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Abstract— Convection-diffusion is a physical phenomenon
that appears in a multitude of dynamical systems, e.g. vibrating
string with damping or chemical and thermal systems. This
paper focuses on a structure preserving spatial discretization
scheme of a general dynamical system with convection and
diffusion in the port-Hamiltonian framework. The preservation
of the port-Hamiltonian structure ensures that specific proper-
ties, such as passivity, of the infinite dimensional system are
preserved.

I. INTRODUCTION

Systems with spatial and temporal dynamics occur in

many engineering applications where they are typically mod-

eled by partial differential equations or as state space models

over infinite dimensional state or phase spaces. The control

of infinite dimensional systems is generally troublesome

due to the fact that an infinite number of states needs to

be controlled through a finite number of control variables.

Currently, one can distinguish two common approaches for

the control of infinite dimensional systems. The first one,

late lumping [1], [2], amounts to designing an infinite di-

mensional control law which renders the infinite dimensional

system stable while achieving some desired performance.

The second approach, early lumping [3], amounts to first

spatially discretizing the infinite dimensional system and,

subsequently, designing a finite dimensional control law

based on the dynamics of the spatially discretized system.

All control design approaches based on finite element models

belong to this category.

This paper considers the first step in the early lump-

ing control approach, namely the spatial discretization of

a 1D convective and diffusive infinite dimensional port-

Hamiltonian (pH) system [4]. There are compelling reasons

to model convective and diffusive phenomena in infinite

dimensional system in the port-Hamiltonian framework. The

most important one is that pH systems have structural prop-

erties, such as passivity, that make them extremely suitable

for control design, see [5], [6]. These properties are ensured

by the special mathematical structure of a pH system and

are typically lost by arbitrary spatial discretization schemes.

The problem of structure preservation in discretization

schemes of pH systems is of paramount importance. In-

deed, from the general perspective of modeling, simulation,

model approximation, and control system design, there is

a need for specialized discretization schemes that preserve

the pH structure in spatial discretizations. Classical spatial
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discretization schemes, e.g. the finite elements method [7],

typically destroy the pH structure of the system, and, with

it, can not provide guarantees on the preservation of crucial

system properties such as passivity, stability, and specific

system invariants.

This paper presents a spatial discretization scheme for a

1D convective and diffusive infinite dimensional pH system.

The scheme results in a finite dimensional dynamical system

in state space form with the key property that the pH structure

is preserved in the finite dimensional approximation. For

chemical or fluid dynamical systems this scheme implies the

preservation of the mass and momentum balance after spatial

discretization.

There have been several publications on structure preserv-

ing spatial discretizations of lossless pH systems [8], [9],

[10], [11]. The spatial discretization of a purely diffusive

system has been discussed in [12]. Our contribution differs

from the results in [12] in a number of aspects. Firstly, the

authors of [12] neglect the kinetic energy of the chemical

system. Therefore only the mass balance is ensured. In

our approach both energy domains are present, which, for

chemical systems, means that the mass and momentum

balance is preserved. Secondly, we consider general pH

systems which can represent a multitude of physical phe-

nomena, e.g. a vibrating string with damping, 1D Navier-

Stokes equations or chemical phenomena. Thirdly, in [12]

an iterative process is derived which determines the time

evolution of the dynamics while our approach results in a

finite dimensional dynamical system of ordinary differential

equations which can be used with any simulation or control

method.

II. SHORT INTRODUCTION TO FINITE DIMENSIONAL

PORT-HAMILTONIAN SYSTEMS

In this section we briefly introduce the port-Hamiltonian

(pH) modeling framework, see [13], [14], [4]. Port-

Hamiltonian systems are port-based models. This means

that the interconnection of two or more pH systems is

defined by connecting ports in a physical way. Hence, the

interconnection of pH systems is quite natural and can be

exploited for large scale modeling. By this, we mean that

a pH system defined on a spatial domain can be viewed as

an interconnection of a finite number of finite-dimensional

pH systems, each defined on an appropriate sub-domain.

This idea was originally developed for the modeling of

finite dimensional systems. However, the framework has

been extended to the case of infinite dimensional systems,

see for example [5], [6].
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A finite dimensional port-Hamiltonian system in local

coordinates is a model of the form

ẋ = (J(x) −R(x))
∂H

∂x
(x) +B(x)u (1)

y = B⊤(x)
∂H

∂x
(x),

where x = (x1, . . . , xn) are local state coordinates, u(t) ∈
R

m and y(t) ∈ R
m are the inputs and outputs respectively.

J(x) ∈ R
n×n, J(x) = −J(x)⊤ is the skew symmetric

interconnection matrix, R(x) ∈ R
n×n is the symmetric

positive semi-definite resistance matrix and B(x) ∈ R
n×m

is the input force matrix. H(x) : X → R with H(x) > c >

−∞, ∀x ∈ X is the Hamiltonian which represents the stored

energy in the system.

Throughout, we will use the effort-flow representation of

the finite dimensional pH system. That is, the static equations

f = (J −R) e +Bu (2)

y = B⊤e

with effort variable e and flow variable f represent (1) if

and only if the flow variable f = ẋ and the effort variable

e = ∂
∂xH .

Another concept which we will use is the energy flow, or

net power of the system. The energy flow is defined as

Pnet = e⊤f + y⊤u. (3)

III. SHORT INTRODUCTION TO THE

DIFFERENTIAL-GEOMETRIC SETTING

In order to provide a coordinate-free treatment of Eu-

clidean differential calculus, we will work with differential

forms to represent models. We treat spatial domains Z ⊂
R

n mainly of dimension n = 1 and distinguish between

functions (zero-forms) and distributions (one-forms).

A zero-form is the differential-geometric representation of

a smooth function f : Z → R. Zero-forms can be evaluated

points z ∈ Z . A one-form is the differential-geometric

representation of a distribution. If g : Z → R is a function,

then a one-form and expression g(z)dz. One-forms can not

be evaluated at points z ∈ Z but attain their values after

integration over a sub-domain of Z as in the line integral
∫ b

a g(z)dz.

One can transform a zero-form into a one-form by spatial

differentiation. The exterior derivative of a zero-form f is

denoted by df and defined by the one-form df = g(z)dz
where g = df

dz is the derivative of f . The exterior product
(or wedge product) of two zero-forms f and g is the zero-

form f ∧ g := h where h(z) = f(z)g(z). The exterior

product of a zero-from f and a one-form g is the one-

form f ∧ g = f(z)g(z)dz. There holds f ∧ g = −g ∧ f .

Finally, the Hodge star operator assigns, in one dimensional

domains, zero-forms f to one-forms ∗f = f(z)dz and one-

forms g(z)dz to zero-forms ∗[g(z)dz] = g(z).

IV. FINITE DIMENSIONAL APPROXIMATION OF A

CONVECTIVE-DIFFUSIVE 1D PH SYSTEM

In this section we state a finite dimensional approximation

of a 1D infinite dimensional pH with convection and diffu-

sion on a given spatial domain Zac = [a, c]. A 1D convective

and diffusive pH system is given in the following general

form

[

f1
f2

]

=

([

0 d

d 0

]

+

[

0 0
0 rd ∗ d

])[

e1
e2

]

(4)

e∂ = e1|∂Z
f∂ = e2|∂Z

H(x) =

∫

Z

H(x).

Note that we have defined the system in the differential

geometric framework. Here fi = ẋi, i ∈ {1, 2} are the

flows of the system, geometrically they are one-forms. The

efforts of the system ei =
δH
δxi

= ∂H
∂xi

are expressed as the

variational derivative of the energy function H(x) and are

zero-forms. The energy function is defined as the integral of

the energy distribution function H(x) over the spatial domain

Z . The boundary energy ports are defined as (e∂ , f∂). The

dissipation parameter r > 0 we assume here for simplicity

to be a scalar. An example for such a system would be a

vibrating string with damping [4] or a 1D representation of

Navier-Stokes equations.

By introducing a resistive state and the related equation

of motion we can reformulate (4) into the following form





f1
f2
fR



 =





0 d 0
d 0 d

0 d 0









e1
e2
eR



 (5)

where the following relation holds eR = ∗rfR. The ports

and the energy function are defined in the same way as in

(4). It can be shown, see [4], that the systems (4) and (5) are

equivalent. Now we are able to state the following theorem.

Theorem 1: A finite dimension approximation of (5) on

Zac is given as

f =
1

(b− a)
(J −R) e+Bu (6)

y = B⊤e

where

f =
[

f1

ab
, f1

bc
, f2

ac

]⊤
, e =

[

e1
ab
, e1

bc
, e2ac

]⊤

u = [e2a, e
2

c ]
⊤

J =





0 0 1
0 0 −1
−1 1 0



 , R =





0 0 0
0 0 0
0 0 2r



 , B =





−1 0
0 1
r r





can be achieved by first splitting the discretization interval

Zac into two intervals Zab = [a, b] and Zbc = [b, c] with

a < b < c and then approximating the infinite dimensional

efforts and flows on Zab and Zbc by the following spatial
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temporal expansions,

f1(z, t) ≈ f1

ab(t)ω
1

ab(z) + f1

bc(t)ω
1

bc(z) (7a)

f2(z, t) ≈ f2

ac(t)ω
2

ac(z) (7b)

fR(z, t) ≈ fR
ab(t)ω

R
ab(z) + fR

bc(t)ω
R
bc(z) (7c)

e1(z, t) ≈ e1a(t)ω
1

a(z) + e1b(t)ω
1

b (z) + e1c(t)ω
1

c (z)(7d)

e2(z, t) ≈ e2a(t)ω
2

a(z) + e2b(t)ω
2

b (z) + e2c(t)ω
2

c (z)(7e)

eR(z, t) ≈ eRa (t)ω
R
a (z) + eRc (t)ω

R
c (z). (7f)

We will state a constructive proof of Theorem 1 in the

following section.

V. PROOF OF THEOREM 1

The proof of Theorem 1 is divided into several steps.

First we substitute the approximation of efforts and flows

(7) into the infinite dimensional equations of motions (5)

and integrate over Zac which will yield a finite dimensional

approximation of the dynamics. Then we define a finite

dimensional approximation of the efforts on Zac using the

net power of the port-Hamiltonian system. Then we show

that the finite dimensional interconnection structure (6) ap-

proximates the dynamics of (5) on Zac. The last step is to

calculate a finite dimensional approximation of the energy

function by using that f = ẋ. Recall that Zab = [a, b] and

Zbc = [b, c] with a < b < c partition Zac according to

Zac = Zbc ∪ Zab. Assume that the shape functions satisfy

the following conditions

ω1

i (j) = ωR
i (j) =

ω2

i (j)

kij
= δij , i, j ∈ {a, b, c}(8a)

∫

Zl

ω1

k =

∫

Zl

ωR
k = δkl, k, l ∈ {ab, bc} (8b)

∫

Zac

ω2

ac 6= 0. (8c)

A. Second equation of motion

We first derive a finite dimensional approximation of the

second equation of motion

f2 = de1 + deR. (9)

Substituting the expansion (8) in (9) defines a direct relation

between the chosen shape functions . Therefore, the next step

is to find a set of conditions to ensure the compatibility of

the shape functions. To do this we first assume that e1b =
e1c = eRa = eRc = 0. Then (9) simplifies to

f2

acω
2

ac = e1adω
1

a

which, in fact defines a relation between ω2

ac and ω1

a. Let

k1 = −f2

ac ·
(

e1a
)−1

. Then we obtain

−k1ω
2

ac = dω1

a.

Integrating over Zac and using (8) yields

k1 =
1

∫

Zac

ω2
ac

.

Hence, we have the following relation between ω2

ac and ω1

a.

k1ω
2

ac = −dω1

a.

Similarly we obtain that

k1ω
2

ac = −dω1

a = dω1

c = −dωR
a = dωR

c . (10)

Note that without loss of generality we choose here k1 = 1.

Assuming that e1a = e1c = eRa = eRc = 0 and k = f2

ac ·
(

e1b
)−1

we obtain

kω2

ac = dω2

b .

Integration over Zac and using (8) yields k = 0. Hence, there

is no direct relation between ω2

ac and ω2

b . Substituting (10)

into (9) and integrate over Zac we infer

f2

ac = e1c − e1a + eRc − eRa .

Note that from (8) and (10) one can deduce an expression

for all shape function in terms of ω1

a:

ω1

a = ωR
a = 1− ω1

c = 1− ωR
c (11)

B. Third equation of motion

The third equation of motion is given by

fR = de2. (12)

First we make the following observations. It is obvious that

the first and third equation of (5) are equivalent. Therefore

we chosen the same approximation for f1 and fR. Due to

the dissipation relation eR = ∗rfR it is clear that the shape

functions have to fulfill the following condition

ωR
ab = ∗ω1

a, ωR
bc = ∗ω1

c .

We additionally assume that ωR
ab and ωR

bc fulfill the following

conditions
∫

Zbc

ωR
ab =

∫

Zab

ωR
bc = 0. (13)

These conditions lead to the following relations
∫

Zab

ωR
ab = b− a,

∫

Zbc

ωR
bc = c− b.

Now we can proceed with the spatial discretization of (12).

As for the second equation of motion presented in Section

V-A, we substitute the approximation of the effort and flow

and assume that all the time depending scaling parameters

are zero, except two of them — for example we assume that

fR
bc = e2b = e2c = 0. Then we obtain

fR
abω

R
ab = e2adω

2

a.

If we now assume that k2 = −fR
ab ·
(

e2a
)−1

we conclude that

−k2ω
R
ab = dω2

a.

The next step would be to integrate over Zac but since we

chose ωR
ab such that (13) is fulfilled we only integrate over

Zab. This integration yields

−k2 =
−kaa

(b− a)
.

6981



Hence, on Zab we have the following relation between ωR
ab

and ω2

a

k2ω
R
ab = −dω2

a.

Similarly, if we assume kaa = kbb we obtain that on Zab

k2ω
R
ab = dω2

b .

Furthermore, since
∫

Zab

dω2

c = 0 we have no relation

between ω2

c and ωR
ab.

Following the exactly same reasoning for fR
bc 6= 0 we

obtain that on Zbc we have the following relations between

the shape functions

k3ω
R
bc = −dω2

b = dω2

c

k3 =
kcc

(c− b)

and that there is no relation between ω2

a and ωR
bc on Zbc.

To simplify calculations we now assume that kaa = kbb =
kcc = (b − a) = (c − b) then we have k2 = k3 = 1. This

assumption can be ensured by enforcing that
(
∫

∗ω1

a

)

(a) = −(b− a) (14)

(
∫

∗ω1

a

)

(b) = 0.

The relations between the shape functions can then be

summarized as follows

ωR
ab = −dω1

a = dω1

b on Zab (15)

ωR
bc = −dω1

b = dω1

c on Zbc.

Substituting (15) into (12) yields that on Zab we have the

following equations of motion

fR
abω

R
ab + fR

bcω
R
bc = (e2b − e2a)ω

R
ab + e2cdω

2

c .

Integration over Zab results in the following dynamics on

Zab

fR
ab = e2b − e2a.

In the same way we obtain that the dynamics on Zbc can be

described as

fR
bc = e2c − e2b.

Additionally due to the constraint (14) on ω1

a we are able

express all shape functions in terms of ω1

a

ω2

a =

{

−
∫

∗ω1

a on Zab

0 on Zbc

ω2

b =

{

(b − a) +
∫

∗ω1

a on Zab

−z + c+
∫

∗ω1

a on Zbc

ω2

c =

{

0 on Zab

z − b−
∫

∗ω1

a on Zbc

.

Note that the choice ω2

a = 0 on Zbc is only to simplify the

calculations. The same holds for the choice that ω2

c = 0 on

Zbc. The results of this section and Section V-A will then

lead to the final approximation of the equations of motion.

C. Spatially discretized equations of motion

We now combine the results of Section V-A and V-B to

state a finite dimensional version of (4) on Zac. In the last

two sections we have determined that the finite dimensional

approximation of (5) can be stated as

f
1/R
ab = e2b − e2a (16)

f
1/R
bc = e2c − e2b

f2

ac = e1c − e1a + eRc − eRa .

From the infinite dimensional system we know that eR =
∗rfR. Additionally we know, see Section 12, that eR and

fR are approximated with the same shape functions. Hence,

it must hold that

eRa = rfR
ab, eRc = rfR

bc.

If we substitute this relation into (16) we obtain a spatial

discretized version of (4) which can be stated as follows

f1

ab = e2b − e2a (17)

f1

bc = e2c − e2b

f2

ac = e1c − e1a + r(e2a − 2e2b + e2c).

Next we define a set of efforts such that one can formulate

an input-state-output structure of a finite dimensional pH

system.

D. Definition of efforts

We define the efforts of the finite dimensional pH system

by using the net power of the system. For an infinite

dimensional system with two states the net power is defined

as

Pnet =

∫

Z

(e1 ∧ f1 + e2 ∧ f2) +

∫

∂Z

e∂ ∧ f∂ . (18)

Substituting the approximation of the efforts and flows and

integrating over Zac yields an approximation to the net power

in the form of (3). For the simplicity of the explanation we

will neglect the boundary values during the calculation,

Pnet
ac =

∫

Zac

(

e1aω
1

a + e1bω
1

b + e1cω
1

c

)

∧
(

f1

abω
1

ab + f1

bcω
1

bc

)

+
(

e2aω
2

a + e2bω
2

b + e2cω
2

c

)

∧ f2

acω
2

ac

= e1abf
1

ab + e1bcf
1

bc + e2acf
2

ac

were

e1ab = α1

a,abe
1

a + α1

b,abe
1

b + α1

c,abe
1

c (19a)

e1bc = α1

a,bce
1

a + α1

b,bce
1

b + α1

c,bce
1

c (19b)

e2ac = α2

a,ace
2

a + α2

b,ace
2

b + α2

c,ace
2

c (19c)

αl
ij =

∫

Zac

ωl
i ∧ ωl

j , i ∈ {a, b, c}, j ∈ {ab, bc, ac}(19d)

Using the just defined efforts we can now define the input-

state-output structure.

6982



E. Input-state-output structure

We choose the following input vector field ũ =
[e2a, e

2

c , e
1

b ]
⊤, note that this is different to the definition

in Theorem 1 because we will show that the input ũ3 is

obsolete. With this definition of the input vector field and

the definition of the efforts (19a) we can express the first

two equations of motions of (17) as follows

f1

ab =
1

α2

b,ac

e2ac −

(

1 +
α2

a,ac

α2

b,ac

)

e2a −
α2

c,ac

α2

b,ac

e2c

f1

bc = −
1

α2

b,ac

e2ac +
α2

a,ac

α2

b,ac

e2a +

(

1 +
α2

c,ac

α2

b,ac

)

e2c .

To have a skew symmetric interconnection matrix J we need

that we can find a parameter k such that

e1c − e1a = −
1

α2

b,ac

e1ab +
1

α2

b,ac

e1bc + ke1b

Hence, we need that

1

α2

b,ac

(

−α1

a,ab + α1

a,bc

)

= −1 (20a)

1

α2

b,ac

(

−α1

c,ab + α1

c,bc

)

= 1 (20b)

−α1

b,ab + α1

b,bc = −k. (20c)

Because we are able to express all shape function in terms

of ω1

a it is clear we are able to express all α’s in terms of

α1

a,ab,

α1

a,bc = α1

c,ab = −α1

a,ba + (b− a)

α1

c,bc = α2

b,ac = α1

a,ba

α2

a,ac = −

∫

Zab

ω1

a ∧ ω1

a + (b− a)

α2

c,ac = −

∫

Zbc

ω1

a ∧ ω1

a.

Hence, (20a) and (20b) are equivalent. This means that we

only have to ensure that

1

α2

b,ac

(

−α1

c,ab + α1

c,bc

)

= 1.

After simple calculations we obtain an additional condition

for ω1

a which ensures that (20) is fulfilled, namely

α1

a,ab = b − a.

Enforcing this extra condition results into α1

a,bc and α1

c,ab

being zero. If we additionally assume that
∫

Zab

ω1

a ∧ ω1

a = (b− a)

∫

Zbc

ω1

a ∧ ω1

b = α1

b,ab = α1

b,cb = 0

then the definition of our efforts (19) simplifies to

e1ab = (b−a)e1a, e1bc = (b−a)e1c , e2ac = (b−a)e2b . (21)

Note that the following two shape functions fulfill all con-

straints we have enforced until now on ω1

a and ω1

b

ω1

a =

{

1 z ∈ Zab

0 z ∈ Zbc

, ω1

b = 0.

With the new definition of the efforts (21) we can express
(17) as

f
1

ab =
1

(b− a)
e
2

ac − ũ1

f
1

bc = −
1

(b− a)
e
2

ac + ũ2

f
2

ac = −
1

(b− a)
e
1

ab +
1

(b− a)
e
1

bc +
2r

(b− a)
e
2

ac − rũ1 − rũ2

which is equivalent to (6). Next we have to show how to derive a
finite dimensional expression of the energy function.

F. Discretization of the energy function

The discretization of the energy function is compared to the dis-
cretization of the input-state-output structure rather straightforward.
As was discussed in Section (II) is the flow f of a pH system related
to the state x of the pH system via the time derivative (f = ẋ).
And because our shape functions are time independent it is clear
that the approximation of the state has to be done in the same way
as for the flows. Hence, we have the following approximation of
the states,

x1 ≈ x
1

abω
1

ab + x
1

bcω
1

bc

x2 ≈ x
2

acω
2

ac.

If we now substitute this approximation in the definition of our
energy function H(x) and then integrate over Zac we obtain the
finite dimensional approximation of the energy function below

Hac(x
1

ab, x
1

bc, x
2

ac) =

∫
Zac

H(x1

abω
1

ab + x
1

bcω
1

bc, x
2

acω
2

ac).

Moreover, since the efforts of the finite dimensional are defined
as the gradient of the energy function with respect to the state it
follows immediately that

e
1

ab =
∂

∂x1

ab

Hac(x
1

ab, x
1

bc, x
2

ac)

e
1

bc =
∂

∂x1

bc

Hac(x
1

ab, x
1

bc, x
2

ac)

e
2

ac =
∂

∂x2
ac

Hac(x
1

ab, x
1

bc, x
2

ac).

This result combined with (6) is the a finite dimensional approxi-
mation of the dynamics of (4) on Zac in pH form.

VI. SIMULATION RESULTS

In this section we present results from a numerical simulation of
the dynamics of a vibrating string including structural damping [4].
We assume that all physical parameters are 1 and that the energy
function is given as H(p, ε) =

∫
Z
T ∗ ε∧ ε+ ρ−1

∗ p∧ p, where ε
is the strain, p is the momentum, T is the elastic modulus and ρ is
the density of the string. A finite dimensional model of one finite
element is given by (6). We choose a mesh of 21 finite elements
and compare the results of the pH discretization scheme stated in
Theorem 1 with a classical finite difference (FD) approach. We
assume that the initial value for the strains is zero in all elements
and that the initial value for all momenta is zero except for the
11th element where we choose an initial value of 500[Ns]. To be
able to see the diffusive effect we have set all inputs to zero, which
means that there is no energy transfer over the boundaries and only
dissipation in the spatial domain through structural damping. As
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numerical solver we used the ode23t method in Matlab to ensure
that no numerical damping is introduced.

In Figure 1 one can clearly see that the FD solution is not
capturing the diffusive effect because it completely damps out any
momenta for t → ∞, while the pH system clearly captures the
diffusive behavior and achieves an equal momentum for t → ∞

as one would expect. The difference between the methods becomes
even clearer in Figure 2a where we plot the sum of the momenta
in all elements. For an autonomous system with diffusive dynamics
one expects that the sum of all momenta will be equal for all t,
because the diffusion results in an equalization of all momenta in all
elements without dissipating any momenta. This is clearly the case
for the pH model while the FD model totaly fails in preserving
this equality because the sum of the momenta will be zero for
t → ∞. This can also be seen in the energy plot. Of course the
diffusive effect will dissipate energy while achieving the equality of
the momenta in all elements but only while equality is not achieved.
After the equality has been achieved the system will be in rest and
will not dissipate any energy. Again the pH model is able to capture
this effect and the FD model fails again. So one can see that the
derived finite dimensional pH model is far superior to the FD model
when it comes to capturing the dynamics more accurately.

VII. CONCLUSIONS

We have shown how one can approximate the dynamics of a 1D
port-Hamiltonian system with convective and diffusive effect on a
given interval with a finite dimensional port-Hamiltonian system.
The resulting finite dimensional approximation can then be used for
various tasks. For example based on the finite dimensional model
one could design a stabilizing controller by applying an energy
based control scheme, e.g. [15], or one could use the so derived
model for simulation purposes.

In future work we will expand the discretization to 2D port-
Hamiltonian systems with diffusion.
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