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Abstract— This paper proposes several H∞ perfor-
mance preserving controller reduction methods. One of the
advantages of the proposed methods is that the weighting
functions for controller reduction is easy to compute and
is readily available from standard H∞ control design
software. Numerical simulations show that the proposed
methods are at least as effective as the best method
available in the literature.

I. INTRODUCTION

It is well-known that the H∞ control theory and
μ synthesis can be used to design robust performance
controllers for highly complex uncertain systems [2],
[5], [23], [24]. However, since a great many physical
plants are modeled as high order dynamical systems, the
controllers designed with these methodologies typically
have very high orders (much higher than the plant
orders) because of the performance weighting functions
and the model uncertainty weighting functions. It is
therefore desirable to find ways to reduce the orders
of these controllers without sacrificing much of the
performance. Of course, it is critical to reduce the
controller order in such a way so that the performance
degradation is minimized and it should be clearly noted
that the absolute error between the full order controller
and the reduced order is not critical. What is the most
important is that the error in some critical range should
be small [1], [3], [6]–[12], [14]–[19], [21], [22].

Motivated from some of the above recent work on
controller reductions, we propose some additional con-
troller reduction methods that can be easily and effec-
tively performed. In addition, we shall propose some
algorithms that will simplify some existing controller
reduction algorithms.

The paper is organized as follows. In Section 2, we
review the standard frequency weighted balanced re-
duction algorithm and show two seemingly obvious but
contradicting results: 1. the frequency weighted balanced
realization is independent of the particular realizations
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of the model and weighting functions; 2. the scalar
one-sided weighted balanced realization is independent
of the weighting function in input side or output side.
Section 3 reviews all H∞ controller parametrization. In
Section 4, we propose several H∞ controller reduction
methods that can guarantee the closed-loop stability and
performance. In Section 5, we show that the weighted
gramians for some controller reduction algorithms can
be obtained by solving low order Lyapunov equations
which can significantly improve the computational ac-
curacy and efficiency. A numerical example is shown in
Section 6 to illustrate and compare different controller
reduction methods.

The notations used in this paper is fairly standard as
in the book [24].

II. FREQUENCY-WEIGHTED MODEL REDUCTION

In this section, we briefly review the frequency-
weighted balanced model reduction technique proposed
by Enns [4], [20]. Given the original full-order model
G ∈ RH∞, the input weighting matrix Wi ∈ RH∞,
and the output weighting matrix Wo ∈ RH∞, our
objective is to find a lower-order model Gr such that

‖Wo(G − Gr)Wi‖∞
is made as small as possible. Assume that G, Wi, and
Wo have the following state-space realizations:

G =

"
AG BG

CG DG

#
, Wi =

"
Ai Bi

Ci Di

#
, Wo =

"
Ao Bo

Co Do

#

Define

Ain =

"
AG BGCi

0 Ai

#
, Bin =

»
BGDi

Bi

–
,

Aout =

"
AG 0

BoCG Ao

#
, Cout =

ˆ
DoCG Co

˜

P̃ =

"
P P12

P ∗
12 P22

#
, Q̃ =

"
Q Q12

Q∗
12 Q22

#

Then the input weighted Gramian P and the output
weighted Gramian Q satisfy the following equations:

AinP̃ + P̃A∗
in + BinB∗

in = 0 (1)

Q̃Aout + A∗
outQ̃ + C∗

outCout = 0 (2)
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Now let T be a nonsingular matrix such that

TPT ∗ = (T−1)∗QT−1 =

[
Σ1

Σ2

]

(i.e., balanced) with Σ1 = diag(σ1Is1 , . . . , σrIsr ) and
Σ2 = diag(σr+1Isr+1 , . . . , σN IsN ) and partition the
system accordingly as[

TAGT−1 TBG

CGT−1 DG

]
=

[
A11 A12 B1

A21 A22 B2

C1 C2 DG

]

Then a reduced-order model Gr is obtained as

Gr =

[
A11 B1

C1 DG

]

Unfortunately, there is generally no known a priori error
bound for the approximation error and the reduced-order
model Gr is not guaranteed to be stable either.

Theorem 1: The frequency weighted balanced real-
ization is independent of the particular realizations of
G, Wi, and Wo.

Proof: It is known that any two minimal realiza-
tions of a transfer matrix can be related by a similarity
transformation [24]. Then it is easy to show that the
weighted gramians P and Q do not depend on the
particular realizations of Wi and Wo. Now let any other
realization of G be given by

G =

[
TgAGT−1

g TgBG

CGT−1
g DG

]

for a nonsingular matrix Tg. Then the input weighted
Gramian P̂ and the output weighted Gramian Q̂ satisfy

P = T−1
g P̂ (T−1

g )∗, Q = T ∗
g Q̂Tg

and PQ = T−1
g P̂ Q̂Tg. Hence the weighted balanced

realization will not depend on the particular realization
of G either. �

Theorem 2: Let W and G be scalar transfer func-
tions. Then the input weighted balanced realization of
G with input weighting W is the same as the output
weighted balanced realization of G with output weight-
ing W .

Proof: Assume that W and G have the following
state space realizations:

W (s) =
[

Aw Bw

Cw Dw

]
, G(s) =

[
Ag Bg

Cg Dg

]

Then

WT (s) =
[

AT
w CT

w

BT
w DT

w

]
, GT (s) =

[
AT

g CT
g

BT
g DT

g

]

are also state space realizations of W (s) and G(s).

Note that the input weighted balanced realization of
G with input weighting function W is the same as
the output weighted balanced realization of GT with
output weighted function WT since (GW )T = WT GT .
Hence by Theorem 1, the input weighted balanced
realization of G with input weighting W is the same as
the input weighted balanced realization of GT (s) with
input weighting function WT (s). Then the conclusion
follows by noting that GT (s)WT (s) = (W (s)G(s))T =
W (s)G(s). �

It should be noted that the above conclusion does
not hold in general for matrix cases. Furthermore, the
weighted balanced realization with two-sided weighting
functions can be quite tricky as demonstrated in the
following example.

Example 1: Let G1 =
2s + 7

(s + 2)(s + 5)
. Let Wi and

Wo be given by

Wi =
s + 2
s + 1

, Wo =
1

s + 2
.

Then a 1st order weighted balanced approximation with
input weighting function Wi and output weighting func-

tion Wo is given by Ĝ1 =
1.79

s + 2.5783
.

Next let W = WiWo =
1

s + 1
. Then a 1st order

weighted balanced approximation with (input or out-
put) one-sided weighting function W is given by

G̃1 =
1.82

s + 2.62
. Moreover,∥∥∥Wo(G1 − Ĝ1)Wi

∥∥∥
∞

=
∥∥∥W (G1 − Ĝ1)

∥∥∥
∞

= 0.0093

<
∥∥∥W (G1 − G̃1)

∥∥∥
∞

= 0.011.

Next, let G2 =
2(s + 1)

(s + 2)(s + 5)
. Then the 1st order

weighted balanced approximation with input weighting
function Wi and output weighting function Wo is given
by

Ĝ2 =
1.5556

s + 5.7037
and the 1st order weighted balanced approximation with
(input or output) one-sided weighting function W is
given by

G̃2 =
1.53

s + 6.097
.

Moreover,∥∥∥Wo(G2 − Ĝ2)Wi

∥∥∥
∞

=
∥∥∥W (G2 − Ĝ2)

∥∥∥
∞

= 0.0727

>
∥∥∥W (G2 − G̃2)

∥∥∥
∞

= 0.0517.

This example shows that it is not clear if one-sided
weighted method will do better than two-sided weighted
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method since they produce different results for different
problems.

III. H∞ CONTROLLER PARAMETERIZATION

We consider a closed-loop system shown in Figure 1
with the n-th order generalized plant G. Suppose that K
is an m-th order controller which stabilizes the closed-
loop system. We are interested in investigating controller
reduction methods that can preserve the closed-loop
stability and minimize the performance degradation of
the closed-loop systems with reduced order controllers.

G(s)

K(s)

z

y

w

u

� �

�

�

Fig. 1. Closed-loop System Diagram

It is now well known [5], [24] that all stabilizing
controllers satisfying ‖Tzw‖∞ < γ can be parameterized
as

K = F�(M∞, Q), Q ∈ RH∞, ‖Q‖∞ < γ (3)

where M∞ is of the form

M∞ =

[
M11(s) M12(s)

M21(s) M22(s)

]
=

⎡
⎣ Â B̂1 B̂2

Ĉ1 D̂11 D̂12

Ĉ2 D̂21 D̂22

⎤
⎦

such that D̂12 and D̂21 are invertible and Â−B̂2D̂
−1
12 Ĉ1

and Â− B̂1D̂
−1
21 Ĉ2 are both stable, i.e., M−1

12 and M−1
21

are both stable.
The problem to be considered here is to find a

controller K̂ with a minimal possible order such that
the H∞ performance requirement

∥∥∥F�(G, K̂)
∥∥∥
∞

< γ

is satisfied. This is clearly equivalent to finding a Q so
that it satisfies the above constraint and the order of K̂
is minimized. However, directly finding such a Q has
proven to be very difficult.

The following lemma is useful in the subsequent
development [24].

Lemma 1: Consider a feedback system shown below

N

Q

z

y

w

u

� �

�

�

where N is a suitably partitioned matrix

N =

[
N11 N12

N21 N22

]
.

Then, the closed-loop transfer matrix from w to z is
given by

Tzw = F�(N, Q) = N11 + N12Q(I − N22Q)−1N21.

Assume that the feedback loop is well-posed, i.e.,
det(I − N22Q(∞)) �= 0, and either N21 has full row
rank or N12 has full column rank and ‖N‖ ≤ 1 then
‖F�(N, Q)‖∞ < 1 if ‖Q‖∞ < 1.

IV. PROPOSED CONTROLLER REDUCTION METHODS

Note that K0(s) := M11(s) is the central con-
troller that satisfies ‖F�(G, K0)‖∞ < γ. Now sup-
pose K̂ is a reduced order controller that also satisfies
‖F�(G, K̂)‖∞ < γ. Then K̂ can be represented as

K̂ = F�(M∞, Q) = M11 + M12Q(I − M22Q)−1M21

for some Q ∈ H∞. Let

ΔK := K̂ − K0. (4)

Then
ΔK = M12Q(I − M22Q)−1M21

and Q can be expressed in ΔK as

Q = (I + M−1
12 ΔKM−1

21 M22)−1M−1
12 ΔKM−1

21 .

Hence finding a reduced order controller K̂ such that
‖F�(G, K̂)‖∞ < γ is reduced to find a K̂ such that
Q ∈ H∞ and ‖Q‖∞ < γ.

Note that M−1
12 ∈ H∞, M−1

21 ∈ H∞, and it can also
be verified that M−1

21 M22 ∈ H∞ and M22M
−1
12 ∈ H∞.

Lemma 2: Suppose that ΔK := K̂ − K0 is stable.
Then

Q = (I + M−1
12 ΔKM−1

21 M22)−1M−1
12 ΔKM−1

21 ∈ H∞

if one of the following conditions holds

(a)
∥∥ΔKM−1

21 M22M
−1
12

∥∥
∞ < 1;

(b)
∥∥M−1

21 M22M
−1
12 ΔK

∥∥
∞ < 1;

(c)
∥∥M−1

12 ΔKM−1
21 M22

∥∥
∞ < 1;

(d)
∥∥M22M

−1
12 ΔKM−1

21

∥∥
∞ < 1;

(e)
∥∥LM−1

12 ΔKM−1
21 M22L

−1
∥∥
∞ < 1 for some square

L such that L, L−1 ∈ H∞;

(f)
∥∥J−1M22M

−1
12 ΔKM−1

21 J
∥∥
∞ < 1 for some square

J such that J, J−1 ∈ H∞.
Conditions (a) and (b) were used in [19] to obtain

reduced order controllers with impressive results.

Lemma 3: Let L and J be square transfer matrices
such that L, L−1, J, J−1 ∈ H∞. Then

min
L,L−1∈H∞

∥∥LM−1
12 ΔKM−1

21 M22L
−1

∥∥
∞
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≤ ∥∥ΔKM−1
21 M22M

−1
12

∥∥
∞

and

min
J,J−1∈H∞

∥∥J−1M22M
−1
12 ΔKM−1

21 J
∥∥
∞

≤ ∥∥M−1
21 M22M

−1
12 ΔK

∥∥
∞ .

This lemma shows that the least conservative stability
conditions are (e) and (f) with appropriate L and J .
Unfortunately, finding the optimal L and J is quite
difficult and further research is needed.

However, there is no guarantee that ‖Q‖∞ < γ will be
satisfied even if any of the above conditions is satisfied.
Hence the reduced order controller is not guaranteed to
satisfy ‖F�(G, K̂)‖∞ < γ and this condition has to be
verified for each reduced controller.

Another approach proposed in [10] considers the error
M−1

12 ΔKM−1
21 .

Lemma 4: Suppose that ΔK := K̂ − K0 is stable.
Then

Q = (I + M−1
12 ΔKM−1

21 M22)−1M−1
12 ΔKM−1

21

is stable and ‖Q‖∞ < γ if∥∥M−1
12 ΔKM−1

21

∥∥
∞ <

γ

1 + γ ‖M22‖∞
.

Hence ‖F�(G, K̂)‖∞ < γ is guaranteed if the
weighted approximation error

∥∥M−1
12 ΔKM−1

21

∥∥
∞ is suf-

ficiently small.

Nevertheless, this method may still be conservative.
We shall propose some other methods below.

Theorem 3: Let K0 = M11 be a stabilizing con-
troller such that ‖F�(G, K0)‖∞ < γ and ε > 0.
Then K̂ is also a stabilizing controller such that∥∥∥F�(G, K̂)

∥∥∥
∞

< γ if

∥∥∥M−1
12 (K̂ − K0)M−1

21

[
εγM22 I

]∥∥∥
∞

<
εγ√

1 + ε2
.

Proof: Let

Δ̃ =
ˆ

Δ̃1 Δ̃2

˜
:= M−1

12 (K̂ − K0)M
−1
21

ˆ
εγM22 I

˜
Then

Q = (I +
Δ̃1

γε
)−1Δ̃2 =

„
I +

Δ̃

γε

»
I
0

–«−1

Δ̃

»
0
I

–

= F�

„
N,

√
1 + ε2

ε

Δ̃

γ

«
γ

where

N =

2
64

0 ε√
1+ε2

I»
0
I

– "
1√

1+ε2
I

0

# 3
75

and N ′N = I . By Lemma 1, ‖Q‖∞ < γ if‚‚‚‚
√

1 + ε2

ε

Δ̃

γ

‚‚‚‚
∞

< 1

or equivalently
∥∥∥Δ̃

∥∥∥
∞

<
εγ√

1 + ε2
. �

Similarly, we have the following dual result.

Theorem 4: Let K0 = M11 be a stabilizing con-
troller such that ‖F�(G, K0)‖∞ < γ and ε > 0.
Then K̂ is also a stabilizing controller such that∥∥∥F�(G, K̂)

∥∥∥
∞

< γ if‚‚‚‚
»

εγM22

I

–
M−1

12 (K̂ − K0)M
−1
21

‚‚‚‚
∞

<
εγ√

1 + ε2
.

Remark 1: Note that ε > 0 should be used as a
design parameter. One may start from ε = 0 and in this
case the above controller reduction methods are reduced
to ∥∥∥M−1

12 (K̂ − K0)M−1
21

∥∥∥
∞

.

In this case, the H∞ performance is satisfied if the
above error is sufficiently small by Lemma 4. However,
it should be noted that the H∞ performance may
still be satisfied even if the inequality in Lemma 4 is
not satisfied. Hence it is necessary to verify the exact
H∞ performance for each reduced order controller. On
the other hand, when ε is very large, the method is
equivalent to∥∥∥M−1

12 (K̂ − K0)M−1
21 M22

∥∥∥
∞

or ∥∥∥M22M
−1
12 (K̂ − K0)M−1

21

∥∥∥
∞

.

Again the exact H∞ performance has to be verified for
each reduced order controller.

H∞ Controller Reduction KZ Algorithm 1
• Find a reduced order controller K̂ using the fol-

lowing criterion∥∥∥M−1
12 (K̂ − K0)M−1

21

[
εγM22 I

]∥∥∥
∞

.

H∞ Controller Reduction KZ Algorithm 2
• Find a reduced order controller K̂ using the fol-

lowing criterion∥∥∥∥
[

εγM22

I

]
M−1

12 (K̂ − K0)M−1
21

∥∥∥∥
∞

.

The related state space realizations of the relevant
transfer matrices are given by

M−1
21

ˆ
εγM22 I

˜
=2

4 Â − B̂1D̂
−1
21 Ĉ2 εγ

“
B̂2 − B̂1D̂

−1
21 D̂22

”
−B̂1D̂

−1
21

D̂−1
21 Ĉ2 εγD̂−1

21 D̂22 D̂−1
21

3
5
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»
εγM22

I

–
M−1

12

=

2
64

Â − B̂2D̂
−1
12 Ĉ1 B̂2D̂

−1
12

εγ
“
Ĉ2 − D̂22D̂

−1
12 Ĉ1

”
εγD̂22D̂

−1
12

−D̂−1
12 Ĉ1 D̂−1

12

3
75 .

V. COMPUTATIONAL ISSUES IN WEIGHTED

BALANCED CONTROLLER REDUCTION

In this section, we shall look at how the frequency-
weighted balanced model reduction method in Section 2
can be used to solve the controller reductions in the last
section. We shall start with the simple case

HY Algorithm :
∥∥∥M−1

12 (K̂ − K0)M−1
21

∥∥∥
∞

.

Define

G = K0 = M11 =

"
Â B̂1

Ĉ1 D̂11

#

Wi = M−1
21 =

"
Â − B̂1D̂

−1
21 Ĉ2 −B̂1D̂

−1
21

D̂−1
21 Ĉ2 D̂−1

21

#

Wo = M−1
12 =

"
Â − B̂2D̂

−1
12 Ĉ1 −B̂2D̂

−1
12

D̂−1
12 Ĉ1 D̂−1

12

#
.

Theorem 5: Suppose Â is stable. Then the input
weighted gramian P and the output weighted gramian
Q in HY Algorithm can be computed from the following
Lyapunov equations

(Â − B̂1D̂
−1
21 Ĉ2)P + P (Â − B̂1D̂

−1
21 Ĉ2)

′ (5)

+B̂1D̂
−1
21 (B̂1D̂

−1
21 )′ = 0

Q(Â − B̂2D̂
−1
12 Ĉ1) + (Â − B̂2D̂

−1
12 Ĉ1)

′Q (6)

+(D̂−1
12 Ĉ1)

′D̂−1
12 Ĉ1 = 0

Similarly, we have the following results.

Theorem 6: Suppose Â is stable.
(a) The output weighted gramian in KZ Algorithm 1

is the Q obtained in equation (5).
(b) The input weighted gramian in KZ Algorithm 2 is

the P obtained in equation (6).

These results show that the controller reduction algo-
rithms HY, KZ1, and KZ2 can be performed by solving
some lower order Lyapunov equations.

Note that if Â is not stable, then we need to write

K0 = K0s + K0u

such that K0s is stable and K0u is antistable. Now let
the reduced order controller be

K̂ = K̂0s + K0u

such that K̂0s is a stable approximation of K0s obtained
using any algorithm proposed above.

VI. AN EXAMPLE

We consider a four-disk control system studied by
Enns [1984]. We shall set up the dynamical system in
the standard linear fractional transformation form

ẋ = Ax + B1w + B2u

z =
[ √

q1H
0

]
x +

[
0
I

]
u

y = C2x +
[

0 I
]
w

where q1 = 1 × 10−6, q2 = 1 and

A =
[

a 0
I7 07×1

]
, B2 =

[
1

07×1

]

a =
[ −0.161 −6.004 −0.58215 −9.9835

−0.40727 −3.982 0
]

B1 =
[ √

q2B2 0
]
,

H =
[

0 0 0 0 0.55 11 1.32 18
]

C2 =
[

0 0 6.4432× 10−3 2.3196× 10−3

7.1252× 10−2 1.0002 0.10455 0.99551
]
.

The optimal H∞ norm for Tzw is γopt = 1.1272. We
choose γ = 1.2 to compute an 8th order suboptimal
controller Ko. The controller is reduced using several
methods as described in this paper and in the book [24].
The results are listed in Table I where the following
abbreviations are used to represent the model reduction
methods in addition to those used in [24].

• NU1:
∥∥M−1

21 M22M
−1
12 ΔK

∥∥
∞

• NU2:
∥∥ΔKM−1

21 M22M
−1
12

∥∥
∞

• KZ3:
∥∥M−1

12 ΔKM−1
21 M22

∥∥
∞

• KZ4:
∥∥M22M

−1
12 ΔKM−1

21

∥∥
∞

• YH:
∥∥M−1

12 ΔKM−1
21

∥∥
∞

• YHx:
∥∥M−1

21 M−1
12 ΔK

∥∥
∞ =

∥∥ΔKM−1
21 M−1

12

∥∥
∞

Table I shows that the performance weighted con-
troller reduction methods, PWA, PWRCF, PWLCF,
NU1, NU2, KZ1 , KZ2, KZ3, KZ4, YH, YHx, all
work very well. It also shows that the unweighted
reduction method, UWRCF, also works well. However,
it is believed that this is true mostly because of the
particular structure of the system matrices [24]. Note
that Algorithms KZ1 and KZ2 are reduced to YH when
ε = 0. On the other hand, the Algorithms KZ1 and KZ2
are reduced to KZ3 and KZ4 respectively as ε → ∞.

The case YHx is created only for this example be-
cause M−1

21 M−1
12 may not make sense in general if

the number of inputs is not the same as the num-
ber of outputs. Another reason for listing this case
is to show that even though

∥∥M−1
12 ΔKM−1

21

∥∥
∞ =∥∥M−1

21 M−1
12 ΔK

∥∥
∞ =

∥∥ΔKM−1
21 M−1

12

∥∥
∞ for a fixed

ΔK , ΔK will be different when the weighted model
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reduction method is applied to these different criteria to
obtain the reduced order controllers.

Order of 7 6 5 4 3 2
K̂

PWA 1.196 1.196 1.199 1.197 U 4.99
PWRCF 1.2 1.196 1.207 1.195 2.98 1.67
PWLCF 1.197 1.196 U 1.197 U U
UWA U 1.321 U U U U

UWRCF 1.198 1.196 1.199 1.196 U U
UWLCF 1.985 1.258 27.04 5.059 U U

SWA 1.327 1.199 2.27 1.47 23.5 U
SWRCF 1.236 1.197 1.251 1.201 13.9 1.42
SWLCF 1.417 1.217 48.04 3.031 U U

NU1 1.197 1.196 1.199 1.196 U 2.98
NU2 1.197 1.196 1.199 1.196 U 2.98
KZ3 U 1.196 U 1.197 U U
KZ4 U 1.196 U 1.197 U U
YH U 1.196 U 1.197 U U
YHx 1.197 1.196 1.199 1.196 U 3.11

KZ1 ε = 0.1 U 1.196 U 1.197 U U
KZ1 ε = 1 U 1.196 U 1.197 U U
KZ1 ε = ∞ U 1.196 U 1.197 U U
KZ2 ε = 0.1 U 1.196 U 1.197 U U
KZ2 ε = 1 U 1.196 U 1.197 U U
KZ2 ε = ∞ U 1.196 U 1.197 U U

TABLE I
‚
‚
‚F�(G, K̂)

‚
‚
‚
∞

WITH REDUCED ORDER CONTROLLER:

U–CLOSED-LOOP SYSTEM IS UNSTABLE

VII. CONCLUSIONS

In this paper, we first show that the weighted balanced
realization (or model reduction) does not depend on
the particular realizations of the weighting functions
and the system. This is not surprising and seems to
be well accepted. However, our past limited numerical
experience shows that this result may not be so obvious
from numerical simulations with high order weighting
functions and systems that are not well-conditioned.
Indeed, numerical simulations often seem to suggest
that results are realization dependent. The details are
not given here due to space limitation and will be
reported in [13]. We have also shown that the one-sided
scalar weighted balanced realization is not relevant if the
weighting function is in the input or in the output. This
in turn implies that for our SISO example, the results
from NU1 and NU2 are the same which is confirmed
from our numerical simulations. However, the results
from NU1 and NU2 with one-sided weighting functions
are in general not the same as the results from KZ3 and
KZ4 with two-sided weighting functions.

To reduce the computational burden in the controller
reduction algorithms, we have shown that YH controller
reduction method can be obtained by solving two n-
th order Lyapunov equations. Furthermore, the two n-th
order Lyapunov equations are also used in the KZ1-KZ4
algorithms.

Although PWA, PWRCF, PWLCF, NU1, NU2, KZ1,
KZ2, KZ3, KZ4, and YH all work very well, one of the

advantages of the proposed methods and NU1, NU2,
and YH methods is that the H∞ controller reduction
weighting functions can be obtained easily from the
controller parameterization matrix M∞.
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