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Abstract— This paper addresses the problem of tracking
multiple maneuvering extended targets in the framework of
random finite set theory. An elliptical model is adopted for
exploiting sensor measurements of target extent, and the target
dynamics is described by a jump Markov linear system which
combines the shape parameters into the kinematic state vector.
As each extended target gives rise to unlabeled multiple
measurements per time step, all the received measurements are
partitioned into a number of subsets so that the measurements
in each subset are expected to stem from the same source. In
addition, the best-fitting Gaussian approximation approach is
employed to circumvent the difficulty of multiple model mixing
in the Gaussian mixture probability hypothesis density (GM-
PHD) filter. A numerical example is provided to compare the
performance of the proposed filter with that of the GM-PHD
filter without measurement partition.

I. INTRODUCTION

Extended target tracking has received much attention in

recent years due to the development of high resolution

sensors [1]–[6]. Unlike the conventional target tracking prob-

lem, in which the target is modeled as a point and at

most a single measurement is received per time step, the

extended target tracking involves describing a target as a

set of points source and each of which may be the origin

of a sensor measurement. Another feature of the extended

target tracking is that the target extent information can be

incorporated within a tracking algorithm to improve the

tracking performance, especially for tracking closely spaced

targets [3]. Many strategies have been proposed for extracting

the target extent information such as the stick model [4], the

spatial distribution model [5], and the elliptical model [6].

It should be pointed out that most of the existing literature

focus on single extended target tracking. The problem of

tracking time-varying number of extended targets in the

cluttered environment remains a challenge.
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The random finite set (RFS) approach to multi-target

tracking has been developed by Mahler [7]–[9], in which

the multi-target state and the multi-target measurement are

represented as random finite sets. The main advantage of

the RFS formulation is that the difficulty caused by data

association is avoided. Moreover, it is natural to investigate

the problem of target appear and disappear at any time. Based

on the finite set statistics (FISST) theory, a rigorous Bayesian

framework has been proposed for multi-target tracking.

However, the optimal multi-target Bayes filter is generally

intractable due to the combinatorial nature of the multi-

target densities and multiple set integrals. The probability

hypothesis density (PHD) filter, which aims to recursively

propagate the first-order moment or the intensity function

associated with the multi-target posterior density, provides a

computational tractable alternative. Recently, two implemen-

tations of the PHD filter including the sequential Monte Carlo

PHD (SMC-PHD) [10]–[13] and the Gaussian mixture PHD

(GM-PHD) [14]–[16] are developed. An added advantage of

the GM-PHD filter is that it allows the state estimates to

be extracted from the posterior intensity in a much more

efficient and reliable manner than the SMC-PHD filter [14].

For tracking maneuvering targets, the switching multiple

model method has been shown to be highly effective [17].

Multiple model PHD filters have been proposed for tracking

multiple maneuvering targets [18], [19]. Nevertheless, the

problem of multiple model mixing in the GM-PHD filter has

not been resolved effectively. To circumvent this difficulty,

the best-fitting Gaussian (BFG) approximation approach has

been utilized in our previous work [20] and it has been shown

that the BFG-based GM-PHD filter provides better tracking

performance with less computational cost.

The problem of tracking multiple extended targets has

been studied in the RFS framework [21], and the extended

PHD recursion has been developed. As each extended target

gives rise to unlabeled multiple measurements per time step,

the main difficulty arising is how to partition the measure-

ment set into a number of subsets such that the measurements

in the subsets stem from the same source. In [22], the

extended GM-PHD filter has been carried out by using a

heuristic measurement partition scheme. However, the target

extent information is not incorporated and the proposed filter

is restricted to deal with the linear measurement equations.

In addition, the single model approach is used and thus it is

not preferred to handle maneuvering targets.

In this paper, we propose a new GM-PHD filter for

tracking multiple maneuvering extended targets. For the sake

of simplicity, the investigation is confined to the practically
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important case of elliptical targets and the target kinematic

state vector is augmented by additional state variables char-

acterizing their extensions such as the shape parameters. The

tracking problem is then to infer the structure of targets as

well as their kinematical properties involved. By describing

the target dynamics as a coordinated turn model with Marko-

vian switching parameter, the BFG approximation approach

is employed as mentioned in the previous discussion. A

three-element measurement vector is formed including the

range and the bearing to the target centroid, and the down-

range extent along the sensor-target line-of-sight (LOS). A

Poisson model is used to generate multiple measurements for

each extended target. As pointed out in [3] that the extended

Kalman filter (EKF) is prone to divergence due to the high

nonlinearity of measurements, the unscented transform [23]

technique is used to overcome this problem in this paper.

The measurement partition scheme is proposed based on

the Mahalanobis distance between measurements which is

similar to that in [22]. A simulation example is provided

to illustrate the effectiveness of the proposed filter and to

compare the performance with that of GM-PHD filter.

The rest of this paper is organized as follows. The prob-

lem of tracking multiple maneuvering extended targets is

formulated in Section II. In Section III, the BFG approxi-

mation approach and the measurement partition scheme are

presented to develop the extended GM-PHD filter based on

the unscented transform technique. In Section IV, a numerical

example is provided to compare the performance of the

proposed filter with that of the standard GM-PHD filter.

Conclusion and future work are given in Section V.

II. PROBLEM FORMULATION

A. Elliptical model for target extent
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Fig. 1: Elliptical model for target extent.

As in [3] we propose to model the shape of the target

as an ellipse. It is assumed that all the targets are moving

on a plane and that their major axes are parallel to their

velocity vectors, respectively. Then, as shown in Fig.1, the

down-range extent for an ellipsoidal target can be described

by

L(φ) = l

√

cos2 φ + r2 sin2 φ (1)

where φ is the angle between the major axis of the ellipse

and the sensor-target LOS. l is the length of the major axis

and r is the ratio of the lengths of the minor and major axes.

B. Extended target dynamics and measurement models

In this paper, our aim is to estimate the target state and

the target shape parameters simultaneously. For this purpose,

we define the state vector as xk = (xk ẋk yk ẏk lk rk)T ,

where (xk yk) and (ẋk ẏk) represent the target position and

velocity components, respectively. Since the dynamics of a

maneuvering target is usually modeled by multiple switching

regimes, also known as jump Markov systems, we consider

the following coordinated turn model

xk+1 =
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where ω denotes the turn rate and T is the sampling time

period. wk is assumed to be zero-mean white Gaussian noise

with covariance Qk.

We assume that at any time the target motion obeys one

of M dynamic behavior models, which can be described by

the above coordinated turn model with different turn rate. For

example, the model (2) represents a left turn for ω > 0 and

a right turn for ω < 0. Specially, the model (2) becomes the

nearly constant velocity model when ω = 0. The switching

between models is governed by a first-order Markov chain θk

with known transition probability matrix Π, whose elements

are πij , P{θk = j|θk−1 = i}.

A high resolution sensor is used to provide measurements

of range and bearing to the target centroid, as well as the

down-range extent L(φ), i.e.,

zk = h(xk) + vk (3)

where h is the measurement function, and vk is zero-mean

white Gaussian noise with covariance Rk.

To be specific, the measurement function is given by

h(xk) =





√

(xk − x0)2 + (yk − y0)2

arctan[(xk − x0)/(yk − y0)]
L(φ(xk))



 (4)

where (x0 y0) is the location of the sensor, and

L(φ(xk)) =
lk

ukvk

√

(ẋkx′
k + ẏky′

k)2 + r2
k(ẏkx′

k + ẋky′
k)2

(5)

with

x′
k = xk − x0, y′

k = yk − y0,

uk =
√

x′2
k + y′2

k , vk =
√

ẋ2
k + ẏ2

k. (6)
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C. PHD recursion for multiple extended targets tracking

Consider a multi-target tracking scenario, the aim involves

the joint estimation of an unknown and time-varying number

of targets as well as their individual states from a sequence of

noise-corrupted measurements with uncertain origins. Since

the number of measurements may vary as not all targets

generate measurements and the existence of clutter, it is

natural to represent the multi-target state and multi-target

measurement as two random finite sets (RFSs) [7]

Xk , {xk,1, · · · ,xk,nk
} ⊂ X (7)

Zk , {zk,1, · · · , zk,mk
} ⊂ Z (8)

where xk,1, · · · , xk,nk
∈ X are the target states, zk,1, · · · ,

zk,mk
∈ Z are the received measurements. X ⊂ R

n and

Z ⊂ R
p denote the state and observation space, respectively.

nk and mk denote the number of targets and the number

of received measurements at time k, respectively. As each

extended target generates more than one measurement, the

measurements zk,i and zk,j might stem from the same target

for i 6= j. We assume that the number of measurements

generated by each extended target per time step is a Poisson

distributed with rate ǫ(x).
By utilizing the FISST theory, the first-order moment of an

RFS X on X is a non-negative function ν(x) which is also

called as the PHD or the intensity function. For the multiple

extended targets tracking, let νk−1(x) and νk|k−1(x) be the

respective intensities for multi-target update and prediction

recursion at time k − 1. The prediction equation is given by

νk|k−1(x) =

∫

[pS(ξ)f(x|ξ) + βk|k−1(x|ξ)]νk−1(ξ)dξ

+ γk(x) (9)

where f(x|ξ) is the single target transition density, pS(ξ)
is the probability of target survival, βk|k−1(x|ξ) denotes the

intensity of the spawned target RFS, and γk(x) denotes the

intensity of the spontaneously birth target RFS. The posterior

intensity νk(x) is then updated as [21]

νk(x) = LZk
(x)νk|k−1(x) (10)

where the measurement pseudo-likelihood function is

LZk
(x) = 1 − (1 − e−ǫ(x))pD(x)

+ e−ǫ(x)pD(x)
∑

p∠Zk

wp

∑

W∈p

ǫ(x)|W |

dW

∏

z∈W

ϕz(x)

λkck(z)

(11)

In (11), ϕz(x) is the spatial measurement distribution.

pD(x) is the probability of detection, λk is the Poisson rate

that determines the number of clutter per scan, ck(z) is the

spatial distribution of the clutter measurements. In particular,

the notation p∠Zk means that p partitions the measurement

set Zk into cells W . wp is the weight of a particular partition

and is computed by

wp =

∏

W∈p dW
∑

p′∈Zk

∏

W∈p′ dW

(12)

where

dW = δ|W |,1 +

[

e−ǫ(x)ǫ(x)|W |pD(x)
∏

z∈W

ϕz(x)

λkck(z)

]

× νk|k−1(x) (13)

with δi,j being the Kronecker delta function and |W | being

the number of the measurements in W .

Remark 1: The main difference between the standard

PHD recursion and the extended PHD recursion is that every

possible partition of the measurement set has been separated

into several cells since an extended target gives rise to

multiple measurements per time step. In other words, each

measurement is used to update the Gaussian components for

the standard GM-PHD filter, while each cell of the partition

is used to update the Gaussian components for the extended

GM-PHD filter, see [22] for more details.

III. EXTENDED GM-PHD FILTER

A. JMLS with BFG approximation

We rewrite the target motion model (2) in a compact form

xk+1 = Fk(θk+1)xk + Gk(θk+1)wk(rk+1) (14)

where xk ∈ R
n is the target state at time k, Fk(θk+1)

and Gk(θk+1) denote the transition matrices of model θk+1.

θk+1 specifies the target motion model which is in effect

during the time interval [k, k + 1). wk(θk+1) is the additive

zero-mean white Gaussian noise with covariance Qk(θk+1).
For the convenience of development, the notations Fk(r),
Gk(r) and Qk(r) are shortly denoted by F r

k , Gr
k and Qr

k,

respectively.

The purpose of the BFG approximation is to express the

dynamics of the JMLS (14) with the linear Gaussian system

xk+1 = Φkxk + wk (15)

where wk is a zero-mean white Gaussian random vector with

covariance matrix Σk, i.e., wk ∼ N (0,Σk). Then, we want

to replace the JMLS with a single BFG distribution such that

the distribution of xk has the same mean and covariance

under each model. Similar to the calculation in [24], the

system matrix Φk and the covariance matrix Σk of wk can

be determined recursively

pk+1,r =
M
∑

i=1

πirpk,i (16)

Φk =
M
∑

r=1

pk+1,rF
r
k (17)

Θk+1 =
M
∑

r=1

pk+1,r

[

F r
k (Θk + εkεT

k )[F r
k ]T + Gr

kQr
k[Gr

k]T
]

− ΦkεkεT
k ΦT

k (18)

Σk = Θk+1 − ΦkΘkΦT
k (19)

εk+1 = Φkεk (20)

where pk+1,r is the probability of the event that model r is

in effect during the sampling period [k, k + 1). εk and Θk

represent the mean and the covariance of xk, respectively.
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B. Measurement partition

Let us present an example to illustrate the partition.

Assume that three valid measurements have been re-

ceived at time k and the measurement set is denoted as

Zk = {zk,1, zk,2, zk,3}. Then the measurement set can

be partitioned in the following ways [21]: (p1). W1 =
{zk,1, zk,2, zk,3}; (p2). W1 = {zk,1, zk,2}, W2 = {zk,3};

(p3). W1 = {zk,1, zk,3}, W2 = {zk,2}; (p4). W1 =
{zk,2, zk,3}, W2 = {zk,1}; (p5). W1 = {zk,1}, W2 =
{zk,2}, W3 = {zk,3}. Note that the number of partitions

grows very large as the size of measurements increases.

It is therefore to find some possible partitions in order to

derive a computationally tractable algorithm. To this end, a

simple partition principle is adopted which is based on the

Mahalanobis distance between measurements [22].

Given the measurement set Zk and a sequence of distance

threshold {di}
Nd

i=1 with di < di+1. We can get a partition for

each di in which the cells constitute the measurements that

are no more than di apart from their closet cell neighbor. For

defining the distance between measurements, we consider

two measurements zk,i and zk,j , both measured with covari-

ance matrix Rk, then the Mahalanobis distance is defined

as

∆ = (zk,i − zk,j)R
−1
k (zk,i − zk,j)

T (21)

which is χ2 distributed with 3 degrees of freedom. Using an

inverse χ2 distribution, a unit-less distance threshold δPG
can

be obtained for a given probability PG. Then zk,i and zk,j

can be considered in the same cell if ∆ < δPG
. Specially,

the threshold di can be taken as δPG
for different PG.

C. Extended GM-PHD filter based on BFG approximation

Based on the above formulation, the state dynamics and

measurement of each extended target can be described by

f(xk+1|xk) = N (xk+1; Φkxk,Σk) (22)

g(zk|xk) = N (zk;h(xk), Rk) (23)

where Φk and Σk are calculated by the BFG approximation.

We assume that the survival probability pS and the de-

tection probability pD are both state independent, and the

intensities of the birth and the spawning RFSs are Gaussian

mixtures

γk(x) =

Jγ,k
∑

j=1

wj
γ,kN (x;mj

γ,k, P j
γ,k) (24)

βk|k−1(x|ξ) =

Jβ,k
∑

l=1

wl
β,kN (x;F l

β,kξ + dl
β,k, Ql

β,k) (25)

where Jγ,k, wj
γ,k, mj

γ,k and P j
γ,k are given parameters that

determine the shape of the birth intensity. Jβ,k, wl
β,k, F l

β,k,

dl
β,k and Ql

β,k are given parameters that determine the shape

of the spawning intensity.

Then, the extended PHD recursion (9)-(11) can be imple-

mented as follows

BFG Approximation Step: Given the mode probability pk,i,

the mean εk and the covariance Θk, determine the matrices

Φk and Σk by (16)-(20).

Prediction Step: Given that the posterior intensity νk(x)
is a Gaussian mixture

νk(x) =

Jk
∑

j=1

wj
kN (x;mj

k|k, P j

k|k) (26)

then the predicted intensity is also a Gaussian mixture with

the form

νk+1|k(x) = νS,k+1|k(x) + νβ,k+1|k(x) + γk+1(x) (27)

where γk+1(x) is given by (24), and

νS,k+1|k(x) = pS,k+1

Jk
∑

j=1

wj
kN (x;mj

S,k+1|k, P j

S,k+1|k)

(28)

νβ,k+1|k(x) =

Jk
∑

j=1

Jβ,k+1
∑

l=1

wj
kwl

β,k+1N (x;mj,l

β,k+1|k, P j,l

β,k+1|k)

(29)

mj

S,k+1|k = Φkmj

k|k (30)

P j

S,k+1|k = ΦkP j

k|kΦT
k + Σk (31)

mj,l

β,k+1|k = F l
β,k+1m

j

k|k + dl
β,k+1 (32)

P j,l

β,k+1|k = F l
β,k+1P

j

k|k[F l
β,k+1]

T + Ql
β,k+1 (33)

Measurement partition step: Utilizing the scheme pro-

posed in Section III-B to obtain the possible partitions and

cells.

Update Step: Given that the predicted intensity can be

represented as the form of

νk+1|k(x) =

Jk+1|k
∑

i=1

wi
k+1|kN (x;mi

k+1|k, P i
k+1|k) (34)

then the posterior intensity is

νk+1(x) = (1 − (1 − eǫ(x))pD)νk+1|k(x)

+
∑

p∠Zk+1

∑

W∈p

νD,k+1(x) (35)

where

νD,k+1(x) =

Jk+1|k
∑

i=1

wi
k+1N (x;mi

k+1|k+1, P
i
k+1|k+1) (36)

wi
k+1 = wp

pDΓi

dW

Ψi
W wi

k+1|k (37)

wp =

∏

W∈p dW
∑

p′∠Zk+1

∏

W ′∈p′ dW ′

(38)

dW = δ|W |,1 +

Jk+1|k
∑

i=1

ΓiΨi
W wi

k+1|k (39)

Γi = e−ǫ(x)ǫ(x)|W | (40)

Ψi
W =

∏

z∈W

ϕz(m
i
k+1|k)

λkck(z)
(41)
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The likelihood function ϕz(m
i
k+1|k) is calculated by using

the unscented transform technique, i.e.,

ϕz(m
i
k+1|k) = N (z;h(mi

k+1|k), Si
k+1) (42)

where

Si
k+1 = Rk+1 +

2n
∑

s=0

Ws[ζ
i
k,s − h(mi

k+1|k)]

× [ζi
k,s − h(mi

k+1|k)]T (43)

with ζi
k,s being the sigma point and Ws being the weight

ζi
k,0 = mi

k+1|k (44)

ζi
k,s = mi

k+1|k +
(√

P i
k+1|k

)

s
(45)

ζi
k,s+n = mi

k+1|k −
(√

P i
k+1|k

)

s
, s = 1, · · · , n (46)

The mean mi
k+1|k+1 and covariance P i

k+1|k+1 are

mi
k+1|k+1 = mi

k+1|k + Ki
k+1ẑ

i
k+1 (47)

P i
k+1|k+1 = P i

k+1|k − Ki
k+1P

i
zz

[Ki
k+1]

T (48)

Ki
k+1 = P i

xz
[P i

zz
]−1 (49)

P i
zz

= R̄k+1 +
2n
∑

s=0

Wsz̄
i
k+1[z̄

i
k+1]

T (50)

P i
xz

=
2n
∑

s=0

Ws(ζ
i
k,s − mi

k+1|k)[z̄i
k+1]

T (51)

where

R̄k+1 =







Rk+1 . . . 0
...

. . .
...

0 . . . Rk+1






, ẑi

k+1 =







z1 − h(mi
k+1|k)

...

z|W | − h(mi
k+1|k)







z̄
i
k+1 =







h(ζi
k,s) − h(mi

k+1|k)
...

h(ζi
k,s) − h(mi

k+1|k)






. (52)

IV. SIMULATIONS

This section provides a numerical example to compare the

performance of the proposed filter with that of the standard

GM-PHD filter without measurement partition. We consider

a two-dimensional scenario with an unknown and time-

varying number of extended targets as in [20].

Tracking model: Three models corresponding to different

turn rates are used. Model 1 is a nearly constant velocity

model and the standard deviation of noise is 5 m/s2. Model

2 is a coordinated turn model with a clockwise turn rate of

3◦/s and the standard deviation of noise is 20 m/s2. Model 3

is a coordinated turn model with a counterclockwise turn rate

of 3◦/s and the standard deviation of noise is 20 m/s2. The

switching between three models is governed by a first-order

Markov chain with known transition probability matrix

Π =





0.8 0.1 0.1
0.1 0.8 0.1
0.1 0.1 0.8



 (53)

The Poisson rate for the number of measurements gener-

ated per time step is ǫ(x) = 5 for each target. The measure-

ment noise vk is assumed to be zero-mean white Gaussian

with covariance matrix R = diag{1002, (π/180)2, 52}. The

sensor is located at (35,−60) km, and the average number

of clutter returns per unit volume is taken as λk = 1.67 ×
10−2 which corresponding to 10 clutter returns over the

surveillance region. It is assumed that targets can appear or

disappear in the scene at any time. The spontaneous birth

RFS is Poisson with the following intensity

γk(ξ) = 0.1
[

N (ξ;m1
γ , Pγ) + N (ξ;m2

γ , Pγ)
]

(54)

where

m1
γ = (40, 0,−50, 0, 50, 0.2)T

m2
γ = (30, 0,−40, 0, 50, 0.2)T

Pγ = diag{106, 104, 106, 104, 52, 0.22}

The intensity of the Poisson RFS of spawn births is given

by

βk|k−1(x|ξ) = 0.05N (x; ξ,Qβ) (55)

where Qβ = diag{104, 400, 104, 202, 52, 0.22}.

Simulation results: In our simulations, the survival and

the detection probabilities are set to pS,k = 0.99 and

pD,k = 0.99, respectively. The pruning threshold has been

taken as TTh = 10−7, the merging threshold UTh = 5, the

weight threshold wTh = 0.005 and the maximum number

of Gaussian terms Jmax = 10 (see [14] for the meanings

of these parameters). The criterion known as optimal sub-

pattern assignment (OSPA) metric is used for performance

evaluation. The OSPA metric has been considered as a much

more natural interpretation for demonstrating localization

and cardinality errors in multi-target tracking [25].

The true trajectories of four targets are shown in Fig 2.

Target 1 starts at time k = 1 with initial position at (40,−50)
km and ends at time k = 100; Target 2 is spawned from

target 1 at time 50 and ends at time 90; Target 3 starts at

time k = 5 with initial position at (30,−40) km and ends

at time k = 85; Target 4 is spawned from target 3 at time

25 and ends at time 60. To verify the performance of the

proposed filter, 100 Monte Carlo runs are performed with

independently generated clutter and measurements for each

trial. The position estimates of the proposed filter for one

trial shown in Fig. 2 indicate that the filter provides accurate

tracking performance. The OSPA distance for p = 2 and

c = 200 is shown in Fig. 3, which suggests that the proposed

filter gives more reliable estimates than the standard GM-

PHD filter without measurement partition.

To assess the computational requirement of the proposed

filter, we compute the averaged CPU time in MATLAB 7.1

on a 2.80 GHz 4 CPU Pentium-based computer operating

under Windows XP (Professional). The proposed filter con-

sumed approximately 73.6 s per sample run over 100 time

steps, while the standard GM-PHD filter consumed 31.3 s.

This is due to the fact that more computations have been done

in the measurement partition. Note that both algorithms fit

comfortably within the real-time requirements.
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Fig. 2: Position estimates of the Ex-PHD-UKF.
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V. CONCLUSION

A GM-PHD filter for tracking multiple maneuvering ex-

tended targets is developed. Two main features for tracking

extended targets are investigated in a unified formulation

including unlabeled multiple measurements and target ex-

tent information. By employing the BFG approximation

approach, the extended GM-PHD filter is implemented based

on a heuristic measurement partition scheme and the un-

scented transform technique. Compared with the standard

GM-PHD filter, simulation results show that the proposed

filter can achieve better tracking performance with more

computational overload. Further study should find a better

way to partition the measurement set in a more efficient

manner. Extending the proposed approach to accommodate

other target extent models is an important problem.
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