
Finite-gain L∞ Stabilization of Satellite Formation Flying
with Input Saturation

Young-Hun Lim†, Byeong-Yeon Kim†, Student Member, IEEE, and Hyo-Sung Ahn†, Member, IEEE

Abstract— In this paper, we consider a formation keeping problem
for a satellite formation flying system. The relative motion dynamics is
designed with polytopic uncertainties by considering elliptical reference
orbit, noncoplarnar formation and unknown angular rate, angular
acceleration within some boundary. We propose a composite nonlinear
feedback control law obtained by the solution to an algebraic Riccati
inequality (ARI). Then, in the presence of input saturation and distur-
bances, internal and external stability (Finite-gain L∞ stability) of the
relative motion dynamics are investigated using proposed control law.
Finally, numerical examples is presented to demonstrate the validity of
the proposed controller.

I. INTRODUCTION

Satellite formation flying (SFF) has recently attracted a signifi-
cant amount of interest for many current and future missions. Since
SFF has several advantages including cost efficiency, safety, mission
flexibility, easy maintenance of space systems, etc, in recent year,
many researchers have considered various control problems for
SFF. For example, based on the Clohessy-Wiltshire (CW) equation,
SFF control problem has been well studied [1]–[3]. However, CW
equation is a linear approximation assuming circular or near circular
reference orbit without uncertainties and external disturbances.
Therefore, many researchers have studied the control problem con-
sidering an elliptic reference orbit, uncertainties and disturbances.
In the case of the elliptic reference orbit, [4] developed a nonlinear
relative motion dynamics and Lyapunov-based, nonlinear, output
feedback, robust control law. In [5], a new relative motion dynamics
allowing elliptic and noncoplanar formation was derived. In [6], an
uncertainty model with eccentricity and semi-major axis variation
considerations was derived.

One of the important issues in control engineering is input
saturation. Since input saturation affect not only the performance
of the systems, but also the stability of the systems, this problem
has received the attention of many researchers in the past several
decades [8]–[14]. In [8], a low gain feedback control law to achieve
semi-global stabilization on the asymptotically null controllable by
bounded controls (ANCBC) for linear systems subject to input
saturation was derived. A basic concept of the low gain feedback
is that the peak value of the control signal can avoid the saturation
level by decreasing the low gain parameter.

Based on the low gain feedback law, a low-and-high gain
feedback law was introduced in [9], [10]. The high gain feedback
law is used to achieve closed-loop performances such as robust
stabilization, disturbance rejection, etc (see,e.g., [11], [12], [14],
and reference therein).

In this paper, a feedback controller design method for satellites
is investigated in the presence of input saturation and disturbances.
First, we consider the relative motion dynamics allowing elliptic
and noncoplanar formation proposed in [5] and assume that angular
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velocities and its derivation of leader satellite are unknown parame-
ters within some boundary. Second, based on the low-and-high gain
feedback control law, we propose a composite nonlinear feedback
(CNF) control law obtained by an algebraic Riccati inequality
(ARI). Then finite-gain L∞ stability of the satellite formation flying
system is investigated using the proposed feedback control law.

The outline of this paper is as follows. The relative motion
dynamics proposed in [5] is briefly described in Section II. In
Section III, we review the condition of finite-gain L∞ stability
and provide problem formulation. In Section IV, the relative
motion dynamics with time-varying polytopic uncertainties and
the control strategy are provided, and finite-gain L∞ stability is
derived. Furthermore, based on the proposed control law, we present
controller design algorithm and investigate some properties of the
gain parameters. In Section V, numerical examples are presented,
and conclusion are presented in Section VI.

Throughout this paper, we will use the following notations. For
any vector x ∈ Rn, x ≥ 0 means that all the components of x,
denoted x(i), are nonnegative. ‖x‖ denotes the Euclidean norm of
x, the L∞-norm of x is defined as ‖x‖∞ , ess supt≥0 ‖x(t)‖.
|x| and |x|∞ denote the absolute value and the maximum absolute
value of each element of x. The elements of the matrix A are
denoted by A(i,j),i = 1, ..,m,j = 1, .., n.

II. SYSTEM MODEL

In this section, we describe the relative motion dynamics of the
follower satellite relative to the leader satellite as depicted in Fig.1.
We consider the satellites in a noncoplanar and elliptical orbit. The
relative position and the relative velocities are represented in the
local reference frame attached to the leader satellite (i.e., x̂-ŷ-ẑ
axes) by ρ̄ = [x, y, z]′ and [vx, vy, vz]

′, respectively. The orbital
dynamics of the leader and follower satellite in the inertial reference
frame is given by

r̈ + µ

|r|3 r = ul + wl (1)

r̈ + ¨̄ρ+ µ

|r+ρ̄|3 (r + ρ̄) = uf + wf (2)

where r ∈ R3 is the vector from the Earth’s center to the leader
satellite, µ = 3.986×1014m3/s2 is the gravitational constant of the
Earth, ul and uf are the the control force vector and wl and wf are
the disturbance vector acting on the leader and follower satellite,
respectively. After some algebraic manipulations on (1) and (2),
the general nonlinear dynamics for satellite formation flying can be
written as [5]

ẋ1 = x1 (3)

ẋ2 = (ν̇2 − µ

γ
)x1 + ν̈x3 + 2ν̇x4 + ux + wx (4)

ẋ3 = x4 (5)
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Fig. 1: Relative motion of leader and follower satellites.

ẋ4 = −ν̈x1 − 2ν̇x2 + (ν̇2 − µ

γ
)x3 + uy + wy (6)

ẋ5 = x6 (7)

ẋ6 = −µ
γ
x5 + uz + wz (8)

where [x1, x2, x3, x4, x5, x6]′ = [x, vx, y, vy, z, vz]
′, ν, ν̇, and

ν̈ denote the true anomaly of the leader, and its first, second
derivations, respectively, γ = [(rx + x)2 + y2 + z2]3/2, rx denotes
the distance from the center of the Earth to the leader satellite,
u = [ux, uy, uz]

′ = uf − ul, and w = [wx, wy, wz]
′ = wf − wl.

Let us consider the error vector e = x−xt, where xt denotes the
target vector, i.e., xt = [xt1, x

t
2, x

t
3, x

t
4, x

t
5, x

t
6]′, and rx � x, y, z.

Furthermore, by assuming that the leader satellite is perfectly
controlled, the control force vector of the leader satellite equals
to the disturbance vector, i.e., ul = wl. Then, using Eqs.(14)-(16)
of [5], the relative motion error dynamics of the leader and follower
satellites can be written as

ė = A1e +A2xt + f(x) +Bu +Dw (9)

where

A1 =



0 1 0 0 0 0
ν̇2 0 ν̈ 2ν̇ 0 0
0 0 0 1 0 0
−ν̈ −2ν̇ ν̇2 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0

 (10)

A2 =



0 0 0 0 0 0
ν̇2 0 ν̈ 0 0 0
0 0 0 0 0 0
−ν̈ 0 ν̇2 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 (11)

f(x) = [0,−µ
γ
x1, 0,−

µ

γ
x3, 0,−

µ

γ
x5]′ (12)

B = D =

 0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1

′ (13)

where u = [ux, uy, uz]
′ and w = [wx, wy, wz]

′ denote the control
force vector and disturbance vector acting on the follower satellite,
respectively.

III. PRELIMINARIES AND PROBLEM FORMULATION

In this section, for a given dynamics (9), we formulate a control
design problem under the following assumptions.

Assumption 3.1: ν̇ and ν̈ are not measured. However, when the
leader is perfectly controlled, the uncertain parameters are bounded
as 0 < a ≤ ν̇ ≤ ā and b ≤ ν̈ ≤ b̄.

Assumption 3.2: The satellite system is subject to input satura-
tion as −u0(i) ≤ u(i) ≤ u0(i), i = 1, 2, 3.
Then the relative motion error dynamics (9) can be rewritten as

ė =A1e +A2xt + f(x) +Bsat(u) +Dw (14)

The saturation function sat(u) is defined as

sat(u(i)) = sign(u(i))min(uo(i), |u(i)|), i = 1, 2, 3 (15)

We next pose the problem to be solved in this paper.
Problem 3.1: For the relative motion dynamics (14), determine

a state feedback controller such that
(a) Internal stability : when w = 0, the closed-loop system

trajectories converge asymptotically to the origin.
(b) External stability (Finite-gain L∞ stability) : when w 6= 0,

there exist finite scalars κ, η > 0 such that

‖e(t)‖∞ ≤ κ‖e(0)‖+ η‖w(t)‖∞, ∀t > 0 (16)

Before we begin the controller design which solves Problem 3.1,
we consider some useful lemmas.

Lemma 3.1: [16] If a real scale function w(t) satisfies the
following differential inequality

ẇ(t) ≤ −γw(t) + cv(t) (17)

where γ > 0 and c > 0 then

w(t) ≤ e−γtw(0) + c

∫ t

0

e−γτv(t− τ) dτ (18)

Next, we consider finite-gain L∞ stability. The following lemma
presents the condition that the linear system is finite-gain L∞ stable.

Lemma 3.2: Consider the linear system

ẋ = Ax+Bu, x(0) = x0 (19)

where x ∈ Rn, u ∈ Rm. Let γ, ζ > 0 and suppose there is a
positive definite P ∈ Rn×n that satisfies the ARI

A′P + PA− 1

γ2
PBB′P + ζP ≤ 0 (20)

Then, for all x0 ∈ Rn, the system is finite-gain L∞ stable and
its L∞ gains κ and η are less than or equal to

√
λmax(P )
λmin(P )

and√
γ2

ζλmin(P )
, respectively.

Proof: Let us consider such a Lyapunov function V (x) =
x′Px and the derivative of V (x)

V̇ =x′(A′P + PA)x+ 2x′PBu

=x′(A′P + PA)x+ γ2 ‖u‖2 +
1

γ2
x′PBB′Px

− γ2

∥∥∥∥u− 1

γ2
B′Px

∥∥∥∥2

(21)

Substituting (20) yields

V̇ ≤ −ζx′Px+ γ2 ‖u‖2 (22)

By Lemma 3.1, we have

V (t) ≤e−ζtV (0) + γ2

∫ t

0

e−ζτ‖u(t− τ)‖2 dτ

≤e−ζtV (0) +
γ2

ζ
sup
τ∈[0,t]

‖u(t− τ)‖2(1− e−ζt) (23)
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Notice that λmin(P )‖x(t)‖2 ≤ V (t) ≤ λmax(P )‖x(t)‖2, we can
obtain that

λmin(P )‖x(t)‖2 ≤ e−ζtλmax(P )‖x(0)‖2

+
γ2

ζ
sup
τ∈[0,t]

‖u(t− τ)‖2(1−e−ζt) (24)

By considering supt∈[0,∞), the above inequality can be written as

sup
t∈[0,∞)

λmin(P )‖x(t)‖2

≤λmax(P )‖x(0)‖2 +
γ2

ζ
sup

τ∈[0,∞)

‖u(t)‖2 (25)

From the definition of L∞, the above inequality can be rewritten
as

λmin(P )‖x(t)‖2∞ ≤ λmax(P )‖x(0)‖2 +
γ2

ζ
‖u(t)‖2∞ (26)

From (26), we have

‖x(t)‖∞ ≤

√
λmax(P )

λmin(P )
‖x(0)‖+

√
γ2

ζλmin(P )
‖u(t)‖∞ (27)

for all u(t) ∈ L∞.

IV. MAIN RESULTS

In this section, we develop a CNF control law based on the
low-and-high gain control law. Before proceeding with the control
design, we describe a polytopic uncertain dynamics. Finally, we
derive internal and external stability of the polytopic uncertain
dynamics and develop the CNF control law by the solution to an
ARI.

A. Dynamics Redesign

Based on Assumption 3.1, the relative motion error dynamics (14)
can be regarded as a polytopic uncertain dynamics, and it can be
written as

ė =A1(ξ)e +A2(ξ)xt + f(x) +Bsat(u) +Dw (28)

where (ν̇, ν̈) ∈ [(ν̇1, ν̈1), ..., (ν̇N , ν̈N )]. Then the matrices A1(ξ)
and A2(ξ) take values in the matrix polytope with N vertices

(A1(ξ) , A2(ξ))

∈

{(
N∑
k=1

ξkA1k ,

N∑
i=k

ξkA2k

)
:

N∑
k=1

ξk = 1, ξ ≥ 0

}
(29)

B. Finite-gain L∞ stabilization

To solve Problem 3.1 based on the polytopic uncertain dynamics
(28), we define the CNF control law as

u = u1 + u2 + u3 (30)

u1 = −B′P e (31)

u2 = −ρB′P e (32)

u3 = sign (−B′P e)
∣∣Ā2xt

∣∣
∞ − f̄(x) (33)

where P ∈ R6×6 is a symmetric positive definite matrix, A2 =
BĀ2, f(x) = Bf̄(x) and ρ is any nonnegative function referred to
as the high gain parameter and will be discussed later. Next, let us
define such a Lyapunov function V = e′P e and two sets of states
satisfying the following conditions

Su0 = {e ∈ R6 : |u1(i) + u3(i)| ≤ uo(i), i = 1, 2, 3} (34)

Sα = {e ∈ R6 : e′P e ≤ α} (35)

where α is possibly largest positive constant and will be discussed
later, then, under the given CNF control law (30) and two sets
(34), (35), the following theorem shows that the polytopic uncertain
dynamics (28) is finite-gain L∞ stable.

Theorem 4.1: If there exist a unique symmetric positive definite
matrix P ∈ R6×6 that satisfies

Sα ⊂ Su0 (36)

and the following ARI

A1(ξ)′P + PA1(ξ)− 2PBB′P +
1

γ2
PDD′P + ζP ≤ 0 (37)

where γ, ζ > 0, then, under the given CNF control law (30) and
for all e0 ∈ Sα, the polytopic uncertain dynamics (28) guarantees
the following stability conditions.

(a) Internal stability : when w = 0, the closed-loop system
trajectories converge asymptotically to the origin.

(b) External stability (Finite-gain L∞ stability) : when w 6= 0,
there exist finite scalars κ, η > 0 such that

‖e(t)‖∞ ≤ κ‖e(0)‖+ η‖w(t)‖∞, ∀t > 0 (38)

Proof: Let us consider the polytopic uncertain dynamics (28)
and such a Lyapunov function V = e′P e. The derivative of V can
be written as

V̇ = e′(A1(ξ)′P + PA1(ξ))e + 2e′PDw

+ 2e′PB
{
sat(u) + Ā2(ξ)xt + f̄(x)

}
= e′(A1(ξ)′P + PA1(ξ))e

+ 2e′PB
{
sat(u) + Ā2(ξ)xt + f̄(x)

}
+ γ2 ‖w‖2 +

1

γ2
e′PDD′P e− γ2

∥∥∥∥w − 1

γ2
D′P e

∥∥∥∥2

≤ e′(A1(ξ)′P + PA1(ξ) +
1

γ2
PDD′P )e

+ 2e′PB
{
sat(u) + Ā2(ξ)xt + f̄(x)

}
+ γ2 ‖w‖2 (39)

From the ARI (37), we have

V̇ ≤− ζe′P e + γ2‖w‖2

+ 2e′P
{
sat(u) +B′P e + Ā2(ξ)xt + f̄(x)

}
(40)

Let us define v = −B′P e and consider the CNF control law
(30). Then the above inequality can be rewritten as

V̇ ≤− ζe′P e + γ2‖w‖2

− 2v′
{
sat
[
(1 + ρ)v + sign(v)

∣∣Ā2xt
∣∣
∞ − f̄(x)

]
−
[
v − Ā2(ξ)xt − f̄(x)

] }
(41)

Next, we consider the last term in the right-hand side of (41) defined
as

v′
{
sat
[
(1 + ρ)v + sign(v)

∣∣Ā2xt
∣∣
∞ − f̄(x)

]
−
[
v − Ā2(ξ)xt − f̄(x)

] }
(42)

for three cases of saturation function.
1) |u(i)| ≤ uo(i).

In this case, (42) can be written as

v(i)

(
ρv(i) + sign(v(i))

∣∣Ā2(i)x
t
∣∣
∞ + Ā2(ξ)(i)x

t) (43)
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Since
∣∣Ā2(i)x

t
∣∣
∞ ≥

∣∣Ā2(ξ)(i)x
t
∣∣ for all Ā2(ξ)(i), we have

sign
(
sign(v(i))

∣∣Ā2(i)x
t
∣∣
∞ + Ā2(ξ)(i)x

t
)

= sign(v(i)). There-
fore, (43) ≥ 0.
2) u(i) > uo(i).

In this case, (42) can be written as

v(i)

(
uo(i) − v(i) + Ā2(i)(ξ)x

t + f̄(x)(i)

)
(44)

and since |u1(i) + u3(i)| ≤ uo(i), u2(i) = −ρB′(i)P e > 0.
Therefore, v(i) = −B′(i)P e > 0, then, we have uo(i) − v(i) +
Ā2(ξ)ix

t + f̄(x)(i) ≥ 0. Thus, (44) ≥ 0.
3) u(i) < −uo(i).

In this case, (42) can be written as

v(i)

(
−uo(i) − v(i) + Ā2(ξ)(i)x

t + f̄(x)(i)

)
(45)

and since |u1(i) + u3(i)| ≤ uo(i), u2(i) = −ρB′(i)P e < 0.
Therefore, v = −B′(i)P e < 0, then, we have −uo(i) − v(i) +
Ā2(ξ)(i)x

t + f̄(x)(i) ≤ 0. Thus, (45) ≥ 0.
From the above three cases, we can define the following condition

v′{sat[(1 + ρ)v + sign(v)
∣∣Ā2xt

∣∣
∞ − f̄(x)]

−[v − Ā2(ξ)xt − f̄(x)]} ≥ 0 (46)

Therefore, the equation (41) can be written as

V̇ ≤− ζe′P e + γ2‖w‖2 (47)

Then Problem 3.1 can be solved such as
(a) w = 0 : V̇ ≤ −ζe′P e. Therefore, the closed-loop system is

asymptotically stable.
(b) w 6= 0 : By Lemma 3.2, we obtain

‖e(t)‖∞ ≤

√
λmax(P )

λmin(P )
‖e(0)‖+

√
γ2

ζλmin(P )
‖w(t)‖∞ (48)

for all w(t) ∈ L∞. Finally, choosing the L∞ gains as

κ =

√
λmax(P )

λmin(P )
, η =

√
γ2

ζλmin(P )
(49)

Problem 3.1 is solved.
Remark 4.1: From Theorem 4.1, we can see that the high gain

controller, u2, does not play any role in the stability. However, u2

can be used to achieve a better performance of the system, and
design parameter ρ will be presented in Section IV-C.

Note that the set Sα presents a estimated domain of attraction.
The parameter α can be chosen such that the condition (36) is
satisfied and a positive constant as large as possible to obtain
large domain of attraction. For example, the analytic solution to
the parameter α can be found in [15].

C. An algorithm for the design of controller

In this section, we will present the CNF controller design
algorithm and investigate some properties of the gain parameters.
We refer to general low-and-high gain feedback controller and
CNF controller design algorithm. The controller design algorithm
is carried out in three steps as follows.

Step 1) We design the feedback controller u1 and u3 defined as

u1 + u3 = −B′P e + sign
(
−B′P e

) ∣∣Ā2xt
∣∣
∞ − f̄(x) (50)

where P ∈ R6×6 is the unique symmetric positive definite solution
to the ARI (37). The solution can be obtained such that the closed-
loop system has certain desired performance, i.e., large domain of
attraction and/or small L∞ gains.

Remark 4.2: [17] Let us consider the ARI (37) and define two
design parameters as ζ1 ≥ ζ2 > 0. Then, for fixed γ, two solutions,
P1, P2 > 0, of the ARI satisfies P1 ≥ P2.

Remark 4.3: In this paper, we focused on the control problem of
SFF in the presence of the input saturation and the disturbance. In
this case, as mentioned above, the performance of the system can
be considered as a large domain of attraction and small disturbance
attenuation level, and they are dependent on the control gain P , i.e.,
we can estimate the size of the domain of attraction as tr(P ). Let
us consider the ARI (37). By pre-multiplying P−1 and applying
the trace operation, provided that

tr(2BB′P − 1

γ2
DD′P )− 2tr(A1(ξ))− tr(ζI) ≥ 0 (51)

λmax(2BB′ − 1

γ2
DD′)tr(P )− 2tr(A1(ξ))− tr(ζI) ≥ 0 (52)

From the definition of the matrices A1(ξ), B,D, we can see that
tr(A1(ξ)) = 0, λmax(2BB′ − 1

γ2
DD′) = 2− 1

γ2
. Then (52) can

be written as

tr(P ) ≥ 6ζ

2− 1
γ2

(53)

(53) presents the lower bounds of tr(P ) and γ. Furthermore, from
(53), we can see that tr(P ) decreases as γ increases and/or ζ
decreases. For detailed bound properties of the solution to the ARI
(or ARE), see [18].
Step 2) We construct the high gain feedback controller (32)

u2 = −ρB′P e (54)

where ρ is a nonnegative function referred to as the high gain
parameter and can be chosen such that the function ρ changes from
0 to ρ0 as e approaches zero. For example, in [12], the scheduled
high gain parameter is chosen as

ρ =
ρ0

1−
(

1
α

e′P e
)2 (55)

where α presents the size of domain of attraction and ρ0 > 0 is a
design parameter that can be chosen to yield a desired performance,
i.e., fast settling time, small overshoot, small steady-state error. The
choice of ρ is nonunique.

Note that from Remark 4.2 and Remark 4.3, we can see that the
large domain of attraction lead to the large L∞ gains. However,
in Section V, we will see that the L∞ gains can decreased by the
high gain controller. In this paper, we do not provide the analytical
relationship between the high gain controller and the L∞ gains.
But we will leave this to future work.

Step 3) We combine the controller u1, u2 and u3 designed in the
previous steps as

u =− (1 + ρ)B′P e + sign
(
−B′P e

) ∣∣Ā2xt
∣∣
∞− f̄(x) (56)

V. SIMULATION RESULTS

In this paper, we consider two satellites in a low-earth orbit:
semimajor axis of 7178000m, eccentricity of 0.1. The initial relative
positions and velocities are (30, 20, 0) and (1,-2,1) and the desired
target positions and velocities are (10,10,10) and (0,0,0) in x̂-ŷ-ẑ
axes, respectively. The mass of follower satellite is 410 kg, and we
are assuming maximum 50 N thrusters are used along all three
directions. In this simulation, we consider the disturbance as a
J2 perturbation. The J2 acceleration can be written in the local
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Fig. 2: Relative position errors in x-axis (left), y-axis (center) and z-axis (right)

Fig. 3: Control forces in x-axis (left), y-axis (center) and z-axis (right)

Fig. 4: Steady-state relative position errors in x-axis (left), y-axis (center) and z-axis (right)

reference frame (x̂, ŷ, ẑ) as [7]

wJ2 =− 3

2

µR2
e

r4
J2[ (1− 3sin2i sin2θ) x̂

+ (2 sin2i sinθ cosθ) ŷ + (2 sini cosi sinθ) ẑ ] (57)

Where Re is the radius of the Earth, J2 = 1082.63 × 10−6, i is
orbital inclination, and θ = ν + w (true anomaly and argument of
perigee, respectively).

To compare the size of the domain of attraction,tr(P ), and the
L∞ gains, we consider the solution to ARI (37) as change the
value of ζ for fixed value of γ2. Table 1 shows that the size of
the domain of attraction and the L∞ gains obtained by the solution
to ARI. Fig.2, Fig.3 and Fig.4 show the simulation results without
high gain controller. In the simulation, we use γ2 = 10, ζ = 1, 2.
The simulation results also show that as ζ decreases, we can achieve
the large domain of attraction, but the poor transient response and
the poor disturbance attenuation level.

Next, we consider the proposed CNF controller and the high gain
controller as (55). We choose the parameters as γ2 = 10, ζ = 1,
ρ0 = 10, 1000, and α = 104. The simulation results are shown in
Fig.5, Fig.6, and Fig.7. From the simulation results, we can see that
as the high gain increases, the system has not only the fast transient
response, but also the small steady-state error.

VI. CONCLUSION

In this paper, we proposed a formation control law which guar-
antees finite-gain L∞ stability. The proposed feedback controller,

TABLE I: Comparison of size of the domain of attraction and L∞
gains

γ2 ζ tr(P ) κ η

1

0.1 0.6081 20.1762 141.5985
1 9.0066 2.6196 1.6180
5 405.1214 5.2092 0.2041

10
0.1 0.3200 20.1763 617.2134
1 4.7403 2.6196 7.0528
2 18.9549 2.6189 2.4936
5 213.2218 5.2092 0.8897

50
0.1 0.3071 20.1762 1.4089 ×103

1 4.5488 2.6196 16.0992
5 204.6066 5.2092 2.0309

CNF controller, was developed using algebraic Riccati inequality
(ARI). Using the CNF controller, we derived internal and external
stability (finite-gain L∞ stability). Furthermore, we investigated the
relationship between the solution to the ARI, the design parameters
and the performance of the system. From the numerical example, it
was derived, and the efficacy of the CNF feedback controller was
demonstrated.
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Fig. 5: Relative position errors in x-axis (left), y-axis (center) and z-axis (right)

Fig. 6: Control forces in x-axis (left), y-axis (center) and z-axis (right)

Fig. 7: Steady-state relative position errors in x-axis (left), y-axis (center) and z-axis (right)
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