Collision Avoidance Maneuver Design Based on Equidistance Interpolation

Yongqiang Qi, Yingmin Jia, Junping Du and Fashan Yu

Abstract

This paper deals with the active collision avoidance maneuver for the chaser along the specified trajectory, and presents a maneuver approach with constant thrust. Using the 3D stereo vision measurement, The relative position parameters of the target spacecraft for analyzing the collision possibility are obtained by using the vision measurement and the target maneuver positions are calculated through the equidistance interpolation method. The working times of thrusters in three axes can be respectively computed by the time series analysis method. In particular, the perturbation and fuel consumption are addressed during the computation of working time. Furthermore, the acceleration sequences and the corresponding working time series can be employed to determine a switching control law for the active collision avoidance maneuver. The simulation results show that the switch control law can effectively guarantee the chaser moving along the specified trajectory.

Index Terms-Constant thrust; Vision measurement; Switch control law; The specified trajectory; Equidistance interpolation.

I. Introduction

The problem of collision avoidance impulsive maneuvers in the process of rendezvous and docking has been under intensive investigation for several decades. In actual practice, however, maneuvers during rendezvous and docking operations cannot normally be considered as impulsive maneuvers because there exist long thrust arcs. Therefore, the impulse assumption does not hold any more. To overcome this problem, a novel active collision avoidance maneuver under constant thrust is proposed in this work.

The most common method to deal with the collision avoidance between two spacecrafts is to calculate the probability of collision firstly, then carry out active collision avoidance maneuver if there is the possibility of collision [1], [2]. However, due to the relative velocity is small in the rendezvous and docking stage, the calculation of collision

[^0]probability is difficult to be linearized. Therefore, active collision avoidance maneuver in this paper is carried out according to the possibility of collision which is calculated based on the relative position and the relative velocity between the chaser and the target spacecraft.

Various types of safeties have been considered in the design of collision avoidance spacecraft trajectories [2][9]. Richards et al studied collision and plume avoidance to deal with spacecraft trajectory planning by using mixed integer linear programming [2]. Jacobsen et al presented a method for planning of safe Kinematic trajectories for free flying robots approaching an uncontrolled spinning satellite [6]. Methods proposed in Ref. [6] develop the safety circle method in which a nearby orbit with a relative invariant trajectory is established that allows safe long-term observation before docking. However, this approach is not fuel optimized and does not propose a specific collision avoidance maneuvers route.
The purpose of this paper is to analyze the collision possibility between the chaser and target spacecraft and to enact active collision avoidance constant thrust maneuver along the specified trajectory. The specified trajectory is given according to the initial relative position and the terminal target position of the chaser, at the same time the size and the direction of the initial relative velocity and the acceleration are also taken into account. First of all, the relative position parameters of the spacecrafts are obtained by using vision measurement. Next, the definition of the spherical security zones and the criterions of the collision possibility are presented. Then, to ensure the chaser moving along the specified trajectory, the equidistance interpolation method is used by dividing the entire process of the active collision avoidance maneuver into equidistance arcs. At last, the actual working times of the thrusters in three axes can be respectively computed by using the time series analysis method. Moveover, the switch control laws in the three axes for active collision avoidance constant thrust maneuvers are designed based on the actual working time series and the corresponding accelerations. The simulation results show that the constant thrust maneuver can effectively guarantee the chaser maneuvering along the specified trajectory.

II. Vision Algorithm for Position Determination

Two cameras C_{1} and C_{2} which have the same focal lengths and the internal parameters are installed in the chaser. Camera coordinate system is established as shown in Figure 1. $O_{c_{1}}$ and $O_{c_{2}}$ are the optical centers of the cameras C_{1} and C_{2}, respectively. $X_{c_{1}}$ and $X_{c_{2}}$ are the optical axes of the cameras C_{1} and C_{2}, respectively. $X_{c_{1}}$ is parallel to $X_{c_{2}}$, and
$Y_{c_{1}}$ coincides with $Y_{c_{2}}$, where The optical parallax between $O_{c_{1}}$ and $O_{c_{2}}$ is L. P is any point on the target spacecraft, P_{1} and P_{2} are the projection points of the P on the image planes of the cameras C_{1} and C_{2}, respectively. therefore, P is the intersection of $O_{c_{1}} P$ and $O_{c_{2}} P$.

Figure 1. Model of binocular vision.
Further assume that the cameras have been calibrated and their projection matrices are M_{1} and M_{2} [10]. The following results can be obtained by coordinate transformation

$$
\begin{gather*}
X_{c_{i}}\left(\begin{array}{c}
x_{1} \\
y_{1} \\
1
\end{array}\right)=M_{i}\left(\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right) \tag{1}\\
M_{i}=\left(\begin{array}{cccc}
m_{11}^{i} & m_{12}^{i} & m_{13}^{i} & m_{14}^{i} \\
m_{21}^{i} & m_{22}^{i} & m_{23}^{i} & m_{24}^{i} \\
m_{31}^{i} & m_{32}^{i} & m_{33}^{i} & m_{34}^{i}
\end{array}\right), i=1,2 \tag{2}
\end{gather*}
$$

where $\left(x_{1}, y_{1}, 1\right)^{T}$ and $\left(x_{2}, y_{2}, 1\right)^{T}$ are homogeneous coordinates of P_{1} and P_{2} in the cameras C_{1} and C_{2}, respectively. $(X, Y, Z, 1)^{T}$ is the homogeneous coordinate of P in the reference coordinate system, that is to say, X, Y and Z are the 3D position coordinates of the real point P. Therefore, $X_{c_{1}}$ and $X_{c_{2}}$ can be removed by combining (1) and (2),

$$
\begin{gather*}
A(X, Y, Z)^{T}=B \tag{3}\\
A=\left(\begin{array}{ccc}
x_{1} m_{31}^{1}-m_{11}^{1} & x_{1} m_{32}^{1}-m_{12}^{1} & x_{1} m_{33}^{1}-m_{13}^{1} \\
y_{1} m_{31}^{1}-m_{21}^{1} & y_{1} m_{32}^{1}-m_{22}^{1} & y_{1} m_{33}^{1}-m_{23}^{1} \\
x_{2} m_{31}^{2}-m_{11}^{2} & x_{2} m_{32}^{2}-m_{12}^{2} & x_{2} m_{33}^{2}-m_{13}^{2} \\
y_{2} m_{31}^{2}-m_{21}^{2} & y_{2} m_{32}^{2}-m_{22}^{2} & y_{2} m_{33}^{2}-m_{23}^{2}
\end{array}\right) \tag{4}\\
B=\left(\begin{array}{c}
m_{14}^{1}-x_{1} m_{34}^{1} \\
m_{24}^{1}-y_{1} m_{34}^{1} \\
m_{14}^{2}-x_{2} m_{34}^{2} \\
m_{24}^{2}-y_{2} m_{34}^{2}
\end{array}\right)
\end{gather*}
$$

The least-square solution of P in the reference coordinate system as follow [11].

$$
\begin{equation*}
(X, Y, Z)^{T}=\left(A^{T} A\right)^{-1} A^{T} B \tag{6}
\end{equation*}
$$

Assume that the virtual optical center of the cameras C_{1} and C_{2} is the midpoint of the line segment $O_{C_{1}} O_{C_{2}}$ and defined as O_{C}, and the virtual optical axis is parallel to $O_{c_{i}} X_{c_{i}}(i=1,2)$, the other two axes are coincide with $O_{c_{i}} Y_{c_{i}}(i=1,2)$ and parallel to $O_{c_{i}} Z_{c_{i}}(i=1,2)$,
respectively. According to the definition of the coordinate system (Geller, 2006),
$X=\frac{f L}{\left(x_{2}-x_{1}\right) d y}, Y=\frac{x_{1}-x_{0}}{\left(x_{2}-x_{1}\right)} L, Z=\frac{\left(y_{1}-y_{0}\right) d z}{\left(x_{1}-x_{2}\right) d y} L$.
where f is the focal length of the camera, $\left(x_{0}, y_{0}\right)$ is the projection point of the P on the image plane from the virtual optical center O_{C}. Therefore, the following results can be obtained according to vision measurement errors

$$
\begin{align*}
d X & =\frac{\partial X}{\partial x_{1}} d x_{1}+\frac{\partial X}{\partial x_{2}} d x_{2} \\
& =\frac{f L}{\left(x_{2}-x_{1}\right)^{2} d y} d x_{1}-\frac{f L}{\left(x_{2}-x_{1}\right)^{2} d y} d x_{2} \tag{8}\\
d Y & =\frac{\partial Y}{\partial x_{1}} d x_{1}+\frac{\partial Y}{\partial x_{2}} d x_{2} \\
& =\frac{\left(x_{2}-x_{0}\right) L}{\left(x_{2}-x_{1}\right)^{2}} d x_{1}-\frac{\left(x_{1}-x_{0}\right) L}{\left(x_{2}-x_{1}\right)^{2}} d x_{2} \tag{9}\\
d Z & =\frac{\partial Z}{\partial x_{1}} d x_{1}+\frac{\partial Z}{\partial x_{2}} d x_{2}+\frac{\partial Z}{\partial x_{2}} d y_{1} \\
& =\frac{\left(y_{1}-y_{0}\right) L}{\left(x_{2}-x_{1}\right)^{2}} d x_{1}-\frac{\left(y_{1}-y_{0}\right) L}{\left(x_{2}-x_{1}\right)^{2}} d x_{2}+\frac{L}{x_{2}-x_{1}} d y_{1} \tag{10}
\end{align*}
$$

where the independent parameters $d x_{1}, d x_{2}, d y_{1}, d y_{2}$ are the pixel position measurement errors of the cameras C_{1} and C_{2}

III. The Criterion for Judging collision POSSIBILITY

The chaser's spherical security zone S_{C} and target spacecraft's security zone S_{T} as shown in Figure 2. The security zone S_{C} is defined by the following steps.

Figure 2. Security zones of the chaser and the target.
Step 1: The center of spherical security zone O_{C} is the middle point of $O_{C_{1}}$ and $O_{C_{2}}$. The maximum distance from all points within the cone-shaped range of vision to O_{C} is recorded as R_{1}. The first layer spherical security zone is defined as $S_{C 1}$ whose radius is R_{1}. Step 2: The second layer spherical security zone of the chaser is $S_{C 2}$ whose radius is R_{2} which is the maximum distance from all points in the chaser to O_{C}.

The security zone S_{T} is given by the following steps. Step 1: The center point of spherical security zone is defined as O_{T} which is the center point of the target spacecraft. The distance from O_{T} to O_{C} at the i th target positions
marked $R_{t}^{i}(i=1,2, \ldots N)$. The longest line segments from all edge points of the target spacecraft to O_{C} at the N target maneuver positions are recorded as $H_{i} O_{C}, i \in\{1,2, \ldots N\}$. The angles between $H_{i} O_{C}$ and $O_{T} O_{C}$ are recorded as $\theta_{i}, i \in\{1,2, \ldots N\}$. Step 2: The radius R_{t} of the spherical security zone S_{T} by using law of cosines as follows.

$$
\begin{equation*}
r_{i}=\left[\left(R_{t}^{i}\right)^{2}+\left(H_{i} O_{C}\right)^{2}-2 R_{t}^{i}\left(H_{i} O_{C}\right) \cos \theta_{i}\right]^{\frac{1}{2}} \tag{11}
\end{equation*}
$$

The angle between $O_{C} O_{T}$ and the direction of relative velocity is recorded as α. When $\alpha=0$, safe distance and the corresponding minimum time are defined as $d_{i 1}$ and $t_{i 1}$. If the distance $\left|O_{C} O_{T}\right|$ and the relative velocity $v_{i 1}$ meet the following conditions:

$$
\begin{align*}
& \left|O_{C} O_{T}\right|-r_{i}-R_{2}>d_{i 1} \tag{12}\\
& \left|O_{C} O_{T}\right|-r_{i}-R_{2} \gg V_{i 1} t_{i 1} \tag{13}
\end{align*}
$$

there is no possibility of collision. If the distance $\left|O_{C} O_{T}\right|$ and the relative velocity $v_{i 1}$ meet the following conditions

$$
\begin{align*}
& \left|O_{C} O_{T}\right|-r_{i}-R_{2}<d_{i 1}<\left|O_{C} O_{T}\right|-R-R_{1} \tag{14}\\
& \left|O_{C} O_{T}\right|-r_{i}-R_{1}>v_{i 1} t_{i 1} \tag{15}
\end{align*}
$$

the chaser should carry out active collision avoidance maneuver within the time $\frac{\left|O_{C} O_{T}\right|-r_{i}-R_{1}}{v_{i 1}}-t_{i 1}$.

In case of $\alpha \neq 0$, the minimum safe distance and the corresponding minimum time are defined as $d_{i 2}$ and $t_{i 2}$. If the distance $\left|O_{C} O_{T}\right|$ and the relative velocity $v_{i 2}$ meet the following conditions

$$
\begin{align*}
& \left|O_{C} O_{T}\right|-r_{i}-R_{2} \gg d_{2} \tag{16}\\
& \left|O_{C} O_{T}\right| \sin \alpha-r_{i}-R_{2} \gg d_{2} \tag{17}
\end{align*}
$$

there is no possibility of collision. If the distance R_{t}^{i} and the relative velocity $V_{i 2}$ meet the following conditions, there is a possibility of collision,

$$
\begin{align*}
& R_{t}^{i} \sin \alpha_{i}-r_{i}-R_{2}<d_{i 2}<R_{t}^{i} \sin \alpha_{i}-r_{i}-R_{1} \tag{18}\\
& R_{t}^{i} \cos \alpha_{i}-\left[\left(r_{i}+d_{i 2}+R_{2}\right)^{2}-\left(R_{t}^{i}\right)^{2} \sin ^{2} \alpha_{i}\right]^{\frac{1}{2}}>V_{i} t_{i 2} \tag{19}
\end{align*}
$$

the chaser should carry out active collision avoidance maneuver to arrive at one point outside of the hemispherical with radius $r_{i}+d_{i 1}+R_{2}$.

IV. SWITCHING CONTROL LAWS FOR COLLISION AVOIDANCE MANEUVER

The target spacecraft is assumed as a rigid body and in circular orbits. The relative motion can be described by Clohessy-Wiltshire equations. The origin of coordinate is O_{T}, the $x-a x i s$ is along the opposite direction of target velocity, the $y-a x i s$ is along the radius direction from the centroid of earth to the centroid of target spacecraft and the z-axis satisfies the right-handed coordinate system.

$$
\begin{align*}
& \ddot{x}-2 \omega \dot{y}=a_{x}+a_{x}^{p} \tag{20}\\
& \ddot{y}+2 \omega \dot{x}-3 \omega^{2} y=a_{y}+a_{y}^{p} \tag{21}\\
& \ddot{z}+\omega^{2} z=a_{z}+a_{z}^{p} \tag{22}
\end{align*}
$$

where ω represents the mean angular velocity of the target spacecraft. a_{x}, a_{y} and a_{z} represent the thrust accelerations of the chaser. a_{x}^{p}, a_{y}^{p} and a_{z}^{p} represent the sums of perturbation, and nonlinear factors. Suppose a_{x}^{p}, a_{y}^{p} and a_{z}^{p} satisfy the conditions:

$$
\begin{equation*}
a_{x}^{p} \approx \eta_{x} a_{x}, \quad a_{y}^{p} \approx \eta_{y} a_{y}, \quad a_{z}^{p} \approx \eta_{z} a_{z} \tag{23}
\end{equation*}
$$

$\eta_{x}, \eta_{y}, \eta_{z}$ change very little during active collision avoidance maneuver. Therefore, a_{x}, a_{y}, a_{z} can be seen as only relevant to the thrusts and the mass of the chaser.

$$
\begin{equation*}
a_{i}=\frac{F_{i}}{\left[m_{0}-\left(\dot{m}_{x} t_{x}+\dot{m}_{y} t_{y}+\dot{m}_{z} t_{z}\right)\right]} \cdot \quad i=x, y, z \tag{24}
\end{equation*}
$$

where F_{x}, F_{y}, F_{z} represent the vacuum thrusts of the chaser in three axes. m_{0} represents the initial mass of the chaser at the beginning of maneuver. $\dot{m}_{x}, \dot{m}_{y}, \dot{m}_{z}$ represent fuel consumption per second of the thrusters. t_{x}, t_{y}, t_{z} represent the working times of thrusters in their directions. Polynomial approximate expression of the Eq.(24) as follows:

$$
\begin{equation*}
a_{i}=F_{i} \sum_{j=0}^{n} \lambda_{j} t^{j} . \quad i=x, y, z \tag{25}
\end{equation*}
$$

where λ_{j} are polynomial coefficients, t is the actual running time of the chaser and $t_{i} \leq t(\mathrm{i}=\mathrm{x}, \mathrm{y}, \mathrm{z})$. Then the original system can be transformed into the form as follows.

$$
\begin{align*}
\ddot{x}-2 \omega \dot{y} & =\left(1+\eta_{x}\right) F_{x} \sum_{j=0}^{n} \lambda_{j} t^{j} \tag{26}\\
\ddot{y}+2 \omega \dot{x}-3 \omega^{2} y & =\left(1+\eta_{y}\right) F_{y} \sum_{j=0}^{n} \lambda_{j} t^{j} \tag{27}\\
\ddot{z}+\omega^{2} z & =\left(1+\eta_{z}\right) F_{z} \sum_{j=0}^{n} \lambda_{j} t^{j} \tag{28}
\end{align*}
$$

The specified trajectory for active collision avoidance maneuver as shown in Figure 3.

Figure 3: The specified trajectory.

$$
\left\{\begin{array}{l}
f(x, y, z)=0 \tag{29}\\
g(x, y, z)=0
\end{array}\right.
$$

It is obvious that the specified trajectory is just in a cube $\Delta_{x} \times \Delta_{y} \times \Delta_{z}$ and can be divided into N equidistance arcs sequences in three axes, respectively. The length of equidistance arcs in three axes are $\Delta x i, \Delta y i$ and $\Delta z i, i \in$ $\{1,2, \ldots N\}$. The current maneuver position and the next target maneuver position are in different side of surfaces
$(f(x, y, z)=0, g(x, y, z)=0)$. Therefore, the differential variables δ_{f}, δ_{g} and $f(x, y, z), g(x, y, z)$ should have opposite algebraic signs.

$$
\begin{gather*}
\left\{\begin{array}{c}
f(x, y, z) \cdot \delta_{f} \leq 0 \\
g(x, y, z) \cdot \delta_{g} \leq 0
\end{array}\right. \tag{30}\\
\delta_{f}=\operatorname{gradf} \cdot\left(K_{x}^{i} \Delta x i, K_{y}^{i} \Delta y i, K_{z}^{i} \Delta z i\right) \tag{31}\\
\delta_{g}=\operatorname{gradg} \cdot\left(K_{x}^{i} \Delta x i, K_{y}^{i} \Delta y i, K_{z}^{i} \Delta z i\right) \tag{32}\\
\left|K_{x}^{i}\right|+\left|K_{y}^{i}\right|+\left|K_{z}^{i}\right| \geq 1 \tag{33}
\end{gather*}
$$

The equidistance arcs should parallel to the tangent of the specified trajectory to the maximum extent

$$
\begin{equation*}
\left\{\left(\tau_{x}^{i}, \tau_{y}^{i}, \tau_{z}^{i}\right) \cdot\left(K_{x}^{i} \Delta x i, K_{y}^{i} \Delta y i, K_{z}^{i} \Delta z i\right)\right\} \tag{34}
\end{equation*}
$$

where $\left(\tau_{x}^{i}, \tau_{z}^{i}, \tau_{z}^{i}\right)$ is the tangent of the specified trajectory in the i th target maneuver position. According to Eqs.(30)(34) all the target maneuver positions can be obtained. The next maneuver target position is the current position add on increment of coordinate $\left(K_{x}^{i} \Delta x i, K_{y}^{i} \Delta y i, K_{z}^{i} \Delta z i\right)$.

Taking the working time of thruster in the i th arc in the x-axis as an illustration: T_{x}^{i} is the maneuver time and t_{x}^{i} is the thruster working time. $N_{x i}^{a}$ is the number of the accelerating time intervals $\left(t_{a x}^{i}\right)_{j}, N_{x i}^{c}$ is the number of the decelerating time intervals $\left(t_{c x}^{i}\right)_{j}, N_{x i}^{b}$ is the number of the zero-thrust time intervals $\left(t_{b x}^{i}\right)_{j}$ as shown in Figure 4.

Figure 4: The change of time intervals in three axes.

$$
\begin{align*}
T_{m}^{i}= & \sum_{j=1}^{N_{m i}^{a}}\left(t_{a m}^{i}\right)_{j}+\sum_{j=1}^{N_{m i}^{b}}\left(t_{a m}^{i}\right)_{j}+\sum_{j=1}^{N_{m i}^{c}}\left(t_{c m}^{i}\right)_{j} \tag{35}\\
t_{m}^{i}= & \sum_{j=1}^{N_{m i}^{a}}\left(t_{a m}^{i}\right)_{j}+\sum_{j=1}^{N_{m i}^{c}}\left(t_{c m}^{i}\right)_{j}, m \in\{x, y, z\} \tag{36}
\end{align*}
$$

The working time time intervals of thrusters in the i th arc are calculated in two steps as follows.
(1) According to Eqs.(20)(21) the following results can be obtained.

$$
\begin{align*}
x_{i} & +K_{x}^{i} \Delta x i=-2\left(v_{y 0 i}-\beta_{1}\right) \cos \omega T_{x}^{i}+\sum_{j=2}^{6}\left[2 \omega \frac{1}{j} \beta_{j-1}\right. \\
& \left.+\left(1+\eta_{x}\right) F_{x} \frac{1}{(j-1) j} \lambda_{j-2}^{i}\right]\left(T_{x}^{i}\right)^{j}+\left(v_{x 0}-2 y_{0 i} \omega\right) T_{x}^{i} \\
& +x_{0 i}+2 v_{y 0 i}-2 \beta_{1}+2 y_{0 i} \sin \omega T_{x}^{i} \tag{37}
\end{align*}
$$

$$
\begin{align*}
v_{x} & =2 \omega\left(v_{y 0 i}-\beta_{1}\right) \sin \omega T_{x}^{i}+2 \omega y_{o i} \cos \omega T_{x}^{i}+\sum_{j=1}^{5}\left[2 \omega \beta_{j}\right. \\
& \left.+j\left(1+\eta_{x}\right) F_{x} \lambda_{j-1}\right]\left(T_{x}^{i}\right)^{j}+v_{x 0 i}-2 \omega y_{0 i} \tag{38}\\
y_{i} & +K_{y}^{i} \Delta y i=y_{0 i} \cos \omega T_{y}^{i}+\frac{\left(v_{y 0 i}-\beta_{1}\right)}{\omega} \sin \omega T_{y}^{i} \\
& +\sum_{j=1}^{5} \beta_{j}\left(T_{y}^{i}\right)^{j} \tag{39}\\
v_{y} & =\left(v_{y 0 i}-\beta_{1}\right) \cos \omega T_{y}^{i}-\omega y_{0 i} \sin \omega T_{y}^{i} \\
& +\sum_{j=0}^{4}(j+1) \beta_{j+1}\left(T_{y}^{i}\right)^{j} \tag{40}\\
\beta_{1 i} & =-\frac{2\left(1+\eta_{x}\right) F_{x}}{\omega} \lambda_{0 i}+\frac{\left(1+\eta_{y}\right) F_{y}}{\omega^{2}} \lambda_{1 i}+\frac{4\left(1+\eta_{x}\right) F_{x}}{\omega^{3}} \lambda_{2 i} \\
& -\frac{6\left(1+\eta_{y}\right) F_{y}}{\omega^{4}} \lambda_{3 i}-\frac{48\left(1+\eta_{x}\right) F_{x}}{\omega^{5}} \lambda_{4 i} \tag{41}\\
\beta_{2 i} & =-\frac{\left(1+\eta_{x}\right) F_{x}}{\omega} \lambda_{1 i}+\frac{\left(1+\eta_{y}\right) F_{y}}{\omega^{2}} \lambda_{2 i}+\frac{6\left(1+\eta_{x}\right) F_{x}}{\omega^{3}} \lambda_{3 i} \\
& -\frac{12\left(1+\eta_{y}\right) F_{y}}{\omega^{4}} \lambda_{4 i} \tag{42}
\end{align*}
$$

where $\beta_{1 i}, \ldots, \beta_{2 i}$ are polynomial coefficients in the i th thrust arc. $\left(x_{0 i}, y_{0 i}\right)$ and $\left(v_{x 0 i}, v_{y 0 i}\right)$ are the initial relative position and the initial relative velocity of the chaser in the x-axis and the y-axis at the beginning of the i th thrust arc, respectively. According to Eqs.(41)-(45), $\beta_{1 i}, \ldots \beta_{5 i}$ can be expressed by $\lambda_{1 i}, \ldots, \lambda_{4 i}$, where $\lambda_{1 i}, \ldots, \lambda_{4 i}$ are polynomial coefficients in the i th thrust arc. $\lambda_{0 i}=\frac{1}{m_{i}}$ represents the initial mass of the chaser at the beginning of the i th thrust arc.

Then consider the maneuver in the direction of the $z-$ axis, the following results can be obtained the following two results are obtained according to Eq.(22)

$$
\begin{align*}
z_{i} & +K_{x}^{i} \Delta z i=\left[\frac{v_{z 0 i}}{\omega}-\left(1+\eta_{z}\right)\left(\frac{F_{z}}{\omega^{3}} \lambda_{1 i}-\frac{6 F_{z}}{\omega^{5}} \lambda_{3 i}\right)\right] \sin \omega T_{z}^{i} \\
& +\left[z_{0 i}-\left(1+\eta_{z}\right)\left(\frac{F_{z}}{\omega^{2}} \lambda_{0 i}-\frac{2 F_{z}}{\omega^{4}} \lambda_{2 i}+\frac{24 F_{z}}{\omega^{6}} \lambda_{4 i}\right)\right] \cos \omega T_{z}^{i} \\
& +\left(1+\eta_{z}\right)\left[\left(\frac{F_{z}}{\omega^{2}} \lambda_{0 i}-\frac{2 F_{z}}{\omega^{4}} \lambda_{2 i}+\frac{24 F_{z}}{\omega^{6}} \lambda_{4 i}\right)+\left(\frac{F_{z}}{\omega^{2}} \lambda_{1 i}\right.\right. \\
& \left.-\frac{6 F_{z}}{\omega^{4}} \lambda_{3 i}\right) T_{z}^{i}+\left(\frac{F_{z}}{\omega^{2}} \lambda_{2 i}-\frac{12 F_{z}}{\omega^{4}} \lambda_{4 i}\right)\left(T_{z}^{i}\right)^{2} \\
& \left.+\frac{F_{z}}{\omega^{2}} \lambda_{3 i}\left(T_{z}^{i}\right)^{3}+\frac{F_{z}}{\omega^{2}} \lambda_{4 i}\left(T_{z}^{i}\right)^{4}\right] \tag{43}\\
v_{z i} & =\left[v_{z 0 i}-\left(1+\eta_{z}\right)\left(\frac{F_{z}}{\omega^{2}} \lambda_{1 i}-\frac{6 F_{z}}{\omega^{4}} \lambda_{3 i}\right)\right] \cos \omega T_{z}^{i} \\
& -\left[\omega z_{0 i}-\left(1+\eta_{z}\right)\left(\frac{F_{z}}{\omega} \lambda_{0 i}-\frac{2 F_{z}}{\omega^{3}} \lambda_{2 i}-\frac{2 F_{z}}{\omega^{3}} \lambda_{2 i}\right.\right. \\
& \left.\left.+\frac{24 F_{z}}{\omega^{5}} \lambda_{4 i}\right)\right] \sin \omega T_{z}^{i}+\left(1+\eta_{z}\right)\left[\left(\frac{F_{z}}{\omega^{2}} \lambda_{1 i}-\frac{6 F_{z}}{\omega^{4}} \lambda_{3 i}\right)\right. \\
& +2\left(\frac{F_{z}}{\omega^{2}} \lambda_{2 i}-\frac{12 F_{z}}{\omega^{4}} \lambda_{4 i}\right) T_{z}^{i}+3 \frac{F_{z}}{\omega^{2}} \lambda_{3 i}\left(T_{z}^{i}\right)^{2} \\
& \left.+4 \frac{F_{z}}{\omega^{2}} \lambda_{4 i}\left(T_{z}^{i}\right)^{3}\right] \tag{44}
\end{align*}
$$

where $z_{0 i}$ and $v_{z 0 i}$ are the initial relative position and the initial relative velocity of the chaser in the z-axis at the beginning of the i th thrust arc. Because the i th target maneuver position $\left(x_{i}, y_{i}, z_{i}\right)$ and i th target maneuver velocity
$\left(v_{x i}, v_{y i}, v_{z i}\right)$ are known, so the $i+1$ th target maneuver position is $\left(x_{i}+K_{x}^{i} \Delta x i, y_{i}+K_{y}^{i} \Delta y i, z_{i}+K_{z}^{i} \Delta z i\right)$. Therefore, polynomial coefficients $\lambda_{1 i}, \ldots, \lambda_{4 i}$ can be obtained according to Eqs.(37)-(40),(46),(47).
(2)According to Eq.(25), the thrusters working times $t_{x}^{i}, t_{y}^{i}, t_{z}^{i}$ in the i th arc can be calculated as follows

$$
\begin{equation*}
\frac{1}{m_{i}-\left(\dot{m}_{x} t_{x}^{i}+\dot{m}_{y} t_{y}^{i}+\dot{m}_{z} t_{z}^{i}\right)}=\sum_{j=0}^{4} \lambda_{j i}\left(\max \left\{t_{x}^{i}, t_{y}^{i}, t_{z}^{i}\right\}\right)^{j} \tag{45}
\end{equation*}
$$

$T_{x}^{i}, T_{y}^{i}, T_{z}^{i}$ are divided into $N_{x}^{i}, N_{y}^{i}, N_{z}^{i}$ equal time intervals in three axes, respectively. Taking T_{x}^{i} and t_{x}^{i} as an example

$$
\begin{equation*}
T_{x}^{i}=\left[T_{x 1}^{i}, \ldots, T_{x N_{x}^{i}}^{i}\right] ; \quad t_{x}^{i}=\left[t_{x 1}^{i}, \ldots, t_{x N_{x}^{i}}^{i}\right] \tag{46}
\end{equation*}
$$

if $t_{x 1}^{i}=\max \left\{t_{x 1}^{i}, t_{y 1}^{i}, t_{z 1}^{i}\right\}$, then

$$
\begin{equation*}
\frac{1}{m_{i}-\left(\dot{m}_{x} t_{x 1}^{i}+\dot{m}_{y} t_{y 1}^{i}+\dot{m}_{z} t_{x 1}^{i}\right)}=\sum_{j=0}^{4} \lambda_{j i}\left(t_{x 1}^{i}\right)^{j} \tag{47}
\end{equation*}
$$

$t_{x 1}^{i}, t_{y 1}^{i}$ and $t_{z 1}^{i}$ can be calculated. If $T_{x 2}^{i}$ meets the following conditions: $t_{x 2}^{i}=\min \left\{t_{x 2}^{i}, t_{y 2}^{i}, t_{z 2}^{i}\right\}$ and $t_{x 1}^{i}+t_{x 2}^{i}=$ $\max \left\{t_{x 1}^{i}+t_{x 2}^{i}, t_{y 1}^{i}+t_{y 2}^{i}, t_{z 1}^{i}+t_{z 2}^{i}\right\}$, then
$\frac{1}{m_{i}-\left(\dot{m}_{x} t_{x 1}^{i}+\dot{m}_{y} t_{y 1}^{i}+\dot{m}_{z} t_{z 1}^{i}\right)-\left(\dot{m}_{x} t_{x 2}^{i}+\dot{m}_{y} t_{y 2}^{i}+\dot{m}_{z} t_{x 2}^{i}\right)}$ $=\sum_{j=0}^{4} \lambda_{j i}\left(t_{x 1}^{i}+t_{x 2}^{i}\right)^{j}$
$t_{x 2}^{i}, t_{y 2}^{i}, t_{z 2}^{i}$ can be calculated. Then $\left\{t_{y 1}^{i}, t_{y 2}^{i}, \ldots, t_{y N_{y}^{i}}^{i}\right\}$ and $\left\{t_{z 1}^{i}, t_{z 2}^{i}, \ldots, t_{z N_{z}^{i}}^{i}\right\}$ can be deduced by analogy. If $t_{x k}^{i}=$ $0, k \in\left(1,2, \ldots N_{x}^{i}\right)$, then $t_{x k}^{i}$ belongs to zero-thrust intervals; If $t_{x k}^{i} \neq 0, k \in\left(1,2, \ldots N_{x}^{i}\right)$ and meets the following conditions.

$$
\begin{equation*}
\left|v_{x(i-1)}\right|<\left|v_{x i}\right|, \quad v_{x(i-1)} v_{x i} \geq 0 \tag{49}
\end{equation*}
$$

$v_{x(i-1)}>0$, then $t_{x k}^{i}$ belongs to accelerating intervals and the direction of F_{x} is along the positive direction of the xaxis; $v_{x(i-1)} \leq 0$, then $t_{x k}^{i}$ belongs to accelerating intervals but the direction of F_{x} is along the negative direction of the x-axis. If $t_{x k}^{i} \neq 0, k \in\left(1,2, \ldots N_{x}^{i}\right)$ and meets the following conditions.

$$
\begin{equation*}
\left|v_{x(i-1)}\right|>\left|v_{x i}\right|, \quad v_{x(i-1)} v_{x i} \geq 0 \tag{50}
\end{equation*}
$$

$v_{x(i-1)}>0$, then $t_{x k}^{i}$ belongs to decelerating intervals and the direction of F_{x} is along the negative direction of the xaxis; $v_{x(i-1)} \leq 0$, then $t_{x k}^{i}$ belongs to accelerating intervals but the direction of F_{x} is along the positive direction of the x-axis. If $t_{x k}^{i} \neq 0, k \in\left(1,2, \ldots N_{x}^{i}\right)$ and meets the following conditions.

$$
\begin{equation*}
\left|v_{x(i-1)}\right|>\left|v_{x i}\right|, \quad v_{x(i-1)} v_{x i}<0 \tag{51}
\end{equation*}
$$

$v_{x(i-1)}>0$, then $t_{x k}^{i}$ belongs to accelerating intervals and the direction of F_{x} is along the negative direction of the xaxis; $v_{x(i-1)} \leq 0$, then $t_{x k}^{i}$ belongs to accelerating intervals but the direction of F_{x} is along the positive direction of the x -axis.

After the three types of time intervals in three axes in the i th arc are calculated, then the switching control laws can be given. Takeing the switching control law in the $x-a x i s$ as an example

$$
\begin{align*}
& S_{x}=\left\{x_{i-1}, v_{x(i-1)} ;\left(t_{x 1}^{i}, a_{x 1}^{i}\right) ; \ldots\left(t_{x N_{x}^{i}}^{i}, a_{x N_{x}^{i}}^{i}\right)\right\} \tag{52}\\
& a_{x k}^{i}=F_{x} \sum_{j=0}^{4} \lambda_{j i}\left(t_{x k}^{i}\right)^{j} . \quad k \in\left(1,2, \ldots N_{x}^{i}\right) \tag{53}
\end{align*}
$$

V. Simulation results

Suppose that the height of target spacecraft is 400 km in a circular orbit and the initial mass of the chaser and the propellant are 300 kg and 100 kg . The size of thrusts are $360 \mathrm{~N}, 240 \mathrm{~N}$ and 320 N in the x -axis, y -axis and in the z-axis, respectively. The mass-flow-rate of propellant of the chaser's thrusters are $20 \mathrm{~g} / \mathrm{s}, 15 \mathrm{~g} / \mathrm{s}$ and $10 \mathrm{~g} / \mathrm{s}$ in the x -axis, y -axis and in the z -axis, respectively. Although η_{x}, η_{y} and η_{z} are variables, but they vary little during active collision avoidance maneuver, therefore, in order to facilitate simulation, these coefficients can be seen as constants: $\eta_{x}=$ $\eta_{y}=\eta_{z}=0.001$.

The initial relative position and the initial relative velocity of the chaser are $(500 \mathrm{~m},-500 \mathrm{~m}, 500 \mathrm{~m})$ and $(-6 \mathrm{~m} / \mathrm{s}, 6 \mathrm{~m} / \mathrm{s},-6 \mathrm{~m} / \mathrm{s})$. The initial acceleration is zero and the expected docking velocity $V^{*}=1 \mathrm{~m} / \mathrm{s}$. The minimum safe distance is 700 m and the corresponding minimum time is 60 s . Based on the vision measurement, the radius of the first layer spherical security zone $S_{C 1}$ of the chaser $R_{1}=$ 60 m and the radius of the second layer spherical security zone $R_{2}=80 \mathrm{~m}$. The distances from O_{T} to O_{C} at the first target maneuver position is $R_{t}^{1}=866 \mathrm{~m}$. The longest line segments from all edge points of the target spacecraft to O_{C} at the first target maneuver position is $H_{1} O_{C}=926.18 \mathrm{~m}$. The angle between $H_{1} O_{C}$ and $O_{T} O_{C}$ is $\theta_{1}=3^{\circ}$. According to Eq.(18), the radius of the spherical security zone of the target spacecraft at the first target maneuver position is $r_{1}=80 \mathrm{~m}$.

According to Eqs. (18),(19), there is a possibility of collision, the chaser should carry out active collision avoidance maneuver and the terminal target position is ($300 \mathrm{~m}, 0 \mathrm{~m}, 0 \mathrm{~m}$). And the specified trajectory is given as follow. The size of the cube is $\Delta_{x}=200 \mathrm{~m}, \Delta_{y}=500 \mathrm{~m}, \Delta_{z}=$ 500 m .

$$
\left\{\begin{array}{l}
2.5 \times 10^{-5}(x-500)^{2}+4 \times 10^{-6} y^{2}=1 \tag{54}\\
y+z=0
\end{array}\right.
$$

Figure 5: The change of x, y, z during active collision avoidance maneuver.

The results in Figure 5 show the change of x, y, z during active collision avoidance maneuver. x changes from 500 m to $300 \mathrm{~m}, y$ changes from -500 m to 0 m and z changes from 500 m to 0 m .

Figure 6: The change of V_{x}, V_{y}, V_{z} during active collision avoidance maneuver.

The results in Figure 6 show the change of V_{x}, V_{y}, V_{z} during active collision avoidance maneuver. V_{x} changes from $-6 \mathrm{~m} / \mathrm{s}$ to $0 \mathrm{~m} / \mathrm{s}, V_{y}$ changes from $6 \mathrm{~m} / \mathrm{s}$ to $9.8 \mathrm{~m} / \mathrm{s}$ and V_{z} changes from $-6 \mathrm{~m} / \mathrm{s}$ to $-10.8 \mathrm{~m} / \mathrm{s}$.

Figure 7: The change of a_{x}, a_{y}, a_{z} during active collision avoidance maneuver.

The results in Figure 7 show the change of a_{x}, a_{y} and a_{z} during active collision avoidance maneuver. a_{x} changes from $0.9 \mathrm{~m}^{2} / \mathrm{s}$ to $-0.9061 \mathrm{~m}^{2} / \mathrm{s} . a_{y}$ changes from $0.6 \mathrm{~m}^{2} / \mathrm{s}$ to $0.6041 \mathrm{~m}^{2} / \mathrm{s} . a_{z}$ changes from $-0.8 \mathrm{~m}^{2} / \mathrm{s}$ to $0.8049 \mathrm{~m}^{2} / \mathrm{s}$.

Figure 8: The trajectory of the chaser during active collision avoidance maneuver.

The result in Figure 8 shows the chaser maneuvers along the specified trajectory. Taking the switching control law in the x-axis as an example:

$$
\begin{align*}
& S_{x}=\left\{500 \mathrm{~m} ;-6 \mathrm{~m} / \mathrm{s} ;\left([0,6.33 \mathrm{~s}],(0.9 \rightarrow 0.9007) \mathrm{m}^{2} / \mathrm{s}\right)\right. \\
& \quad \ldots\left([60,66.67 \mathrm{~s}],(0.9054 \rightarrow-0.9061) \mathrm{m}^{2} / \mathrm{s}\right\} \tag{55}
\end{align*}
$$

VI. Conclusion

This paper deals with the active collision avoidance maneuver for the chaser moving along the specified trajectory, and presents a maneuver approach with constant thrust. Using the 3D stereo vision measurement, the position parameters of the target spacecraft are obtained. The target maneuver positions can be calculated through the equidistance interpolation method, and the working times of thrusters in three axes can be respectively computed by the time series analysis method. Furthermore, the acceleration sequences and the corresponding working time series can be employed to determine the switching control laws for the active collision avoidance maneuver. The simulation results show that the switching control laws can effectively guarantee the chaser moving along the specified trajectory.

REFERENCES

[1] L. K. Newman, M. Duncan. Establishment and implementation of a close approach evaluation and avoidance process for Earth Observing System Missions. in: AAS/AIAA Astrodynamics Specialist Conference, Keystone, CO, AIAA-2006-6291.
[2] A. G. Richards, T. Schouwenaars, J. P. How, E. Feron. Spacecraft Trajectory Planning With Collision and Plume Avoidance Using Mixed Integer Linear Programming. AIAA Journal of Guidance, Control and Dynamics, vol. 25, pp.755-764, Aug 2002.
[3] I. Garcia and J. P. How. Trajectory Optimization for Satellite Reconfiguration Maneuvers with Position and Attitude Constraints. Proceedings of the IEEE American Control Conference, June 2005, pp.889-895
[4] C. Tomlin, I. Mitchell, R. Ghosh. Safety Verification of Conflict Resolution Maneuvers. IEEE Transactions on Intelligent Transportation Systems, vol 2., no 2., June 2001, p. 110.
[5] S. Matsumoto, S. Dubowsky, S. Jacobsen, Y. Ohkami, Fly-by Approach and Guidance for Uncontrolled Rotating Satellite Capture. AIAA Guidance, Navigation, and Control Confrence, Austin, TX, Aug 11-14, 2003.
[6] Jacobsen, S., Lee, C., Zhu, C., and Dubowsky, S, Planning of Safe Kinematic Trajectories for Free Flying Robots Approaching an Uncontrolled Spinning Satellite, Proceedings of the ASME 27th Annual Biennial Mechanisms and Robotics Conference, American Society of Mechanical Engineers, Fairfield, NJ, Sept. 2002.
[7] Inalhan, G., Tillerson, M., and How, J., Relative Dynamics and Control of Spacecraft Formations in Eccentric Orbits, Journal of Guidance, Control and Dynamics, Vol. 25, No. 1, 2002.
[8] Richards, A., Schouwenaars, T., How, J., and Feron, E., Spacecraft trajectory planning with avoidance constraints using mixed-integer linear programming, Journal of Guidance, Control, and Dynamics, Vol. 25, No. 4, 2002, pp. 755-764.
[9] Tillerson, M., Inalhan, G., and How, J., Co-ordination and Control of Distributed Spacecraft Systems Using Convex Optimization Techniques, International Journal of Robust Nonlinear Control, Vol. 12, No. 1, 2002, pp. 207-242.
[10] Yamanaka, K. and Ankersen, F., New State Transition Matrix for Relative Motion on an Arbitrary Elliptical Orbit," Journal of Guidance, Control, and Dynamics, Vol. 25, No. 1, 2002, pp. 60-66.
[11] Gim, D. and Alfriend, K., State transition matrix of relative motion for the perturbed noncircular reference orbit, Journal of Guidance, Control, and Dynamics, Vol. 26, No. 6, 2003, pp. 956-971.

[^0]: This work was supported by the NSFC (60727002, 60774003, 60921001, 90916024), the MOE (20030006003), the COSTIND (A2120061303) and the National 973 Program (2005CB321902).

 Yongqiang Qi is with the Seventh Research Division and the Department of Systems and Control, Beihang University (BUAA), Beijing 100191, China (e-mail: qiyongqiang3@163.com).

 Yingmin Jia is with the Seventh Research Division and the Department of Systems and Control, Beihang University (BUAA), Beijing 100191, China. He is also with the Key Laboratory of Mathematics, Informatics and Behavioral Semantics (LMIB), Ministry of Education, SMSS, Beihang University (BUAA), Beijing 100191, China (e-mail: ymjia@buaa.edu.cn).

 Junping Du is with Beijing Key Laboratory of Intelligent Telecommunications Software and Multimedia, School of Computer Science and Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China (e-mail: junpingdu@126.com)

 Fashan Yu is with School of Electrical Engineering and Automation, Henan Polytechnic University, Jiaozuo 454000, Henan, China (e-mail: yufs@hpu.edu.cn)

