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Abstract— A large class of discrete-event and hybrid systems
can be described by a max-min-plus-scaling (MMPS) model,
i.e., a model in which the main operations are maximization,
minimization, addition, and scalar multiplication. Further,
Model Predictive Control (MPC), which is one of the most
widely used advanced control design methods in the process
industry due to its ability to handle constraints on both inputs
and outputs, has already been extended to both deterministic
and stochastic MMPS systems. However, in order to compute
an MPC controller for a general MMPS system, a nonlinear,
nonconvex optimization problem has to be solved. In addition,
for stochastic MMPS systems, the problem is computationally
highly complex since the cost function is defined as the expected
value of an MMPS function and its evaluation leads to a com-
plex numerical integration. The aim of this paper is to decrease
this computational complexity by applying an approximation
method that is based on the raw moments of a random variable,
to a stochastic MMPS system with a Gaussian noise. In this
way, the problem can be transformed into a sequence of convex
optimization problems, providing that linear or convex MPC
input constraints are considered.

I. INTRODUCTION

Conventional control design techniques that generate op-

timal controllers or control input sequences for the entire

future evolution of the system, are often unable to work effi-

ciently once additional constraints on inputs and outputs are

included. On the contrary, model predictive control (MPC)

is capable of handling constraints on both inputs and outputs

in a systematic way while having other important properties

such as being an easy-to-tune method, being able to track

pre-scheduled reference signals, and being applicable to

multivariable systems. MPC uses linear or nonlinear discrete-

time models [20] as well as discrete-event models [7].

In this paper we consider stochastic max-min-plus-scaling

(MMPS) systems in which the main operations are maxi-

mization, minimization, addition, and scalar multiplication.

A large class of discrete-event and hybrid systems can be

described by an MMPS model. Hybrid systems contain

both analog (continuous) and logical (discrete, switching)

dynamics. Typical examples are manufacturing systems,

telecommunication and computer networks, traffic control

systems, digital circuits, and logistic systems. Discrete-event

systems are systems, the behavior of which is governed by

events rather than by ticks of a clock. In [22] it is shown

that the class of MMPS systems encompasses several other

classes of discrete-event systems such as max-plus linear
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systems. Furthermore, it has been shown in [13], [14], [26]

that MMPS systems are equivalent to a particular class of

hybrid systems, namely continuous piecewise affine (PWA)

systems. The relation between PWA and MMPS systems

is useful for the investigation of structural properties of

PWA systems such as observability and controllability but

also in designing controller schemes like model predictive

control (MPC) [4], [16]. In stochastic hybrid or discrete-

event systems, processing times and/or transportation times

are assumed to be stochastic quantities, since in practice

such stochastic fluctuations can, e.g., be caused by machine

failure or depreciation [25]. Some results for the analysis

of some specific subclasses of stochastic discrete-event or

hybrid systems can be found in [2], [15], [17], [21]–[23],

[27], [28], [32], and for stochastic MPC, can be found in

[3], [18].

In the last few decades, MPC has been attracted lots of at-

tention and has been applied to MMPS systems. Some related

work on controller design, such as MPC, for MMPS systems

can be found in [8], [22]. Following the MPC methodology,

the optimal input sequence has to be computed in order to

minimize the cost function. For a stochastic MMPS systems,

in particular, the cost function can be defined as the expected

value of an MMPS function. Since there are no closed-form

analytic expressions for such an expected value, the com-

putation of the cost function in principle involves numerical

integration, which is computationally complex and very time

consuming. To the authors’ best knowledge no effort has

been made to decrease this computational complexity for

MMPS systems.

The aim of this paper is to tackle the stochastic

MPC-MMPS optimization problem using an approximation

method in order to increase the computational efficiency and

to decrease the computation time. Using the equivalence

between MMPS and PWA systems and the results of [19]

and [30] we can rewrite an MMPS function as a difference of

two convex functions. Next we can apply the approximation

method presented in [11] in order to significantly simplify

the computation. In fact, this approximation method is ap-

plied to approximate the calculation of stochastic integrals

and it is based on raw moments of random variables. By

choosing the appropriate order of raw moments, the error of

approximation can be made sufficiently small and since we

can compute these moments analytically, the computation

burden decreases considerably. Accordingly, the problem,

which is by nature non-convex, will be transformed into a

series of convex optimization problems and can be solved

using efficient convex optimization algorithms.
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The structure of this paper is as follows. In Section 2 we

present some background information on stochastic MMPS

systems. Section 3 provides a brief description of the MPC

algorithm for stochastic MMPS systems. In Section 4 we

study concisely the equivalence of MMPS and PWA systems

and we express an MMPS function as a difference of two

convex functions. Section 5 describes the approximation

method based on raw moments and Jensen’s inequality, and

explores how it decreases the complexity of stochastic MPC-

MMPS optimization problem. In Section 6 we show in a

worked example how the stochastic MPC-MMPS optimiza-

tion problem can be solved by using the methods proposed

in Sections 4 and 5. Section 7 concludes the paper.

II. STOCHASTIC MAX-MIN-PLUS-SCALING SYSTEMS

A scalar-valued MMPS function g : R
n → R of the vari-

ables x1, . . . ,xn is defined by the recursive relation

g(xi) =xi|α|max(gk(x),gl(x))|min(gk(x),gl(x))|
gk(x)+gl(x)|βgk(x),

where | stands for “or”, α,β ∈ R, i = 1, . . . ,n, and gk and gl

are MMPS functions. Note that for a vector-valued MMPS

function g : R
n → R

m each component of g is an MMPS

function of the above form.

Accordingly, a state space representation of a deterministic

MMPS system can be described as follows:

x(k) = Mx(x(k−1),u(k)) (1)

y(k) = My(x(k),u(k)), (2)

where Mx, My are MMPS functions, x(k) is the system state

at time or event step k, u(k) is the system input, and y(k) is

the system output. However, in this paper we study stochastic

MMPS systems in which noise and modeling errors are

present. Similar to conventional linear systems, disturbances

and modeling mismatches appear in the systems equations.

The system (1)-(2) then turns into:

x(k) = Mx(x(k−1),u(k),e(k)) (3)

y(k) = My(x(k),u(k),e(k)). (4)

Here, we consider both noise and modeling errors in a single

framework and present them by the vector e(k) that is a

stochastic variable with a certain probability density function

f .

III. MPC FOR MMPS SYSTEMS

This section gives a brief description of MPC for MMPS

systems of the form (3)-(4) (see [22]). Note that in [22] the

error vector was assumed to be in a bounded polyhedral

set and a worst-case scenario, i.e., the maximal possible

objective function, was considered. However, in this paper

we assume that the error vector e(k) is a stochastic variable

with a Gaussian probability distribution. As a result, we can

study stochastic MMPS systems without restricting ourselves

to the worst-case scenario. Following the conventional MPC

methodology [20], we define a cost criterion J that reflects

the reference tracking error (Jout) and the control effort (Jin)

from step k to k +Np −1:

J(k) = Jout(k)+λJin(k)

where Np is the prediction horizon and λ > 0 is a weighting

factor. The aim is to compute the optimal input sequence

u(k), . . . ,u(k +Np −1) that minimizes J(k) subject to linear

or convex constraints on the input (as explained in [8], [22]).

Typical choices of Jout and Jin are:

Jout,1(k) = ‖ỹ(k)− r̃(k)‖1, Jout,∞(k) = ‖ỹ(k)− r̃(k)‖∞,

Jout,t(k) = max{ỹ(k)− r̃(k),0} (5)

Jin,1(k) = ‖ũ(k)‖1, Jin,∞(k) = ‖ũ(k)‖∞,

Jin,t(k) = −∑
i

ũi(k)

where ũ(k) = [uT (k), · · · ,uT (k + Np − 1)]T , r̃(k) =
[rT (k), · · · ,rT (k + Np − 1)]T , ỹ(k) = [yT (k), · · · ,yT (k +
Np−1)]T , and r̃(k) is the reference signal to be tracked. We

assume that the state x(k−1) can be measured or predicted

at each step k and by successive substitution on (3)-(4) we

obtain the system output as

y(k + j) = M j(x(k−1),u(k), . . . ,u(k + j),e(k), . . . ,e(k + j))
(6)

for j = 0, . . . ,Np −1. Clearly y(k + j) is an MMPS function

of x(k−1),u(k), . . . ,u(k+ j),e(k), . . . ,e(k+ j). Define ẽ(k) =
[eT (k), · · · ,eT (k+Np−1)]T ; hence, from (6) we conclude that

all criterion functions in (5) are MMPS functions of ũ,x, ẽ,

and r̃.

In order to reduce the number of decision variables and

the corresponding computational complexity in MPC, one

often introduces a control horizon Nc (≤ Np) and imposes an

additional condition that the input rate should be constant

from step k + Nc − 1 on: ∆u(k + j) = ∆u(k + Nc − 1) for

j = Nc, . . . ,Np − 1. MPC uses a receding horizon principle,

which means that after computation of the optimal control

sequence u(k), . . . ,u(k+Nc−1), only the first control sample

u(k) will be implemented, subsequently the horizon is shifted

one step, and the optimization is restarted after estimating or

measuring the new state vector. Therefore, using a combi-

nation of the above input and output cost criteria in (5) and

considering the fact that we deal with a stochastic system,

we can define the stochastic MPC-MMPS problem can be

defined as
minũ(k) J̃(k)

subject to: c(ũ(k),k) ≤ 0.
(7)

where J̃(k) = E[Jout(k) + λJin(k)] with E[·] denoting the

expected value operator, and c is a convex function of ũ(k).

IV. MMPS FUNCTIONS AND PIECEWISE AFFINE

FUNCTIONS

In this section, we show that we can write an MMPS

function as a difference of two convex functions. To this

end, we need the following definition and propositions.

Definition 1 (Piecewise Affine Function (PWA) [6]): A

scalar-valued function g : R
n → R is said to be a continuous
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PWA function if and only if the domain space R
n is divided

into a finite number of polyhedral regions R1, . . . ,RN

where for each i ∈ {1, . . . ,N}, g can be expressed as

g(x) = αT
i x+βi for any x ∈ Ri with αi ∈ R

n and βi ∈ R and

g is continuous on any boundary between two regions.

Note that for a vector-valued function g : R
n → R

m, each

component of g is a continuous PWA function satisfying the

above conditions.

Proposition 2 ( [9]): Any scalar-valued MMPS function

can be rewritten into the min-max canonical form g(x) =
mini=1,...,K max j∈ni

(αT
i j x + βi j) or into the max-min canon-

ical form g(x) = maxi=1,...,L min j∈mi
(γT

i j x + δi j) for some

integers K,L, non-empty subsets ni and mi of the index

sets {1,2, . . . ,K} and {1,2 . . . ,L} respectively, real numbers

βi j,δi j, and vectors αi j,γi j.

Proposition 3 ( [13], [26]): Any MMPS function can be

written as a continuous PWA function and vice versa.

Proposition 4 ( [19], [30]): The function g(x) =
mini=1,...,K max j∈ni

δi j(x), where δi j(x) = αT
i j x + βi j is an

affine function in x, can be written as a difference of two

convex functions, i.e., g(x) = p(x)− q(x) where p(x) and

q(x) are defined as follows:

p(x) =
K

∑
i=1

max
j∈ni

δi j(x) (8)

q(x) = p(x)−g(x)

= p(x)− min
i=1,...,K

max
j∈ni

δi j(x)

= p(x)+ max
i=1,...,K

(

−max
j∈ni

δi j(x)
)

= max
i=1,...,K

(

p(x)−max
j∈ni

δi j(x)
)

. (9)

Considering the above propositions and specifically equa-

tions (8) and (9), the following corollary is concluded:

Corollary 5: The function g(x) =
maxi=1,...,L min j∈mi

li j(x), where li j(x) = γT
i j x + ξi j is an

affine function in x, can be written as g(x) = s(x)− r(x)
where s(x) and r(x) are both convex functions defined as

follows:

r(x) = −
L

∑
i=1

min
j∈mi

li j(x) (10)

=
L

∑
i=1

max
j∈mi

(−li j(x))

s(x) = r(x)+g(x)

= r(x)+ max
i=1,...,L

min
j∈mi

li j(x)

= max
i=1,...,L

(

r(x)+ min
j∈mi

li j(x)
)

= max
i=1,...,L

(

r(x)−max
j∈mi

(−li j(x))
)

= max
i=1,...,L

(

L

∑
i′=1
i′ 6=i

max
j∈mi′

(−li′ j(x))
)

= max
k=1,...,N

tk(x) (11)

where tk(x) is an affine function in x. Note that the last

equivalence is obtained using the distributive property of

addition w.r.t. maximization.

By Proposition 2, we can write the cost criterion J̃(k) in

(7) as an expected value of a max-min canonical form as

follows:

J̃(k) = E[ max
i=1,...,ℓ

min
j∈mi

(αi j(k)+β T
i j ũ(k)+ γT

i j ẽ(k))] (12)

where αi j(k) is affine in x(k − 1) and r̃(k). To shorten

the notations, let g(ũ(k), ẽ(k)) = maxi=1,...,ℓ min j∈mi
αi j(k)+

β T
i j ũ(k) + γT

i j ẽ(k). Therefore, by using Corollary 5 we can

rewrite (12) as:

J̃(k) = E[g(ũ(k), ẽ(k))]

= E[s(ũ(k), ẽ(k))− r(ũ(k), ẽ(k))]

= E[s(ũ(k), ẽ(k))]−E[r(ũ(k), ẽ(k))] (13)

where s(ũ(k), ẽ(k)) and r(ũ(k), ẽ(k)) are defined as given in

Corollary 5, and where the last equality comes from the fact

that E[·] is a linear operator.

Note that the cost function J̃(k) in (13) results in a non-

convex optimization problem in its current structure. Now to

solve the optimization problem (7) it is only left to find an

efficient way to compute the expected values in (13), which

will be explained in the next section. Note that s(ũ(k), ẽ(k))
and r(ũ(k), ẽ(k)) both consist of a maximization of affine

terms. Therefore, our aim is to find an efficient way to

approximate the following general expression:

h = E[ max
j=1,...,n

(ξ j + γT
j ẽ)] (14)

where ξ j ∈ R and by assumption is an affine term in

ũ(k), γ j ∈ R
nẽ , and ẽ is a Gaussian random variable with

a probability density function f . Note that dependence of

ξ j,γ j, and ẽ on ũ(k) and/or k is dropped for the sake of

brevity.

V. APPROXIMATION METHOD

Since the computation of the expected value in the cost

function J̃(k) in (12), and accordingly in (13) and (14),

in general leads to the numerical integrations, it imposes a

huge computational burden, especially when the number of

stochastic variables increases. A semi-analytic approach for

the integral computation is proposed in [29]. However, this

method is still very time consuming and complex since at

each event step many polyhedra have to be computed in order

to solve the integral (see [29] for more details). Therefore,

it is desired to decrease the computational burden while still

having a good performance. To this end, we apply Jensen’s

inequality and the approximation method proposed in [11],

which is based on raw moments of a random variable.

Theorem 6 (Jensen’s Inequality [5]): Let x be an inte-

grable real-valued random variable and ϕ a convex function

such that ϕ(x) is integrable. Then: ϕ (E [x])≤E [ϕ(x)]. Like-

wise, if ϕ is a concave function, then ϕ (E [x]) ≥ E [ϕ(x)].
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The following theorem shows the relation between (14)

and the proposed approximation method.

Theorem 7: Assume that y = [y1, . . . ,yn]
T is a random

vector such that all its elements are independent and identi-

cally normally distributed. Let x j = y j −L where L ∈ R. The

following inequalities hold:

max(E[x1], . . . ,E[xn])
(i)

≤ E
[

max(x1, . . . ,xn)
]

(ii)

≤ E
[

max(|x1|, . . . , |xn|)
]

(iii)

≤ E
[

(|x1|p + · · ·+ |xn|p)1/p
]

(iv)

≤
(

n

∑
j=1

E
[

|x j|p
]

)1/p

(15)

Proof: Inequalities (i) and (iv) result from Jensen’s

inequality for convex and concave functions, respectively.

Inequality (iii) results from the relation between ∞-norm and

p-norm for p ≥ 1 [12], i.e., ‖x‖∞ ≤ ‖x‖p ≤ n1/p‖x‖∞.

Remark 8: In case that y j, j = 1, . . . ,n is a bounded

random variable, the inequality (ii) turns into an equality.

However, this is not the case since we are considering

Gaussian noise. Hence, in order to decrease the error of

approximating y by |y|, we introduce a scalar L. Since in our

case, it is assumed that y j ∼ N (µ j,σ
2
j ) for j = 1, . . . ,n, we

define L = min j=1,...,n(µ j −3σ j). This choice has been made

due to 3σ -rule which indicates that 99.7% of observations of

a normally distributed random variable fall within the mean

minus 3 times the standard deviation and the mean plus 3

times the standard deviation.

Hence, we can approximate (14) by computing its lower

and upper bound, using the left-hand side and the right-hand

side of (15), as follows:

hlow = max
j=1,...,n

(E[ξ j + γT
j ẽ]) (16)

hup =

(

n

∑
j=1

E
[(

ξ j + γT
j ẽ−L

)p]

)1/p

(17)

which are both convex in ũ [11]. Since for an even positive

integer p, E[xp] = E[|x|p], in the rest of the paper we consider

E[xp] and we assume that p is an even integer larger than or

equal to 2.

As mentioned before, we assume that the elements of the

stochastic vector e are independent and identically normally

distributed, i.e., eℓ ∼ N (µℓ,σ
2
ℓ ) for ℓ = 1, . . . ,ne. Accord-

ingly, the computation of (16) is straightforward, and we only

need to elaborate on the computation of (17). By using the

property of the normal distribution that sum of the indepen-

dent normally distributed random variables also has a normal

distribution [10], we conclude that the random variable ω j =
ξ j + γT

j ẽ−L in (16) is also normally distributed with mean

µ j = ξ j + γT
j µe −L and variance σ2

j = ∑
ne

ℓ=1(γ j)
2
ℓσ2

ℓ , where

µe = [µ1, . . . ,µne ]
T and L = min j=1,...,n(ξ j + γT

j µe − 3σ j).
Note that the expected value E[ω j] in (16) is then nothing

but the p-th raw moment of a normally distributed random

variable, which is by definition equal to

E[xp] =
∫ ∞

−∞
xp 1√

2πσ
e−(x−µ)2/(2σ2)dx

for x ∼ N (µ ,σ2) and finite for all even integers p. Since

we intend to improve the time efficiency and to decrease the

computational complexity by avoiding numerical integration,

we use the closed form of the above moment, given by [31]:

E
[

xp
]

= σ pi−pHp(iµ/σ) (18)

where

Hp(x) ≡ (−1)p exp(x2/2)
dp

dxp
exp(−x2/2)

= p!

p/2

∑
k=0

(−1)kxp−2k

2kk!(p−2k)!

is the p-th order Hermite polynomial, and where the second

equality can be obtained by considering equations (26.2.51)

and (22.3.11) in [1]. Note that the right-hand side of (14) is

real-valued because Hp(x) contains only even powers of x if

p is even. Accordingly, we can rewrite (17) as

hup =

(

n

∑
j=1

σ p
j i−pHp(iµ j/σ j)

)1/p

(19)

In an example we illustrate the procedure given above.

Example: Let g(ũ, ẽ) = max(min(γ1ẽ + ξ1,γ2ẽ +
ξ2),min(γ3ẽ + ξ3,γ4ẽ + ξ4)), where ẽ is a stochastic

vector and all its elements are i.i.d normally distributed

with mean µℓ and variance σ2
ℓ , ℓ = 1, . . . ,nẽ, ξ j ∈ R, and

γ j ∈ R
nẽ for j = 1, . . . ,4. Following Corollary (5), we can

rewrite g(ũ, ẽ) as g(ẽ) = s(ũ, ẽ)− r(ũ, ẽ) where s and r are

convex functions defined as follows:

r(ũ, ẽ) = max(−γT
1 ẽ−ξ1,−γT

2 ẽ−ξ2)

+max(−γT
3 ẽ−ξ3,−γT

4 ẽ−ξ4)

s(ũ, ẽ) = r(ũ, ẽ)+g(ũ, ẽ)

= max
(

max(−γT
1 ẽ−ξ1,−γT

2 ẽ−ξ2),

max(−γT
3 ẽ−ξ3,−γT

4 ẽ−ξ4)
)

= max
(

− γT
1 ẽ−ξ1,−γT

2 ẽ−ξ2,−γT
3 ẽ−ξ3,

− γT
4 ẽ−ξ4)

)

Hence an upper bound for E[g(ũ, ẽ)] can be obtained by

computing an upper bound for E[s(ũ, ẽ)] and a lower bound

for E[r(ũ, ẽ)] where

{E[s(ũ, ẽ)]}up =
(

4

∑
j=1

E[(−γT
j ẽ−ξ j)

p]
)1/p

{E[r(ũ, ẽ)]}low = max
(

− γT
1 E[ẽ]−ξ1, −γT

2 E[ẽ]−ξ2

)

+max
(

− γT
3 E[ẽ]−ξ3, −γT

4 E[ẽ]−ξ4

)

where E[ẽ] = [µ1, . . . ,µne ]
T . �

Consequently, instead of minimizing the cost function

J̃(k), we will minimize its upper bound J̃up(k), which, con-

sidering (13), can be obtained by computing an upper bound

for E[s(ũ(k), ẽ(k))], given in (19), and a lower bound for
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E[r(ũ(k), ẽ(k))], given in (16). In this way the optimization

problem turns into a sequence of convex problems as follows:

min
ũ(k)

J̃up(k)

= min
ũ(k)

({E[s(ũ(k), ẽ(k))]}up −{E[r(ũ(k), ẽ(k))]}low)

= min
ũ(k)

(

hup(ũ(k))−
M

∑
i=1

max
k∈ni

(E[tk(ũ(k), ẽ(k))])
)

= min
ũ(k)

(

hup(ũ(k))+
M

∑
i=1

min
k∈ni

(−E[tk(ũ(k), ẽ(k))])
)

= min
ũ(k)

(

hup(ũ(k))+ min
j=1,...,N

(−E[v j(ũ(k), ẽ(k))])
)

= min
ũ(k)

min
j=1,...,N

(hup(ũ(k))−E[v j(ũ(k), ẽ(k))])

= min
j=1,...,N

min
ũ(k)

(hup(ũ(k))−E[v j(ũ(k), ẽ(k))]) (20)

where tk(ũ(k), ẽ(k)) and v j(ũ(k), ẽ(k)) are affine functions.

Note that minũ(k)(hup(ũ(k))−E[v j(ũ(k), ẽ(k))]) is a convex

optimization problem. Hence by adding the convex con-

straints, mentioned in (7), to the optimization problem (20),

we can solve it efficiently for each j = 1, . . . ,N using convex

optimization algorithms such as interior point methods [24].

VI. EXAMPLE: STOCHASTIC MPC-MMPS PROBLEM

In this example we study the control of the temperature of

a room (see [22]). There, the following continuous discrete-

time PWA system is obtained:

x(k +1) =

{

1/2x(k)+u(k)+ e1(k)+1 if x(k) < 0

u(k)+ e1(k)+1 if x(k) ≥ 0
(21)

y(k) = x(k)+ e2(k). (22)

with the following constraints on the input:

−4 ≤ ∆u(k) = u(k +1)−u(k) ≤ 4 and u(k) ≥ 0 for all k.

Note that this example is similar to the one in [22], except

that here we assume that the error components have standard

normal distribution, i.e., e1(k),e2(k) ∼ N (0,1). So for the

intermediate steps to obtain (21)-(22), the interested reader

is referred to [22]. The equivalent MMPS representation of

(21)–(22) is the following:

x(k +1) = min(1/2x(k)+u(k)+ e1(k)+1,u(k)+ e1(k)+1),

y(k) = x(k)+ e2(k).

Since at sample step k the input u(k) has no influence on

y(k), we choose Np = 3,Nc = 2, ỹ(k) = [ŷ(k + 1) ŷ(k + 2)]T ,

r̃(k) = [r(k + 1) r(k + 2)]T , ũ(k) = [u(k) u(k + 1)]T . Let the

uncertainty vector e(k) be e(k) = [e1(k) e2(k + 1)]T . There-

fore, ẽ(k) = [eT (k) eT (k +1)]T . As a cost criterion we make

a similar choice as [22], i.e.,

J̃(k) =E
[

‖ỹ(k)− r̃(k)‖∞ +λ‖ũ(k)‖1

]

.

where in the cost criterion we have the expected value due

to the stochastic setting while in [22] instead of expected

value, the worst-case value over all disturbances is used due

to the different uncertainty setting of [22]. Since u(k) ≥ 0,
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Fig. 1. Closed-loop optimization results of the stochastic MPC-MMPS
problem. ‘o’-line: upper bound approach; ‘+’-line: exact solution using
numerical integration; dashed line: reference signal; dash-dot and solid line:
error components

we have ‖u(k)‖1 = u(k) and therefore we get the following

max-min expression for J̃(k):

J̃(k) = E
[

max(|ỹ(k)− r̃(k)|)+λ (u(k)+u(k +1))
]

= E
[

max
(

y(k +1)− r(k +1)+λu(k)+λu(k +1),

y(k +2)− r(k +2)+λu(k)+λu(k +1),

− y(k +1)+ r(k +1)+λu(k)+λu(k +1),

− y(k +2)+ r(k +2)+λu(k)+λu(k +1)
)]

(23)

We compute the closed-loop MPC controller by minimizing

the upper bound of the criterion function (as shown in

(20)) over a simulation period [1,20], with λ = 0.01,

x(0) = −6, u(−1) = 0 and the reference signal {r(k)}20
k=1 =

{−5,−5,−5,−5,−3,−3,1,3,3,8,8,8,8,10,10,7,7,7,4,3}.

Figure 1 shows the results of the closed-loop simulation in

which the exact optimal solution obtained from numerical

integration is compared to the one obtained from the

upper bound approach in (20). The top plot shows the

reference signal (dashed line), the output of the system

using numerical integration (‘+’-line), and the one using

the upper bound approach (‘o’-line). The next two plots

present the optimal input sequence and tracking error,

respectively, using numerical integration (‘+’-line) and the

upper bound approach (‘o’-line). The last two plots show

∆u∗(k) = u∗(k+1)−u∗(k) and the error vector, respectively.

The computation time1 using the numerical integration (i.e.,

the exact solution) is 23447 s compared to 323.02 s using

the upper bound approach. Moreover, based on the above

plots, the results of the upper bound approach in (20) is

very close to the one from numerical integration. Hence,

we can solve the stochastic MPC-MMPS problem using

1These times were obtained running Matlab 7.5.0 (R2007b) on a 2.33
GHz Intel Core Duo E655 processor.
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(20) in order to decrease the computation time while still

guaranteeing a good performance.

VII. CONCLUSIONS

We have proposed an approximation method to solve the

stochastic MPC-MMPS optimization problem in particular.

Accordingly, computation of the cost criterion, which is

defined as an expected value of an MMPS function, involves

numerical integration that is both complex and time con-

suming. By rewriting an MMPS function as a difference

of two convex functions, the problem has been narrowed

down to finding the expected value of these two functions.

As a solution we proposed to optimize the upper bound

of the criterion function instead of the criterion function

itself, which leads to computing the upper bound of one of

the convex functions by applying an approximation method

based on raw moments of a random variable, and the lower

bound of the other convex function. These bounds resulted in

an analytic expressions and consequently, the computational

complexity and the computation time have been decreased

considerably while we still have a good performance. In

our future research we will apply this approach to a higher

dimensional and more complex example.
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