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Abstract— An adaptive backstepping control algorithm is
presented for trajectory tracking of a miniature autonomous
helicopter with inertial parameter uncertainties. The control
algorithm is designed based on a simplified helicopter model in
cascaded form with the backstepping technology. The inertial
parameter uncertainties are compensated online with param-
eter adaptive update laws. The closed-loop stability analysis
for the un-simplified complete helicopter model under this
control algorithm is provided. Simulation results demonstrate
the performances of the proposed approach.

I. INTRODUCTION

Helicopter has many advantages over ordinary fixed-wing
vehicles (for instances, hovering, vertical taking-off & land-
ing, and low-velocity flight); consequently, controller design
for autonomous helicopters became one of the foci in some
recent studies. However, nonlinearities, uncertainties and
couplings in the helicopter model lead to some difficulties
in the controller design, especially for model-based design
approaches.

Generally, controllers for autonomous helicopters can be
classified into three categories– 1) controllers for hovering,
2) controllers for path-following, and 3) controllers for
trajectory tracking. The task of hovering control are often
solved with linear controller and extensive utility of the
aerodynamic derivatives [7]. Comparatively, path-following
and trajectory tracking control tasks are usually completed
by nonlinear approaches, such as approximate linearization
[11], backstepping technology [3]–[6] and so on.

Backstepping control is a Lyapunov-based approach, the
advantages of which includes the accommodation of non-
linearities and the avoidance of wasteful cancelations [8].
So far, backstepping methodology has been employed by
many researchers to trajectory tracking of autonomous heli-
copters. C. Lee’s backstepping design [3] for the autonomous
helicopter realizes the asymptotical tracking of a simplified
helicopter model, but the controller performance on the com-
plete model is not discussed. E. Frazzoli introduces a back-
stepping approach combined with Riemannian geometry[4]
and proves bounded tracking of the helicopter; however,
the obtained controller is expressed with some fairly com-
plicated symbols thus difficult to implement by engineers.
H.R. Pota utilized backstepping approach to control the
helicopter velocity [5], but the controller does not guarantee
the stability (or boundedness) of the attitude. Although the
backstepping controller proposed by I.A. Raptis [6] is proved
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to assure both tracking of the simplified cascaded system
and boundedness of the attitude, the stability condition for
the complete model with coupled terms remains theoretically
untreated. Besides, parameter uncertainties in the helicopter
model are considered by none of the above researches.

In this paper, an adaptive backstepping control algorithm
is presented to achieve the trajectory tracking of a miniature
autonomous helicopter with constant inertial parameter un-
certainties. In this approach, rotation matrix is considered to
describe the attitude kinematics of the helicopter [6][11], so
that its simplified dynamical model appears cascaded. Based
on the simplified model, detailed design procedures of the
adaptive backstepping control algorithm are provided, and
projection algorithms [10] are introduced to the adaptive laws
for adjusting parameters such that the estimated parameters
are locally bounded. Closed-loop stability analysis for the
complete helicopter model with coupled terms shows that
the tracking error is bounded under the proposed control
algorithm.

The rest of this paper is arranged as following. In section
II, the mathematical model of the helicopter is derived, and
the objective of the controller design is stated. In section III,
a detailed designing procedure of the adaptive backstepping
controller is proposed, and stability analysis is also presented.
Simulation results are then displayed in section IV. Finally,
conclusion is given in section V, with some future works
being suggested.

II. PROBLEM STATEMENT

A. Mathematical Modeling for Miniature Helicopter

Two reference frames are adopted for mathematical mod-
eling:

a) The earth reference frame(ERF): This frame is fixed
to the earth, with the origin locating at a fix point on the
ground. The x axis points to the north and the z axis points
upright. The y axis can be confirmed by the right-hand rule
for the dextrorotational helicopter or the left-hand rule for
the levorotational helicopter.

b) The fuselage reference frame(FRF): This frame
is fixed to the helicopter fuselage. The origin locates at
c.g.(center of gravity) of the helicopter fuselage, with the
xb axis pointing to the head of the helicopter. The zb axis is
perpendicular to the xb axis and points upright. The yb axis
can be confirmed by right-hand rule for the dextrorotational
helicopter or left-hand rule for the levorotational one.

The mathematical model of the miniature unmanned heli-
copter could be derived by Newton–Euler equations [6][11]:

Ṗ = V (1)
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mV̇ =−mg3 +Rt(γ)F (2)

Ṙt(γ) = Rt(γ)S(ω) (3)

Jω̇ =−S(ω)Jω +Q (4)

where P , [x,y,z]T and V , [u,v,w]T are position and
velocity of c.g. of the helicopter in ERF, respectively; m
denotes the mass; g3 , [0,0,g]T and g is the gravitational
acceleration; γ , [φ ,θ ,ψ]T stands for the attitude in ERF;
the rotational matrix from FRF to ERF is given by

Rt = [Ri j],




cθcψ cψsθsφ − cφsψ cφcψsθ + sφsψ
cθsψ sψsθsφ + cφcψ cφsψsθ − sφcψ
−sθ cθsφ cθcφ




where c(·) and s(·) are the shorts for cos(·) and sin(·),
respectively; ω , [p,q,r]T represents the angular velocity
in FRF; S(·) denotes the skew-symmetric matrix such that
S(ω)Jω = ω× Jω; the inertial matrix is given by

J ,




Ixx 0 −Ixz
0 Iyy 0
−Ixz 0 Izz




Resultant forces and torques exerted on fuselage in FRF are
given by

F ,




Fx
Fy
Fz


 =




Tm sinε
−Tm sinη−Tt
Tm cosη cosε


 (5)

and

Q ,




L
M
N


 =




Tmhm sinη +Ttht +Qm sinε
Tmlm +Tmhm sinε +Qt −Qm sinη
−Tmlm sinη +Tt lt −Qm cosε cosη


 (6)

where Tm, Qm, Tt and Qt represent the thrusts and the
counteractive torques generated by the main rotor and the
tail rotor, respectively; hm, ht , lm, lt are the vertical and
horizonal distances between c.g. of the helicopter and centers
of the rotors, respectively; ε and η are the longitudinal
and lateral flapping angles, respectively. Since the flapping
dynamics of the main rotor is extremely fast compared with
the fuselage dynamics, the flapping dynamics is negligible
in this research. The relationship between the thrusts and the
collective pitch is given by [2]

Ti = tciρsiAiΩ2
i R2

i (7)

tci =
1
4


−ai

4

√
si

2
+

√
a2

i si

32
+

2
3

aiθi




2

(8)

and the relationship between the thrust and the torque is
given by:

Qi = qciρsiAiΩ2
i R3

i (9)

qci =
δd

8
+1.13t

3
2

ci

√
si

2
(10)

where subscripts i = m and t represent the main rotor and the
tail rotor accordingly; ρ , si, ai, Ai, Ωi and Ri denote density
of the local air, solidity of the rotor disc, slope of the lift

curve, area of the rotor disc and radius of the rotor disc,
respectively; δd is the drag coefficient of the rotor which
often has a typical value of 0.012 [2].

From above model we know that the motion of the
helicopter is controlled by θm, θt , ε , and η .

B. Objective of the Trajectory Tracking for Miniature Heli-
copter

In this research, it is assumed that m and J are unknown
constant parameters with known bounds M1 and M2, i.e.
‖m‖ 6 M1 and ‖ρ‖ ,

∥∥[Ixx, Iyy, Izz, Ixz]T
∥∥ 6 M2, where ‖ · ‖

denotes the Euclidean norm for vectors and the induced
Euclidean norm for matrice. Our objective is to design a
trajectory tracking control algorithm such that the controlled
autonomous miniature helicopter can track any feasible com-
mand trajectory Pr = [xr,yr,zr]T and yaw angle ψr with
limited errors.

In following research, the non-vanishing coupling terms
demolishing the cascaded structure of the helicopter model
are treated as bounded disturbances; thus the best expectation
is bounded tracking. Under the adaptive backstepping con-
troller designed in the following sections, it is proved that
the tracking error of the miniature autonomous helicopter
becomes bounded.

III. ADAPTIVE BACKSTEPPING CONTROL
ALGORITHM DESIGN

A. Model simplification

Because the helicopter model (1)–(4) is strongly coupled,
it should be simplified to facilitate controller design. Since
the cyclic flapping angles and the tail rotor thrust are fairly
small according to the physical properties of the helicopter
[1][9][11], it is reasonable to take

Fx ≈ 0, Fy ≈ 0, Fz ≈ Tm

in (5) for simplifying the model, and it follows that

Rt(γ)F = R3Tm (11)

where R3 denotes the third column of Rt(γ) and ‖R3‖ = 1.
Substituting (11) into (2) enables the helicopter model to
appear cascaded, which facilitates the backstepping control
design. The neglected terms

∆1 ,




Tm sinε
−Tm sinη−Tt

Tm(cosε cosη−1)


 (12)

will be considered later in stability analysis.
The counteractive torque of the tail rotor Qt contributes a

tiny part of M, and is also negligible; so the torques in (6)
can be simplified by

Q = QAτ +QB (13)

where

QA =




ht Qm Tmhm
0 Tmhm −Qm
lt 0 −Tmlm


 , QB =




0
Tmlm
−Qm
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and τ , [Tt ,ε,η ]T . Invertibility of QA can be proved by

|QA|=−(hthmlm + lth2
m)T 2

m − ltQ2
m 6= 0.

The neglected terms

∆2 ,




Qm(sinε− ε)+Tmhm(sinη−η)
Qt −Qm(sinη−η)+Tmhm(sinε− ε)
Qm(1− cosε cosη)+Tmlm(η− sinη)


 (14)

will also be considered in the stability analysis.

B. Recursive backstepping design

Step 1: For the position kinematics (1), the velocity V can
be viewed as the input. Obviously, the position tracking error
Pe , P−Pr can be stabilized by choosing

V = Vc ,−K1pPe−K1i

∫ t

0
Pedt + Ṗr (15)

where K1p and K1i are constant positive definite matrices.
Set the Lyapunov candidate

L1 =
1
2

PT
e Pe +

1
2

∫ t

0
PT

e dtK1i

∫ t

0
Pedt

Its derivative can be obtained as

L̇1 =−PT
e K1pPe 6 0

Step 2: To backstep, define the velocity tracking error Ve ,
V −Vc and the mass estimation error m̃ , m̂−m. Selecting
the Lyapunov candidate

L2 = L1 +
m
2

V T
e Ve +

1
2

∫ t

0
V T

e dtK2i

∫ t

0
Vedt +

1
2γ1

m̃2 (16)

we have

L̇2 =−PT
e K1pPe +PT

e Ve +mV T
e V̇e +V T

e K2i

∫ t

0
Vedt +

1
γ1

m̃ ˙̂m

=−PT
e K1pPe +PT

e Ve +mV T
e (−g3 +

1
m

R3Tm−V̇c)

+V T
e K2i

∫ t

0
Vedt +

1
γ1

m̃ ˙̂m

where R3Tm is given by (11). Design

R3Tm = µc , R3cTm , m̂X−K2pVe−K2i

∫ t

0
Vedt−Pe (17)

where K2p and K2i are constant positive definite matrices,
and X , g3 + V̇c, the derivative of Lyapunov candidate (16)
can be obtained by

L̇2 =−PT
e K1pPe +PT

e Ve−V T
e K2pVe + m̃V T

e X−V T
e Pe +

1
γ1

m̃ ˙̂m

=−PT
e K1pPe−V T

e K2pVe + m̃XTVe +
1
γ1

m̃ ˙̂m

If choose ‖m̂(0)‖ < M1 and design its adaptive update law
by following projection algorithm:

˙̂m =




−γ1XTVe, if ‖m̂‖< M1

or ‖m̂‖= M1, m̂T XTVe > 0
0, if ‖m̂‖= M1, m̂T XTVe 6 0

(18)

it follows that

L̇2 =−PT
e K1pPe−V T

e K2pVe +ϖ1
m̂XTVe

m̂2 m̃m̂

where

ϖ1 =





0, if ‖m̂‖< M1
or ‖m̂‖= M1 and m̂XTVe > 0

1, if ‖m̂‖= M1 and m̂XTVe 6 0
(19)

If ϖ1 = 0, L̇2 6 0; if ϖ1 = 1, we know ‖m̂‖ = M1 and
m̂XTVe 6 0, so

m̃m̂ =
1
2
(‖m̂‖2 +‖m̂−m‖2−‖m‖2) > 0

and ϖ1
m̂XT Ve

m̂2 m̃m̂ 6 0, which also indicates L̇2 6 0.
Step 3: Command trajectories of this step is acquired by

Tm = ‖µc‖, R3c =
µc

Tm
(20)

And the attitude kinematics can be described by

Ṙ3 = Ṙte3 = RtS(ω)e3 =−RtS(e3)ω (21)

where e3 , [0,0,1]T . Since R3 = [R13,R23,R33]T and ‖R3‖=
1, R33 depends entirely on R13 and R23. Extracting the first
two lines of (21) yields

˙̄R3 =
[

Ṙ13
Ṙ23

]
=

[ −R12 R11
−R22 R21

][
p
q

]
, R̂ω2

where the invertibility of R̂ is obvious.
Define R̄3e , R̄3 − R̄3c, where R̄3c represents the vector

composed by the first two elements of R3c, and choose the
Lyapunov candidate

L3 = L2 +
1
2

R̄T
3eR̄3e +

1
2

∫ t

0
R̄T

3edtK3i

∫ t

0
R̄3edt

we get

L̇3 =−PT
e K1pPe−V T

e K2pVe +TmV T
e R3e

+ R̄T
3e

˙̄R3e + R̄T
3eK3i

∫ t

0
R̄3edt

=−PT
e K1pPe−V T

e K2pVe +TmV T
e R3e

+ R̄T
3e( ˙̄R3− ˙̄R3c)+ R̄T

3eK3i

∫ t

0
R̄3edt

=−PT
e K1pPe−V T

e K2pVe +TmV T
e R3e

+ R̄T
3e(R̂ω2− ˙̄R3c)+ R̄T

3eK3i

∫ t

0
R̄3edt

Assigning the angular velocity command

ω2 = ω2c , R̂−1(−K3pR̄3e−K3i

∫ t

0
R̄3edt + ˙̄R3c−TmR̂δ )

(22)
where δ = [δ1,δ2]T , δ1 = ue − R13+R13c

R33+R33c
we and δ2 = ve −

R23+R23c
R33+R33c

we; K3p and K3i are constant positive definite ma-
trices; we have

L̇3 =−PT
e K1pPe−V T

e K2pVe− R̄T
3eK3pR̄3e 6 0

Step 4: Before backstepping for the attitude dynamics,
the controller for the yaw angle ψ has to be designed. An
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augmentation approach for generating ψr is introduced by
using the command trajectory xr,yr as follows:

ψ̇r =
ẋr ÿr− ẍr ẏr

ẋ2
r + ẏ2

r
, ψr =

∫ t

0
ψ̇rdt (23)

where ψr(0) = atan2(ẏr(0), ẋr(0)).
Consider the yaw angle kinematics [6]:

ψ̇ =
sφ
cθ

q+
cφ
cθ

r

where r is regarded as the pseudo input. Define ψe , ψ−ψr
and choose the Lyapunov candidate

L4 = L3 +
1
2

ψ2
e +

kψi

2

(∫ t

0
ψedt

)2

it follows that

L̇4 =−PT
e K1pPe−V T

e K2pVe− R̄T
3eK3pR̄3e

+ψeψ̇e + kψiψe

∫ t

0
ψedt

=−PT
e K1pPe−V T

e K2pVe− R̄T
3eK3pR̄3e

+ψe(ψ̇− ψ̇r)+ kψiψe

∫ t

0
ψedt

=−PT
e K1pPe−V T

e K2pVe− R̄T
3eK3pR̄3e

+ψe(
sφ
cθ

q+
cφ
cθ

r− ψ̇r)+ kψiψe

∫ t

0
ψedt

If r is designed by

r = rc , −sφ
cφ

q− cθ
cφ

(
kψ pψe + kψi

∫ t

0
ψedt− ψ̇r

)
(24)

where kψ p and kψi are constant positive numbers, then

L̇4 =−PT
e K1pPe−V T

e K2pVe− R̄T
3eK3pR̄3e− kψ pψ2

e 6 0

Step 5: Define ωc , [ωT
2c,rc]T , ωe , ω −ωc, J̃ , Ĵ− J,

ρ , [Ixx, Iyy, Izz, Ixz, ]T and ρ̃ , ρ̂ − ρ . Select the Lyapunov
candidate

L5 = L4 +
1
2

ωT
e Jωe +

1
2

∫ t

0
ωT

e dtK4i

∫ t

0
ωedt +

1
2γ2

ρ̃T ρ̃

its derivative can be obtained by

L̇5 =−PT
e K1pPe−V T

e K2pVe− R̄T
3eK3pR̄3e− kψ pψ2

e

+R̄T
3eR̂ω2e +ψere

cφ
cθ

+ωT
e Jω̇e +ωT

e K4i

∫ t

0
ωedt +

1
γ2

ρ̃T ˙̂ρ

where Jω̇e = Jω̇−Jω̇c =−S(ω)Jω +Q−Jω̇c. If the control
input Q is designed by

Q = S(ω)Ĵω + Ĵω̇c−K4pωe−K4i

∫ t

0
ωedt−ξ (25)

where ξ = [R̄T
3eR̂, ψecφ/cθ ]T , then the derivative of Lya-

punov candidate L5 is given by

L̇5 =−PT
e K1pPe−V T

e K2pVe− R̄T
3eK3pR̄3e− kψ pψ2

e

−ωT
e K4pωe +ωT

e S(ω)J̃ω +ωT
e J̃ω̇c +

1
γ2

ρ̃T ˙̂ρ

=−PT
e K1pPe−V T

e K2pVe− R̄T
3eK3pR̄3e− kψ pψ2

e

−ωT
e K4pωe + ρ̃TY T ωe +

1
γ2

ρ̃T ˙̂ρ

where

Y ,




ṗc −qr qr −pq− ṙc
pr q̇c −pr p2− r2

−pq pq ṙc qr− ṗc




If select ‖ρ̂(0)‖< M2 and design its adaptive updating laws
by projection algorithm:

˙̂ρ =




−γ2Y T ωe, if ‖ρ̂‖< M2

or ‖ρ̂‖= M2, ρ̂TY T ωe > 0
−γ2Y T ωe +κ, if ‖ρ̂‖= M2, ρ̂TY T ωe 6 0

(26)

where κ , γ2
ρ̂T Y T ωe
‖ρ̂‖2 ρ̂ , it then follows that

L̇5 =−PT
e K1pPe−V T

e K2pVe− R̄T
3eK3pR̄3e− kψ pψ2

e

−ωT
e K4pωe +ϖ1

m̂XTVe

m̂2 m̃m̂+ϖ2
ρ̂TY T ωe

‖ρ̂‖2 ρ̃T ρ̂

where ϖ1 is defined by (19) and ϖ2 is given by

ϖ2 =





0, if ‖ρ̂‖< M2
or ‖ρ̂‖= M2 and ρ̂TY T ωe > 0

1, if ‖ρ̂‖= M2 and ρ̂TY T ωe 6 0
(27)

In Step 2, ϖ1
m̂XT Ve

m̂2 m̃m̂ 6 0 has been derived. Similarly, here
ϖ2 = 0 results in L̇5 6 0, and ϖ2 = 1 (i.e. ‖ρ̂‖ = M2 and
ρ̂TY T ωe 6 0) implies that

ρ̃T ρ̂ =
1
2
(‖ρ̂‖2 +‖ρ̂−ρ‖2−‖ρ‖2) > 0

and ϖ2
ρ̂T Y T ωe
‖ρ̂‖2 ρ̃T ρ̂ 6 0, which also means that L̇5 6 0.

Step 6: Since Tm and Q = [L,M,N]T have been designed
in previous steps, θm can be obtained from (7):

tcm =
Tm

ρsmAmΩ2
mR2

m
, θm =

3
2

[√
smtcm

2
+

4tcm

am

]
(28)

and Qm is determined by

qcm =
δd

8
+1.13t

3
2

cm

√
sm

2
, Qm = qcmρsmAmΩ2

mR3
m

Then τ = [Tt ,ε,η ]T can be obtained from (13):

τ = Q−1
A (Q−QB) (29)

and the collective pitch of the tail rotor is yielded by

tct =
Tt

ρstAtΩ2
t R2

t
, θt =

3
2

[√
sttct

2
+

4tct

at

]
(30)

which ends the adaptive backstepping design process.

C. Stability analysis

Assumption 1: The small coupling terms are bounded by
‖∆1‖ < lv‖ζ‖+ ∆̄1 and ‖∆2‖ < lω‖ζ‖+ ∆̄2, where ζ is
defined by

ζ , [‖Pe‖,‖Ve‖,‖R̄3e‖,‖ψe‖,‖ωe‖]T

and lv, lω , ∆̄1 and ∆̄2 are small positive numbers.
In the above assumption, the non-vanishing terms ∆̄1 and

∆̄2 concerns the values of ∆1 and ∆2 at the equilibrium points,
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which are very small according to the physical properties.
The vanishing terms lv‖ζ‖ and lω‖ζ‖ are based on the fact
that ∆1 and ∆2 are related to the states of the system.

Proposition 1: Consider the helicopter system (1)–(4)
with unknown constant inertial parameters m and J bounded
by ‖m‖ 6 M1 and ‖ρ‖ 6 M2, and suppose Assumption 1 is
satisfied. If the controller is designed by (15), (17), (20),
(22)–(25), (28) and (30) with proper design parameters, and
the adaptive laws are assigned as (18) and (26) with initial
values ‖m̂(0)‖6 M1 and ‖ρ̂(0)‖6 M2, then

1) the estimated parameters m̂ and ρ̂ satisfy ‖m̂‖ 6 M1
and ‖ρ̂‖6 M2, respectively;

2) tracking errors of the closed loop system are bounded.
Proof:

1) Set the Lyapunov candidate for ρ̂ as L = 1
2γ2

ρ̂T ρ̂ .
a) If ‖ρ̂‖< M2, the boundedness is obvious.
b) If ‖ρ̂‖= M2 and ρ̂TY T ωe > 0, then

L̇ =−ρ̂TY T ωe < 0

which indicates that ‖ρ̂‖ is decreasing.
c) If ‖ρ̂‖= M2 and ρ̂TY T ωe 6 0, then

L̇ =−ρ̂TY T ωe +
ρ̂TY T ωe

‖ρ̂‖2 ρ̂T ρ̂ = 0

which means that ‖ρ̂‖ is non-increasing.
In conclusion, ‖ρ̂‖6 M2 is guaranteed, if ‖ρ̂(0)‖6 M2
is assigned. Boundedness of m̂ can be proved similarly.

2) Select L5 as the candidate Lyapunov function. When
the non-vanishing neglected terms ∆1 and ∆2 are
considered, the derivative of L5 is given by

L̇5 =−PT
e K1pPe−V T

e K2pVe− R̄T
3eK3pR̄3e− kψ pψ2

e

−ωT
e K4pωe +ϖ1

m̂XTVe

m̂2 m̃m̂+ϖ2
ρ̂TY T ωe

‖ρ̂‖2 ρ̃T ρ̂

+V T
e Rt∆1 +ωT

e ∆2

6−λmin(K1p)‖Pe‖2−λmin(K2p)‖Ve‖2

−λmin(K3p)‖R̄3e‖2−λmin(Kψ p)‖ψe‖2

−λmin(K4p)‖ωe‖2 +ϖ1
m̂XTVe

m̂2 m̃m̂

+ϖ2
ρ̂TY T ωe

‖ρ̂‖2 ρ̃T ρ̂ +‖∆1‖‖Rt‖‖Ve‖+‖∆2‖‖ωe‖

6− (kζ − lv− lω)‖ζ‖2 +(∆̄1 + ∆̄2)‖ζ‖

+ϖ1
m̂XTVe

m̂2 m̃m̂+ϖ2
ρ̂TY T ωe

‖ρ̂‖2 ρ̃T ρ̂

6− (kζ − lv− lω)‖ζ‖2 +(∆̄1 + ∆̄2)‖ζ‖
(31)

where ϖ1 and ϖ2 are given by (19) and (27), λmin(·)
represents the minimum eigenvalue, and

kζ , min(λmin(Kip),λmin(kψ p)), i = 1,2,3,4

In (31), we have used ‖Rt‖= 1 which can be obviously
proved by RT

t Rt = I3×3. If the controller parameters are
designed such that kζ > lv + lω , then L5 decreases when

‖ζ‖> (∆̄1 +∆̄2)/(kζ − lv− lω), which indicates that the
tracking errors are bounded by ‖ζ‖6 ∆̄1+∆̄2

kζ−lv−lω
.

IV. SIMULATION AND DISCUSSION

In following simulation, values concerning the helicopter
aerodynamics are obtained from [12]. M1 and M2 are as-
sumed to be 15 and 1, respectively. Initial values of the
estimated parameters m̂ and ρ̂ , as well as real values of m

TABLE I
INERTIAL PARAMETERS IN SIMULATION

Notations Values Notations Values
m̂(0) 10kg m 8.75kg
Îxx(0) 0.15kg ·m2 Ixx 0.19kg ·m2

Îyy(0) 0.3kg ·m2 Iyy 0.34kg ·m2

Îzz(0) 0.25kg ·m2 Izz 0.3kg ·m2

Îxz(0) 0kg ·m2 Ixz 0.05kg ·m2
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Fig. 1. The trajectory of the controlled autonomous helicopter
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Fig. 2. The tracking errors of the controlled autonomous helicopter
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Fig. 3. The roll and pitch angle of the controlled autonomous helicopter
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and ρ , are shown in TABLE I. The command trajectory is
given by

xr(t) = 1.92 ·10−7t5−2.4 ·10−5t4 +8 ·10−4t3

yr(t) = 1.536 ·10−7t5−1.92 ·10−5t4 +6.4 ·10−4t3

zr(t) = 1.152 ·10−7t5−1.44 ·10−5t4 +4.8 ·10−4t3

and ψr is specified by (23).
Fig. 1–5 display the simulation results for the complete

model with error terms (12) and (14) under the control
algorithm and the parameter adaptive law provided in Propo-
sition 1. As is illustrated in Fig. 1, the helicopter tracks
the command trajectory with some tracking errors. Fig. 2
demonstrates that the tracking errors are bounded, as is
expected by Proposition 1. The ultimate bounds of the errors
are fairly small, indicating that the side-effects brought by

neglecting ∆1 and ∆2 are tiny. The roll and pitch angles of
the controlled helicopter are maintained in acceptable rages,
as are exposed in Fig. 3. The boundedness of estimated
parameters are verified by Fig. 4 and Fig. 5.

V. CONCLUSIONS AND FUTURE WORKS
A. Conclusions

An adaptive backstepping approach is proposed in this
paper to solve the trajectory tracking problem of an au-
tonomous miniature helicopter with constant inertial pa-
rameter uncertainties. The control algorithm is designed
through backstepping approach, while the inertial parameter
uncertainties are compensated online by adaptive update
laws based on projection algorithm. It is proved that the
proposed adaptive backstepping control algorithm guarantees
the bounded tracking of the miniature autonomous helicopter.

B. Future Works
In this work, derivatives Ṙ3c and ω̇c are obtained from

numerical differentiators, because the analytical expressions
are rather complicated to implement. Performances of the
closed-loop system would improve significantly, if Ṙ3c and
ω̇c can be expressed in analytical forms. Moreover, con-
straints of control inputs are necessary to be included in the
research to avoid occasional aggressive attitude. At present,
the authors are working at implement the proposed controller
on a practical miniature unmanned helicopter.
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