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Abstract— We propose a framework of robust approximate
dynamic programming (robust-ADP), which is aimed at com-
puting globally asymptotically stabilizing, suboptimal, control
laws with robustness to dynamic uncertainties, via on-line/off-
line learning. The system studied in this paper is an inter-
connection of a linear model with fully measurable state and
unknown dynamics, and a nonlinear system with unmeasured
state and unknown system order and dynamics. Differently
from other ADP schemes in the past literature, the robust-ADP
framework allows for learning from an unknown environment
in the presence of dynamic uncertainties. The main contribution
of the paper is to show that robust optimal control problems
can be solved by integration of ADP and small-gain techniques.

I. INTRODUCTION

Approximate/adaptive dynamic programming (ADP) is a

methodology inspired by the learning behavior from bio-

logical systems, and it has become an effective approach

for solving optimal control problems in recent years. In

an ADP structure, an agent computes the optimal control

policy by gradually adapting to the uncertain environment

over time, i.e., it optimizes a predefined cost function by

utilizing the model state and limited output information.

The concept of ADP was originally developed by Werbos

in [21], [22], [23], and [24]. Based on the specific ADP

schemes: heuristic dynamic programming (HDP) [24] and

action-dependent heuristic dynamic programming (ADHDP)

[22] (or Q-learning [20]), various ADP algorithms emerged,

and they have been studied both in theory and applications

(see, for example, [2], [1], [18], [14], [26], [5], [6]).

A common assumption in previous ADP-based control

methods is that the plant to be controlled is of a known

system order, and its state is either directly measurable, or

reconstructible from output measurements [14], [5]. Howev-

er, the system order may be unknown because of the dynamic

uncertainty. This problem, often formulated as robust control,

cannot be viewed as a special case of output feedback

control. Therefore, as pointed out by Werbos in [25], an

important question in ADP is how to conduct learning

and assure convergence using only limited information and

partial-state measurements of a given system, the order of

which is completely unknown. In this case, the ADP schemes

developed in the past literature may fail to guarantee not only
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optimality, but also the stability of the closed-loop system

when dynamic uncertainty occurs.

Therefore, in this paper we propose new learning strategies

for ADP with robustness to dynamic uncertainties. In order to

perform stability analysis for the interconnected systems, we

adopt the notion of input-to-state stability (ISS) [15], [16],

which has been proved to be an efficient tool for nonlinear

system analysis and synthesis. Then, we develop both on-

line and off-line learning strategies that compute globally

asymptotically stabilizing control policies for the overall

system in finite steps. We achieve the robust stability and

suboptimality properties for the overall system, by means of

Lyapunov and small-gain techniques [9], [7].

This paper is organized as follows. In Section 2, we

formulate the control problem and introduce some tools from

modern nonlinear control theory and an iterative algorithm

for solving LQR problems. In Section 3, we develop both

on-line and off-line robust-ADP algorithms, and prove their

convergence. In Section 4, two examples are numerically

simulated to illustrate the efficiency of the presented algo-

rithms. Finally, concluding remarks are given in Section 5.

Throughout this paper, we use R+ and Z+ to denote

the sets of non-negative real numbers and non-negative

integers, respectively. Vertical bars | · | represent the Eu-

clidean norm for vectors, or the induced matrix norm for

matrices. For any piecewise continuous function u, ‖u‖
denotes sup{|u(t)|, t ≥ 0}. We use ⊗ to indicate Kronecker

product, and vec(A) is defined to be the mn-vector formed

by stacking the columns of A on top of one another, i.e.,

vec(A) = [aT1 aT2 · · · aTm]T , where ai ∈ R
n are the columns

of A ∈ R
n×m. In stands for the n × n identity matrix.

A control law is also called a policy, and it is said to be

globally asymptotically stabilizing if under the policy, the

closed-loop system is globally asymptotically stable (GAS)

at an equilibrium of interest [10].

II. PROBLEM FORMULATION AND PRELIMINARIES

In this section, we begin with the problem formulation.

Then, we recall some important tools from modern nonlinear

control, and an iterative algorithm for solving linear optimal

control problems. All these tools will be helpful for devel-

oping robust-ADP algorithms in the next section.

A. Problem formulation

We consider the following continuous-time system which

is a linear model interconnected with nonlinear dynamic
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uncertainties, characterized by the z-system:

ẋ = Ax+B(u+∆(z, y)), (1)

ż = g(z, y), y = Cx, (2)

where x ∈ R
n is the measured component of the state

available for feedback control; z ∈ R
q is the unmeasurable

part of the state with unknown order q; u ∈ R
m is the control

input; y ∈ R
p is the system output; A ∈ R

n×n, B ∈ R
n×m,

C ∈ R
p×n are constant matrices with (A,B) controllable,

(A,C) observable, and A unknown; g : Rq ×R
p → R

q and

∆ : R
q × R

p → R
m are two unknown locally Lipschitz

functions satisfying g(0, 0) = 0 and ∆(0, 0) = 0.

Our goal is to find, if possible, a control policy that

globally asymptotically stabilizes the system composed of

(1) and (2), while achieving some optimality properties.

Although robust adaptive and nonlinear control theory can

be applied to obtain an adaptive regulator [8], the obtained

adaptive controllers are often not optimal. By means of ADP,

we compute the control policy through direct on-line or off-

line learning in an attempt to optimize some given integral-

quadratic cost function. A fundamental difference between

the robust-ADP problem we address in this paper and pre-

viously introduced ADP-based feedback control problems

is that we address the presence of dynamic uncertainties

with unknown system order. This problem of robust-ADP-

based feedback control design may seem to be a special

case of output feedback ADP control. However, here we

do not seek to build up a nonlinear observer to reconstruct

the unmeasured state. Nonetheless, it should be noted that

nonlinear observer design itself is a daunting task within the

control systems community.

B. The ISS property

Consider the following control system having x ∈ R
n as

the state, u ∈ R
m as the input, and y ∈ R

p as the output:

ẋ = f(x, u), (3)

y = h(x, u), (4)

where f is a locally Lipschitz function and h is a continuous

function.

Definition 2.1 ([15]): The system comprised of (3)-(4) is

said to be input-to-state stable (ISS) with gain γ if, for

any measurable essentially bounded input u and any initial

condition x(0), the solution x(t) exists for every t ≥ 0 and

satisfies

|x(t)| ≤ β(|x(0)|, t) + γ(‖u‖), (5)

where β, γ are of class KL and of class K, respectively [10].

The following theorem gives necessary and sufficient

conditions for the ISS property.

Theorem 2.1 ([16]): System (3) is ISS if and only if there

exists a continuously differentiable function V : Rn → R+,

such that the following hold for all (x, u) ∈ R
n × R

m:

α1(|x|) ≤ V (x) ≤ α2(|x|), (6)
∂V
∂x f(x, u) ≤ −α3(|x|) + α4(|u|), (7)

where α1, α2, α3 are of class K∞, and α4 is of class K.

C. Linear quadratic regulator (LQR) theory

Consider the linear system

ẋ = Ax+Bu, (8)

where A, B are the same as in (1). The objective of the

problem is to find an optimal linear feedback gain K∗ ∈
R

m×n, such that under control policy u = −K∗x, the

following cost is minimized

J =

∫

∞

0

(

xTQx+ uTRu
)

dt, (9)

where Q ≥ 0, R > 0 are symmetric matrices, with (A,Q1/2)
observable.

According to linear optimal control theory [13], the opti-

mal feedback gain is determined as

K∗ = R−1BTP ∗, (10)

where the symmetric matrix P ∗ > 0 is the unique solution

of the well-known algebraic Riccati equation (ARE) [13]:

P ∗A+ATP ∗ +Q− P ∗BR−1BTP ∗ = 0. (11)

The following Kleinman algorithm [11] gives an efficient

way to numerically solve the ARE (11):

1) Choose K0 such that A − BK0 is Hurwitz and set

k = 0.

2) Solve Pk from the following Lyapunov equation:

PkAk +AT
k Pk +Q+KT

k RKk = 0 (12)

where Ak = A−BKk.

3) Update the feedback gain matrix using

Kk+1 = R−1BTPk. (13)

4) Go to 2), and repeat until convergence is attained.

Under this algorithm, it has been shown in [11] that

1) Ak is Hurwitz.

2) P ∗ ≤ Pk+1 ≤ Pk.

3) lim
k→∞

Kk = K∗, lim
k→∞

Pk = P ∗.

III. ROBUST-ADP DESIGNS

In this section, we first investigate how optimality and sta-

bility are affected in the presence of dynamic uncertainties.

Then, we develop on-line and off-line robust-ADP learning

strategies to obtain globally and robustly asymptotically

stabilizing control policies.

A. Optimality and asymptotic stability

To begin with, let us make a few assumptions, which are

often required in the literature of nonlinear control design

[12], [4], [8].

Assumption 3.1: The z-subsystem (2) is ISS with respect

to y as the input.

Assumption 3.2: There exist a continuously differen-

tiable, positive definite and radially unbounded function W :
R

q → R, and two constants c1 > 0, c2 ≥ 0, such that

∂W

∂z
g(z, y) ≤ −c1|∆(z, y)|2 + c2|y|

2, (14)
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for all z ∈ R
q and y ∈ R

p.

The following lemma connects the GAS property with the

selection of the weighting matrices Q and R.

Lemma 3.1: Let u = −K∗x be the optimal control

policy of system (8) and assume the weighting matrices in

(9) satisfying Q > γCTC and R = Im. Then, the control

policy u = −K∗x globally asymptotically stabilizes (1) and

(2), if γ > c2
c1

.

Proof: Define V = xTP ∗x. Then, along the solutions

of (1), we have

V̇ = xT
[

(A−BK∗)TP ∗ + P ∗(A−BK∗)
]

x

+ xTP ∗B∆+∆TBTP ∗x

≤ −xTQx− |∆−BTP ∗x|2 + |∆|2

≤ −γ|y|2 + |∆|2. (15)

Setting V1 = V (x)+ 1
c1
W (z), and using Assumption 3.2,

along the trajectories of (1) and (2) we have

V̇1 = V̇ +
1

c1
Ẇ ≤ −(γ −

c2
c1

)|y|2.

By Assumption 3.1, all solutions of the closed-loop system

are globally bounded. Moreover, using the observability of

(A,C) together with Assumption 3.1, a direct application of

LaSalle’s Invariance Principle [10] yields the GAS property

of the trivial solution of the closed-loop system.

The next theorem shows that the GAS property can be

attained after finite steps of iterations using Kleinman’s

algorithm introduced in the previous section.

Remark 3.1: Note that only the ratio c2/c1 is necessary

for the selection of an appropriate matrix Q. The condition

on γ and c2/c1 can also be interpreted using the small-gain

theorem [9] under the Lyapunov formulation [7].

Lemma 3.2: Under the conditions of Lemma 3.1, there

exists a sufficiently small constant ǫ > 0, such that for all

symmetric matrix P > 0 satisfying |P −P ∗| < ǫ, the overall

system composed of (1) and (2) is GAS under u = −BTPx.

Proof: For any symmetric matrix P > 0, we have

ATP + PA+ Q̂− PBBTP = 0, (16)

where

Q̂ = Q+ (P ∗ − P )A+AT (P ∗ − P )

+PBBTP − P ∗BBTP ∗.

According to the conditions of Lemma 3.1, there exists

a constant α > 0, such that Q − γCTC > αIn. Then, by

continuity, there exists ǫ > 0, such that for any symmetric

matrix P > 0 satisfying |P−P ∗| < ǫ, we have Q̂ > Q−αIn,

which implies Q̂ > γCTC. Therefore, by Lemma 3.1,

the control policy u = −BTPx globally asymptotically

stabilizes (1) and (2).

For simplicity, in the remainder of this paper we assume

R = Im, leaving the matrix Q to be designed.

B. On-line learning strategy

Now, we investigate how to compute a globally asymp-

totically stabilizing control policy on-line. We first consider

solving the equation (12) using the measurable model state

and the output information about the dynamic uncertainties.

For this purpose, let us make the following assumption.

Assumption 3.3: The output, ∆(z, y), of the dynamic

uncertainty, is assumed to be available on some disjoint

intervals
∞
⋃

j=0

[tj , tj + δt]
⋂

[0, t], (17)

where t ≥ 0 denotes the current time, δt > 0 is a positive

constant, {tj} is an increasing sequence satisfying 0 ≤ tj <
tj + δt < tj+1 for all j ∈ Z+.

Next, we show that given Kk such that A − BKk is

Hurwitz, it is possible to solve Pk from (12) using the

available information of x and ∆, instead of the matrix A.

Let v = −Kkx and u = v+ e, where e is the exploration

noise to be determined later. Then, for any t ≥ 0, along the

trajectories of (1), we have

xT (t+ δt)Pkx(t+δt)−xT (t)Pkx(t)

=

∫ t+δt

t

[

xT (AT
k Pk+PkAk)x+2xTPkBŵ

]

dτ (18)

=

∫ t+δt

t

(

−xTQx− |v|2 + 2xTPkB∆̂
)

dτ,

where Ak = A−BKk, ∆̂ = ∆+ e.

Applying Kronecker product representation [3] gives

xTPkx = (xT ⊗ xT )vec(Pk), (19)

xTPkB∆̂ = (∆̂T ⊗ xT )(BT ⊗ In)vec(Pk). (20)

Therefore, (18) is equivalent to

[xT (t)⊗ xT (t)− xT (t+ δt)⊗ xT (t+ δt)

+2

∫ t+δt

t

(∆̂T ⊗ xT )dτ (BT ⊗ In)]vec(P )

=

∫ t+δt

t

(

xTQx+ |v|2
)

dτ.

Furthermore, define

Φk=













∆x(t
(k)
0 ) + 2I∆x(t

(k)
0 )(BT⊗In)

∆x(t
(k)
1 ) + 2I∆x(t

(k)
1 )(BT⊗In)

...

∆x(t
(k)
l−1) + 2I∆x(t

(k)
l−1)(B

T⊗In)













, Ψk=













c(t
(k)
0 )

c(t
(k)
1 )
...

c(t
(k)
l−1)













,

∆x(t) = xT (t)⊗ xT (t)− xT (t+ δt)⊗ xT (t+ δt),

I∆x(t) =

∫ t+δt

t

(

∆̂T ⊗ xT
)

dτ,

c(t) =

∫ t+δt

t

(

xTQx+ |v|2
)

dτ,

where l can be any integer satisfying l ≥ n2, {t
(k)
j }l−1

j=0 is a

subset of {tj} defined in Assumption 3.3, the superscript (k)
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denotes that on intervals [t
(k)
j , t

(k)
j +δt] for j = 0, 1, · · · , l−

1, the control policy applied to the system is u = −Kkx+e.

Consequently, (18) implies the following algebraic linear

equations:

Φkvec(Pk) = Ψk (21)

Next, to guarantee the uniqueness of Pk in (21), we make

the following assumption.

Assumption 3.4: Φk has full column rank for all k ∈ Z+,

i.e., rank(Φk) = n2.

Remark 3.2: A practical way to satisfy Assumption 3.4

is by choosing the appropriate exploration noise e(t). The

exploration noise can be random noise as used in [2], [1]. In

this paper, we construct e(t) by adding sinusoidal functions

with different frequencies as in [5].

Under Assumption 3.4, vec(Pk) can be solved from

vec(Pk) = (ΦT
kΦk)

−1ΦT
kΨk. (22)

So far, we have developed a way that solves the Lyapunov

equation (12) using the information of x and ∆ obtained on-

line, instead of the knowledge of A. The equivalence between

(12) and (21) is shown in the following lemma.

Lemma 3.3: Under Assumption 3.4, the solutions Pk of

(12) and (21) are the same.

Proof: From the above derivations, we see that for any

given Kk such that A − BKk is Hurwitz, the solution Pk

of (12) satisfies (21). Under Assumption 3.4, the solution of

(21) is unique. On the other hand, any solution of (21) also

satisfies (12), and we know the solution of (12) is unique due

to the fact that A−BKk is Hurwitz. Therefore, the solutions

of (12) and (21) are thus the same.

Now, we give the on-line robust-ADP algorithm:

Algorithm 3.1: (The on-line robust-ADP Algorithm)

1) Choose K0 such that A−BK0 is Hurwitz. Set γ > c2
c1

,

a sufficiently small constant ǫ > 0, and let k = 0.

2) Apply the control policy u = −Kkx+ e to the system

composed of (1) and (2). Solve Pk from (22).

3) Update the control policy by obtaining a new feedback

gain matrix Kk+1 using (13).

4) Go to 5) if |Pk+1 −Pk| ≤ ǫ. Otherwise, set k = k+1
and go to 2).

5) Apply the control policy u = −Kkx to (1) and (2).

Remark 3.3: By Lemma 3.2 and Lemma 3.3, there exists

a constant ǫ′ > 0, such that |Pk − P ∗| < ǫ′ implies

uk = −BTPkx is a globally and robustly asymptotically

stabilizing control policy. By [11], we can always find a

sufficiently small constant ǫ > 0 such that the following

implication holds

|Pk − Pk+1| ≤ ǫ ⇒ |Pk − P ∗| ≤ ǫ′. (23)

Hence, under the control policy u = −BTPkx applied in

Step 5), the system composed of (1) and (2) is GAS.

The following theorem summarizes the convergence property

of the on-line robust-ADP algorithm leading to a GAS-

stabilizing controller with suboptimality properties.

Theorem 3.1: Under Assumptions 3.1, 3.2, 3.3 and 3.4,

Algorithm 3.1 gives a control policy that globally and

robustly asymptotically stabilizes (1)-(2) and achieves some

suboptimality property.

C. Off-line learning strategy

In a more general setting, the output w(z) of dynamic

uncertain z-system is not available at all, hence Assumption

3.3 may not hold. To avoid this obstacle, we develop an

off-line robust-ADP strategy, which computes a globally

asymptotically stabilizing control policy only using the input

and state information of (8) on [0, T ] where T can be any

positive number.

Consider u = v to be the input of (8) on the interval

[0, T ], and let the corresponding solution be xv(t). Our goal

is to compute a globally asymptotically stabilizing control

law based on v(t) and xv(t). To this end, we first randomly

select a sequence {tj}
l
j=0, such that t0 = 0, tl = T , and

tj < tj+1 for j = 0, 1, · · · , l − 1.

Next, notice that for any stabilizing control policy uk =
−Kkxv , we can rewrite (8) as

ẋv = Axv +Buk +B(v − uk), (24)

where uk is regarded as the virtual input to the system, and

v − uk is treated as the measurable disturbance input.

Now, along the trajectories of (24), it follows that

xv(tj)
TPkxv(tj)− xv(tj+1)

TPkxv(tj+1)

=

∫ tj+1

tj

xT
v (Q+KT

k Kk)xvdτ (25)

−2

∫ tj+1

tj

xT
v PkB(v +Kkxv)dτ.

Using Kronecker product representation, we have

[

xT
v (tj)⊗xT

v (tj)−xT
v (tj+1)⊗xT

v (tj+1)
]

vec(Pk)

=

∫ tj+1

tj

(xT
v ⊗ xT

v )vec(Q+KT
k Kk)dτ

−2

∫ tj+1

tj

(vT ⊗ xT
v )(B

T ⊗ In)vec(Pk)dτ (26)

−2

∫ tj+1

tj

(xT
v ⊗ xT

v )(K
T
k B

T ⊗ In)vec(Pk)dτ.

Further, define

Θk =











δx1+2I1vx(B
T ⊗In)+2I1xx(K

T
k B

T ⊗In)
δx2+2I2vx(B

T ⊗In)+2I2xx(K
T
k B

T ⊗In)
...

δxl+2I lvx(B
T ⊗In)+2I lxx(K

T
k B

T ⊗In)











l×n2

,

Ξk =











I1xx
I2xx

...

I lxx











l×n2

vec(Q+KT
k Kk),
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where, for all j = 1, 2, · · · , l,

δxj = xT
v (tj−1)⊗ xT

v (tj−1)− xT
v (tj)⊗ xT

v (tj),

Ijvx =

∫ tj

tj−1

(vT ⊗ xT
v )dτ, Ijxx =

∫ tj

tj−1

(xT
v ⊗ xT

v )dτ.

Then, (26) implies the following matrix form of linear

equations:

Θkvec(Pk) = Ξk. (27)

Assumption 3.5: Θk has full column rank, for all k ∈
Z+.

Remark 3.4: Similar to the on-line learning case, to

assure Assumption 3.5 holds, we require that v(t) on the

interval [0, T ] contain enough different frequencies.

Algorithm 3.2: (The off-line robust-ADP Algorithm)

1) Choose K0 such that A−BK0 is Hurwitz. Set γ > c2
c1

,

sufficiently small ǫ > 0, and let k = 0.

2) Solve Pk from (27)

3) Update the virtual control policy using (13).

4) Stop, if |Pk+1 − Pk| ≤ ǫ. Otherwise, set k = k + 1
and go to 2).

The next theorem summarizes the convergence property of

the off-line Algorithm 3.2 that results in a GAS-stabilizing

controller with suboptimality properties.

Theorem 3.2: Under Assumption 3.5, the off-line robust-

ADP algorithm computes a control policy that globally and

robustly asymptotically stabilizes (1) and (2).

Remark 3.5: Compared with the continuous-time ADP

method in [18], the off-line robust-ADP algorithm has two

distinctive features. First, only the information of the input

and partial state over a finite interval is necessary for

learning. Second, there is no need to alter the control input

on-line to get new input and state information. Instead, we

decompose the actual input into two parts: the virtual control

and the disturbance. Then, we use both of them to compute

the corresponding cost matrix Pk, based on which Pk we

update the virtual control. In this way, there is no need for

us to change the actual input to the system, and we are able

to use repeatedly the same input and partial state information

for each iteration until convergence is attained.

IV. APPLICATIONS

In this section, we apply the robust-ADP algorithms to

solve two examples. The first one is a second-order linear

system interconnected with a scalar nonlinear system. The

second example comes from the load-frequency controller

design for power systems. The on-line and off-line algorithm-

s will be applied to the examples, respectively.

A. Example 1

Consider the following system,

ẋ = Ax+

[

0.2
0.4

]

(u+∆(z)), ż = g(z, x) (28)

where x = [x1, x2]
T is the measurable model state, z

is not available for feedback control, A is an unknown

matrix but its eigenvalues have negative real parts. The z-

subsystem is assumed to satisfy both Assumptions 3.1 and

3.2 with c2
c1

< 2. For all t ≥ 0, ∆ is only available on
∞
⋃

j=0

[j, j + 0.2]
⋂

[0, t].

In order to apply the on-line robust-ADP algorithm, we

start from K0 = [0, 0], and update the control policy every

10s. The weighting matrix is set to be Q = 2I2. The

iteration stops whenever |Pk+1 − Pk| < 10−4. To assure

Assumption 3.4 holds, we set the exploration noise to be

e(t) = 1
100

4
∑

i=1

[sin( 2i−1
100 t)].

For the purpose of simulation, we set g(z, x) =−z3 +

|x1|
3/2, ∆=z2, A=

[

−0.10 −0.02
0.01 −0.02

]

. The initial conditions

are z(0) = 10, x1(0) = 6, x2(0) = −7.

Define W = 1
2z

2. Then, it can be easily checked that
c2
c1

= 1 < 2 using Young’s inequality.

After applying the on-line robust-ADP algorithm, the

closed-loop system trajectories are shown in Figure 1.
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Fig. 1. Profile of the system trajectories under robust-ADP.

Initially, the overall system is not stable, but it becomes

GAS after seven iterations. The final solution P7 we have

obtained via on-line learning algorithm and its difference

with the optimal value is shown as follows:

P7 − P ∗ =

[

−0.1247 −0.0042
−0.0042 −0.0237

]

× 10−5.

B. Example 2

Consider the problem of power system load-frequency

control [19], [18]:

∆Ṗg = −
1

TT
∆Pg +

1

TT
∆Xg, (29)

∆Ẋg = −
1

TG
∆Xg +

1

TG
u−

1

R0TG
∆f, (30)

∆ḟ = −
1

Tp
∆f +

KP

TP
Pg, (31)

where ∆f is the incremental frequency deviation, ∆Pg is

the incremental change in generator output, and ∆Xg is the

incremental change in governor valve position. Parameters
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Tg , Tt, Tp, Kp and R0 denote the governor time constant,

the turbine time constant, the plant model time constant, the

plant gain and the speed regulation due to governor action,

respectively. For simplicity, we do not consider the integral

control of ∆f(t).
In [18], an on-line ADP algorithm is applied to formulate

a state-feedback optimal control policy of this system. Here

we assume that ∆f(t) is not available for feedback design.

Hence, the problem cannot be solved using previous ADP

methods developed in the past literatures. Now we use the

proposed off-line robust-ADP to solve this problem, in the

sense that we compute a control policy using ∆Pg and ∆Xg

only, to achieve GAS of the closed-loop system. Note that

system (29)-(31) is already in the form of (1) and (2), with

x = [∆Pg ∆Xg]
T , z = ∆f , ∆ = − 1

R0
z. Assumptions 3.1

and 3.2 of the ∆f -subsystem can be easily checked.

After the parameters are all set, we input the following

signal to the system

v(t) = sin(t) + sin(2t) + sin(7t) + sin(11t), t ∈ [0, 0.1].

and we record the state trajectory x(t) on 0 ≤ t ≤ 0.1.

Finally, we choose tj = j
100 , for j = 0, 1, · · · , 100, Q =

103I2 and run Algorithm 3.2. Similar as in [18], we set the

initial control policy to be K0 = [0, 0].
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0
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∆ X
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Fig. 2. Profile of the system trajectories under robust-ADP.

For simulation purpose, we set TT = 0.21, Tp = 15.0376,

Kp = 180.4511, Tg = 0.0728, and R0 = 0.4579. The initial

conditions ∆f(0) = 0, ∆Pg(0) = 0.1, and ∆Xg(0) = 0
are taken from [18]. The iteration stops when the criterion

|Pk+1−Pk| ≤ 10−2 is satisfied, after updating the policy for

10 times. The final solution and its optimal value are shown

as follows:

P8 =

[

87.3849 0.9429
0.9429 2.2409

]

, P ∗ =

[

87.3831 0.9429
0.9429 2.2408

]

.

Under the control policy formulated by the proposed off-

line robust-ADP algorithm, the closed-loop system is GAS

as illustrated in Figure 2.

V. CONCLUSIONS AND FUTURE WORK

In this paper, a new framework of robust-ADP has been

proposed for nonlinear control systems with dynamic uncer-

tainties. This novel methodology is developed by integration

of ADP [21], and the tools related to ISS and small-gain

theories from nonlinear control theory [9], [7], [15], [16]. In

this paper, a first step has been made to show that ADP can

be used to handle robust optimal control problems. Because

of the fact that robust-ADP allows significant uncertainties in

systems, it potentially has numerous real-world applications.
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