system of the form (1) in the sense of Definition 10. Without
loss of generality suppose (Zi(z))j are polynomials, namely,
(Zi(z))j =

∑
αijs1...sn

zs11 · · · zsn
n where sum is taken over

such (s1, . . . , sn) that s1w1 + · · · + snwn = wj − 1. As
above, let Hε be a dilation, Hε(x) = (εw1x1, . . . , ε

wnxn).
Denote by (θ∗z0 , u∗z0) a solution of the time-optimal control
problem

ż =
m∑
i=1

uiZi(z), z(0) = z0, z(θ) = 0,

m∑
i=1

u2
i (t) ≤ 1, t ∈ [0, θ] a.e., θ → min .

(26)

Then, due to homogeneity, θ∗Hε(x) = εθ∗x and u∗Hε(x)(t) =
u∗x(t), t ∈ [0, 1]. Hence, if some properties concerning the
optimal time and control (such that existence, uniqueness
etc.) are satisfied in some domain Ω then they are also true
in the domain Hε(Ω). Thus, without loss of generality we
assume the domain Ω is “pseudo-conic”, i.e. if x ∈ Ω then
Hε(x) ∈ Ω for any ε > 0.

The main result of this paper is the following theorem
on approximation which states that the concept of the
homogeneous approximation is closely connected with the
approximation of time-optimal control problems.

Theorem 4: Let system (17) be a homogeneous approxi-
mation for system (1). Let there exist a (pseudo-conic) open
domain Ω ⊂ Rn\{0} such that 0 ∈ Ω and for any z0 ∈ Ω the
solution (θ∗z0 , u∗z0) of the time-optimal control problem (26)
is unique. Then there exists the set of embedded domains
Ω(δ), δ > 0, such that Ω(δ1) ⊂ Ω(δ2) if δ1 > δ2 > 0 and
Ω = ∪δ>0Ω(δ), in each of which the time optimal control
problem (26) approximates the time optimal control problem
(23).

Thus, the homogeneous approximation of a symmetric
control system also approximates it in the sense of time
optimality.
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