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Abstract— Based on recent advances on convex design for
Large-Scale Control Systems (LSCSs) and robust and efficient
LSCS self-tuning/adaptation, a methodology is proposed in
this paper which aims at providing an integrated LSCS-
design, applicable to large-scale systems of arbitrary scale,
heterogeneity and complexity and capable of:

1) Providing stable, efficient and arbitrarily-close-to-optimal
LSCS performance;

2) Being able to incorporate a variety of constraints, including
limited control constraints as well as constraints that are
nonlinear functions of the system controls and states;

3) Being intrinsically self-tunable, able to rapidly and efficiently
optimize LSCS performance when short-, medium- or long-time
variations affect the large-scale system;

4) Achieving the above, while being scalable and modular.

The purpose of the present paper is to provide the main
features of the proposed control design methodology.

I. INTRODUCTION

Recently, a new convex Approximate Optimal Control

(AOC) design – abbreviated as ConvCD (Convex Control De-

sign) – was proposed and analyzed in [2], [4], [5]. Contrary

to the existing AOC approaches, the ConvCD methodology

does not require a time-consuming off-line design: ConvCD

converts the problem of constructing an AOC into a convex

optimization problem and, moreover, it can approximate

with arbitrary accuracy the performance of any – feasible –

stabilizing controller for the system. Additionally, the Con-

vCD approach allows for its straightforward interconnection

with self-tuning/adaptation tools employed to compensate
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for internal/external system variations and uncertainties.

The convex nature of ConvCD guarantees that such an

interconnection can be performed without “getting trapped

into local minima” situations and by avoiding singularities

(loss-of-controllability problems).

The ConvCD approach of [2], [4], [5] employs polynomial

approximations for constructing an AOC design. As a result,

the price paid for its advantages mentioned above, is that its

the computational burden increases exponentially with the

order of the polynomial approximation used and, thus, it is

not applicable to LSCS applications. Moreover, the ConvCD

approach of [2], [4], [5] cannot handle state and control

constraints.

In this paper, we propose and analyze a revised version

of ConvCD that overcomes the shortcomings of the version

presented in [2], [4], [5]. More precisely, the ConvCD ap-

proach is revised in several ways towards the development of

a generic and practically implementable tool that can be used

for the LSCS design of general nonlinear and uncertain large-

scale nonlinear systems. The main features of the proposed

approach are as follows:

• It is a convex AOC methodology which, similarly to [2],

[4], [5] requires the solution of a convex problem (involving

either SDP or LMIs).

• It employs a switching control scheme and, as a result, it

avoids the scalability and computational problems of [2], [4],

[5]. More precisely, the SDP constraints (or LMIs) involved

in the new design can be of the same order as the system

dimension.

• Given a user-defined optimality criterion it can approximate

with arbitrary accuracy the performance of the respective

optimal controller. Moreover, it provides easy-to-calculate

formulas to check whether a particular choice for the design

parameters of the proposed approach result in a stable and

efficient controller and, most importantly, to estimate the

“distance” of the resulting controller from the optimal one.

• It can handle any type of state and control constraints.

• It allows for its straightforward interconnection with self-

tuning/adaptation tools employed to compensate for inter-

nal/external system variations and uncertainties. Its convex

nature guarantees that such an interconnection can be per-

formed without “getting trapped into local minima” situ-

ations. Moreover, the overall adaptation can be done by

avoiding singularities (loss-of-controllability problems) and

therefore computational and instability issues.

In the next sections we present the new proposed approach

along with a theoretical analysis of its properties. Due to

space limitations, simulation tests are not included in this
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paper and will be reported elsewhere.

II. PROBLEM FORMULATION

In this paper, we consider the problem of designing a state

feedback controller for a general nonlinear system which

assumes the following dynamics

χ̇ = F (χ, u) (1)

where χ ∈ ℜn, u ∈ ℜm denote the vectors of system states

and control inputs, respectively and F is a nonlinear vector

function (assumed to be continuous). The problem at hand

is to construct a state-feedback controller

u = k∗(χ)

which renders the closed-loop system stable and moreover,

solves the following constrained optimal control problem:

min
u

J̄ =

∫ ∞

0

Π̄(χ(s), u(s))ds (2)

s.t. system (1) dynamics

umin ≤ u ≤ umax (3)

C̄(χ, u) ≤ 0 (4)

where Π̄ is a bounded-from-below, continuous function of

its arguments; umin, umax denote the vectors of minimum

and maximum, respectively, allowable control signals; C̄ is a

smooth nonlinear vector function. Please note that inequality

(4) can represent a large class of constraints met in practical

applications. Without loss of generality, we will assume that

the minimum of Π̄(χ, u) is attained at Π̄(0, 0) and that all

constraints are satisfied for (χ, u) = (0, 0).
In order to have a well-posed problem we will assume

that the controller solving the optimal control problem (2)-

(4) provides closed-loop stability, i.e., we will assume that

(A1) Let u∗ = k̄(χ) be the controller that solves the

optimal control problem (2)-(4). Then, for all ad-

missible initial states χ(0), the closed-loop system

(1) under the feedback u∗ = k̄(χ) is stable.

Additionally to (A1) we will impose the following assump-

tion.

(A2) We have that

C̄(0, 0) < 0

Assumption (A2) states that at the point (χ, u) = (0, 0)
where the function Π̄(·) attains its minimum none of the

constraints (4) is active.

III. TRANSFORMATIONS & APPROXIMATIONS

The first step in the proposed approach is to impose

special transformations that render the system dynamics,

the constraints and the objective criterion in an appropriate

format that is convenient for our developments. To do so,

we define a new fictitious “control” input v that is calculated

according to
˙̄u = v, u = S(ū) (5)

with S(·) being a smooth and invertible function such that

umin ≤ S(ū) ≤ umax (6)

It is worth noticing that by adding the integrator (5) and

introducing the function S satisfying (6), the problem of

designing the control vector u so that constraint (3) is

satisfied is transformed into the problem of designing v that

does not need to satisfy a boundedness constraint like (3):

while v can take “arbitrary” values, the actual control vector

u is restricted – due to the use of function S – to satisfy (3).

By defining the augmented state vector x according to

x =

[

χ
ū

]

we can rewrite the system (1) and the constraints (4) as

follows:

ẋ = f(x) +Bv (7)

C(x) ≤ 0 (8)

The second step in the proposed design is to approximate

the transformed system dynamics (7) as well as the objective

criterion using smooth mixing signals. More precisely, we let

βi, i = 1, . . . , L denote a set of smooth mixing signals that

satisfy the following properties:

βi(x) ∈ [0, 1],

L
∑

i=1

βi(x) = 1, ∀x,
L
∑

i=1

I (βi(x)) ≤ 2

where I(y) denotes the indicator function I(y) = 1 if

y > 0 and I(y) = 0 if y = 0. We will, moreover, assume

that the mixing signals βi span the whole space x lies on,

i.e., we will assume that for each possible x, there exists

at least one i such that I (βi(x)) = 1. For an example

of mixing functions, see [6], [7]. Using the above design

considerations for the mixing signals βi, we can employ

standard function approximation techniques to approximate

the system dynamics (7) and the objective criterion (2) as1

follows:

ẋ ≈
L
∑

i=1

βi(x)Aix̄(x) +Bv (9)

Π̄(χ, u) ≡ Π(x) ≈
L
∑

i=1

βi(x) (x̄
τQix̄) (10)

where Ai, Qi are constant matrices with Qi being positive

semidefinite,

x̄(x) =

[

̟(x)
σ(x)

]

with ̟(x) being any smooth nonlinear function satisfying

̟(x) = 0 ⇐⇒ x = 0, and σ(x) is defined according to

σi(x) = exp(αCi(x)− η) (11)

and α is a large positive constant and η is a positive constant

chosen so that if particular constraint Ci(x) ≤ 0 is – or is

about to be – violated, then the respective σi(x) takes a

very large value, while it is negligible when the constraint

is satisfied.

1Note that the approximation (9) does not contain constant terms. All
the results of this paper can be readily extended to the case where an
approximation with constant terms is employed.
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Moreover, let us define the vector z(x) as follows:

z(x) =







√

β1(x)x̄(x)
...

√

βL(x)x̄(x)






(12)

Using the above definition for z(x) we finally end up with

the following description for the system dynamics

ẋ ≈ Φ̄(x)z(x) +Bv (13)

where Φ̄(x) =
[ √

β1(x)A1 . . .
√

βL(x)AL

]

. As a

final step, the constrained optimization problem (2)-(4) is

transformed into an unconstrained one, by incorporating the

constraints (4) – or, equivalently, the constraints (8) – as

penalty functions into the objective function. This is made

possible by making use of (11) and by replacing the objective

function (2) by the following one

J =

∫ ∞

0

( L
∑

i=1

βi(x(s)) (x̄(s)
τQix̄(s)) +

dim(C(x))
∑

j=1

σ2
j (x(s))

)

ds

By using the fact that
∑L

i=1 βi(x) = 1 and the definition of

z in (12), the augmented objective function J can be written

in the following compact form:

J =

∫ ∞

0

(zτ (s)Qz(s)) ds (14)

with Q being a block diagonal matrix.

A. HJB and Controller Approximations

After applying all transformations presented of the previ-

ous section, we have that the optimal state feedback design

problem can be cast as an unconstrained optimal control

problem of the form

minimize J =

∫ ∞

0

(zτ (s)Qz(s)) ds (15)

subject to

ẋ = Φ̄(x)z(x) +Bv + ν (16)

where ν stands for the approximation error due to the

replacement of the actual system dynamics (7) by (9).

Two remarks are in order.

Remark 1: Additionally to (A1) and (A2) we will assume

that

(A3) The initial states x(0) of the system belong to a

compact subset X0 ⊂ ℜdim(x).

Associated to the subset X0 of admissible initial conditions

we will define a “sufficiently large” compact subset X which

contains X0. △
Remark 2: Please note that in case x lies in the compact

subset X ⊂ ℜdim(x), then the amplitude of the term ν ≡ ν(x)
can become arbitrarily small and is inversely proportional

to the number L of mixing signals. △
Application of the well-known Hamilton-Jacobi-Bellman

(HJB) equation to the above problem results in the following

equation

−zτ (x)Qz(x) =
∂V

∂x

τ

(x)
(

Φ̄(x)z(x) +Bv∗ + ν
)

(17)

where V is the optimal-cost-to-go function, i.e.,

V (x(t)) =

∫ ∞

t

(zτ (s)Qz(s)) ds,

v∗ denotes the optimal control and ν is the error approxima-

tion term that is due to the approximations of the previous

sections.

Lemma 1: Let (A1)-(A3) hold and assume that x ∈ X .

The optimal-cost-to-go function V can be approximated –

with accuracy O(1/L) – using a Sum-of-Squares (SoS)

polynomial as follows:

V (x) ≈ zτ (x)Pz(x) (18)

where P is a constant positive definite matrix with P being

symmetric and having the following block diagonal form

P =







P1 . . . 0

0
. . . 0

0 . . . PL






(19)

where Pi are dim(x̄)2-dimensional symmetric and positive

definite matrices.

Proof: The proof can be established using similar

arguments as in [2]-[5].

Similar to the use of approximations for the optimal cost-

to-go function, we approximate the optimal controller v∗ as

follows:

v∗ ≈
L
∑

i=1

βi(x)Giz(x) (20)

where Gi are constant matrices. Please note that (20) can be

rewritten in the following compact form

v∗ ≈ Γ(x)Gz(x) (21)

where Γ(x) = [β1(x)I, . . . , βL(x)I].

IV. THE CONVCD APPROACH

Using the approximations (13), (18) and (21), the HJB

Equation (17) can be written as follows:

0 = zτ
(

[

Φ̄(x) +BΓ(x)G
]τ
Mτ

z P (22)

+PMz

[

Φ̄(x) +BΓ(x)G
]

+Q

)

z − ν̄ ≡ GP,G(x)− ν̄

where Mz ≡ Mz(x) denotes the matrix whose (i, j)th entry
is given by Mz,ij(x) = ∂zi(x)/∂xj and ν̄ is the approxima-
tion error term that is inversely proportional to the number
L of mixing signals, resulting from the approximations (13),
(18) and (21). Moreover, as the optimal cost-to-go function
V (x) is a CLF for the system (16) we have that closed-loop

stability is preserved by the control scheme if V̇ < 0 for
x 6= 0, or, equivalently using the approximations (13), (18)
and (21) if the following inequality holds

z
τ

(

[

Φ̄(x) +BΓ(x)G
]τ
M

τ
z P+PMz

[

Φ̄(x) +BΓ(x)G
]

)

z

≡ LP,G(x) < 0, ∀x 6∈ B(ν̄) (23)
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where2 B(ν̄) denotes a ball centered at the origin and having

radius proportional to ν̄.

Equations (22) and (23) indicate that – provided the

approximation error term ν is “small enough” – it suffices

to choose P,G so that the term GP,G is as small as

possible subject to the constraint that LP,G(x) is – almost –

negative definite. In other words, the problem of constructing

an approximately optimal performance can be cast as the

following optimization problem:

min ‖GP,G(x)‖2 + γ (24)

s.t. P ≻ 0, LP,G(x) ≤ γ, γ ≥ 0

Unfortunately, as the above optimization problem is non-

linear wrt the unknowns P,G, attempting to solve (24) is

non-convex – and thus difficult to solve – problem even in the

case where the approximation-related term ν̄ is negligible.

To circumvent this problem we work similarly to [8], [2]-

[5]: by multiplying by P−1 from the left and the right the

terms inside the parenthesis of (22) we obtain that

FP̄,F,Q̄(x)
△
= zτ

([

P̄(Φ̄(x))τ + FτΓτ (x)Bτ
]

Mτ
z

+Mz

[

Φ̄(x)P̄+BΓ(x)F
]

+ Q̄
)

z

= ¯̄ν (25)

where ¯̄ν = O(ν̄),

P̄
△
= P−1, Q̄

△
= P̄QP̄ ≡ P−1QP−1 (26)

and F is a matrix satisfying

F = GP̄ (27)

Working similarly on (23) we obtain

HP̄,F(x)
△
= zτ

([

P̄(Φ̄(x))τ + FτΓτ (x)Bτ
]

Mτ
z (28)

+Mz

[

Φ̄(x)P̄+BΓ(x)F
])

z < 0, ∀x 6∈ B(ν̄)

The above transformations play a crucial role in our

approach: instead of attempting to solve the non-convex

optimization problem (29), we solve its equivalent version

– which is convex – that involves the functions FP̄,F,Q̄ and

HP̄,F:

min
∥

∥FP̄,F,Q̄(x)
∥

∥

2
+ γ (29)

s.t. ǫ1I � P̄ � ǫ2I, ǫ3Q � Q̄, HP̄,F(x) < γ, γ ≥ 0

where ǫi, i = 1, 2, 3 are some positive design constants (with

ǫ2 > ǫ1) and P̄∗, F̄ ∗, Q̄∗ denote the optimal solutions to the

optimization problem (29).

Despite the fact that the optimization problem (29) is a

convex problem, its solution requires discretization of the

state-space as it is an infinite-dimensional, state-dependent

problem. Fortunately, due to the particular form of (29), the

number of discretization points does not have to be as large

as it is required in a typical state-dependent optimization

problem: as it is seen in Theorem 1 presented below, the

2Please note that throughout this paper the notation B(·) is used in a
similar way as the notation O(·): B(a)is used to denote a ball of radius

proportional to a and not a ball of radius a.

number of discretization points can be as few as the total

number of free variables in the matrices P̄, Q̄,F. This

is contrary to alternative AOC approaches that require an

extremely larger number of discretization points. Also, other

approaches that use SOS representations to solve (29) are

computationally expensive and cannot treat systems of high

complexity directly [8].

Table I presents the proposed procedure for solving

the optimization problem (29) and, eventually, constructing

the proposed control design scheme. Following the same

methodology as in [2]-[5], the key idea of the approach in

Table I for solving (29) is to choose randomly many different

x; it suffices to choose the number of random x to be equal

or larger than the number of free variables in the matrices

P̄, Q̄,F.

The next theorem establishes the properties of the overall

scheme presented in Table I.

Theorem 1: Fix the number L of mixing signals and

the constants ǫi, i = 1, 2, 3 and let P̂, Ĝ be constructed

according to the design procedure of Table I and let (A1)-

(A3) hold. Let also M be any positive integer satisfying

M ≥ N , where N – see also Table I – denotes the number

of free variables of the matrices P̄, Q̄,F. Select3 randomly

M points x[j] ∈ X and let

z[j] = z(x[j])

Finally, suppose that the positive design constants ǫi are

chosen so that

ǫ1I � P∗−1 � ǫ2I, ǫ3Q � P∗−1QP∗−1
(32)

where G∗,P∗ denote the optimal solutions to the optimiza-

tion problem (24).

Then, the following statements hold:

(a) If for some C1 > 0 and for all j ∈ {1, . . . ,M},

‖z[j]‖ > C1 ⇒ L
P̂,F̂

(x[j]) < 0 (33)

Then, the closed-loop system is stable and its solutions

converge to the subset

D =

{

x : ‖z(x)‖ ≤ C1 +O

(

1

M

)}

Moreover, the closed-loop solutions of the system satisfy

‖x(t)− xopt‖ ≤ C2 +O

(

1

M

)

(34)

where xopt denotes the closed-loop solutions of the system

under the optimal control v∗ and C2 is a nonnegative constant

satisfying

C2 = O
(

G
P̂,F̂

(x[j])
)

(b) For each C1 > 0, C2 ≥ 0, there exists a lower bound on

the approximators size L̄ so that (33) and (34) hold for all

choices of approximators’ size L satisfying L ≥ L̄. ♦

3Note that although it is possible for N and x[i] of Table I to concide

with M and x[j], respectively, it is advisable that they do not concide so
that the performance of the proposed control design is evaluated at different
state points than the ones used to construct the ConvCD solution.

5410



Table I: The ConvCD Approach

Step 1. Calculate the matrices P̄, Q̄,F as follows: Let N denote the total number of free variables of these matrices. Select randomly N points x[i] ∈ X ,
where N is any integer satisfying N ≥ N and solve the following convex optimization problem (here ǫi are user-defined positive constants):

min

N
∑

i=1

‖FP̄,Q̄,F(x
[i])‖2 + γ (30)

s.t. ǫ1I � P̄ � ǫ2I, ǫ3Q � Q̄, HP̄,F(x
[i]) < γ, γ ≥ 0

Step 2. By using the solution of the above optimization problem, we can extract the estimates of the matrices P,G in (24) according to

P̂ = P̄−1, Ĝ = FP̄−1 (31)

Step 3. The proposed control scheme is the MMCM controller given by (20) and (5) by setting G equal to Ĝ.

Proof: Let ¯̄Q == Q̄− ǫ3Q and consider the following

two optimization problems:

min
∥

∥

∥
F

P̄,F, ¯̄Q+ǫ3Q
(x)

∥

∥

∥

2

+ γ (35)

s.t. ǫ1I � P̄ � ǫ2I, 0 � ¯̄Q, HP̄,F(x) < γ, γ ≥ 0

and

min

N
∑

i=1

‖F
P̄,F, ¯̄Q+ǫ3Q

(x[i])‖2 + γ (36)

s.t. ǫ1I � P̄ � ǫ2I, 0 � ¯̄Q, HP̄,F(x
[i]) < γ, γ ≥ 0

The optimization problems (35) and (36) are equivalent to the

optimization problems (29) and (30), respectively. From now

on, we will consider instead of the optimization problems

(29) and (30), their equivalent ones (35) and (36).

Let ϑ denote a vector which contains all non-zero entries

of the matrices P̄, ¯̄Q,F; as the first two of these matrices

are symmetric, the dimension of the vector ϑ is less than

the number of non-zero entries of the matrices P̄, ¯̄Q,F.

Similarly, let θ denote a vector which contains all non-

zero entries of the matrices P and G. Let also ϑ∗ and

θ∗ denote the global optimizers of the infinite-dimensional

problems (35) and (24), respectively. Finally, let T denote

the one-to-one transformation from ϑ to θ defined according

to P = P̄−1,G = FP̄−1. Then, it is not difficult to see that

if (32) holds then

θ∗ = T (ϑ∗) +O(ν̄) (37)

Using the definition of ϑ we have that

F
P̄,F, ¯̄Q+ǫ3Q

(x) = ϑτΨ(x) + ǫ3z(x)
τQz(x)

for some appropriately defined functions Ψi, i = 1, 2.

Moreover, from (25) we have that

ϑ∗τΨ(x) + ǫ3z(x)
τQz(x) = O(ν̄) (38)

Let

¯̄Ψ =

N
∑

i=1

Ψτ (x[i])Ψ(x[i])

and

Z = −ǫ3

N
∑

i=1

Ψτ (x[i])zτ (x[i])Qz(x[i])

Then, by using (38) we directly obtain

¯̄Ψϑ∗ = Z +O(ν̄) (39)

We will show that the matrix ¯̄Ψ is full-rank with probability

1. The proof of the last claim can be established using similar

arguments as in [3], [4]: if ¯̄Ψ is not full-rank then there exists

a constant non-zero vector b such that

bτi Ψ(x[i]) = 0, ∀i ∈ {1, . . . ,N} (40)

which is equivalent to a set of nonlinear system of equations

in x[i]. The set of solutions to these system of equations

has zero Lebesgue measure, see e.g. [3], [4], and as a result

under a random choice for x[i] the probability that (40) holds

is zero. In other words, a random choice for x[i] guarantees

that ¯̄Ψ is full-rank with probability 1.

Let ϑ̂ denote the solution of the ConvCD optimization

problem (36) and

J (ϑ) = ‖ ¯̄Ψϑ− Z‖2

Since ϑ∗ is a feasible solution to the optimization problem

(36) and by using (39), we have that

J (ϑ̂) ≤ J (ϑ∗) = O(ν̄) (41)

As a result, since J (·) is a quadratic function, we have that

J (ϑ̂) = J (ϑ∗) + 2
(

ϑ∗ − ϑ̂
)τ

¯̄Ψτ
(

¯̄Ψϑ∗ + Z
)

+
(

ϑ∗ − ϑ̂
)τ

¯̄Ψτ ¯̄Ψ
(

ϑ∗ − ϑ̂
)

(42)

Combining (41) and (42) we obtain

J (ϑ∗) ≥ J (ϑ∗) + 2
(

ϑ∗ − ϑ̂
)τ

¯̄Ψτ
(

¯̄Ψϑ∗ + Z
)

+
(

ϑ∗ − ϑ̂
)τ

¯̄Ψτ ¯̄Ψ
(

ϑ∗ − ϑ̂
)

⇒

0 ≥ 2
(

ϑ∗ − ϑ̂
)τ

¯̄Ψτ
(

¯̄Ψϑ∗ + Z
)

+
(

ϑ∗ − ϑ̂
)τ

¯̄Ψτ ¯̄Ψ
(

ϑ∗ − ϑ̂
)

Using the above inequality together with the facts that (a) ¯̄Ψ
is full-rank and thus ΨτΨ ≻ 0 and (b) and ‖ ¯̄Ψϑ∗ − Z‖ =
O(ν̄) we finally obtain that

ϑ̂ = ϑ∗ +O(ν̄) (43)
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The above equation in combination with (37) establishes that

θ∗ = T (ϑ̂) +O(ν̄) (44)

Combining (44) with (22) we finally obtain that

G
P̂,Ĝ

(x) = O(ν̄) (45)

or, equivalently

L
P̂,Ĝ

(x) ≤ −zτQz +O(ν̄) (46)

where P̂, Ĝ are generated using the ConvCD optimization

algorithm (30) [or, its equivalent, (36)]. Inequality (46) can

be rewritten as follows:

d

dt

(

zτ P̂z
)

≤ −zτQz +O(ν̄)

or, equivalently, by setting V̆ (x) = zτ P̂z, as follows

˙̆
V (x) ≤ −cV̆ (x) +O(ν̄)

for some positive constant c, or, equivalently, [1]

V̆ (x(t)) ≤ exp(−ct)V̆ (x(0)) +O(ν̄)

‖x(t)‖ ≤

√

k2
k1

exp

(

−
k3
2k2

t

)

‖x(t)‖+O(ν̄) (47)

where ki are positive constants satisfying k1‖x‖
2 ≤ V̆ (x) ≤

k2‖x‖2, cV̆ (x) ≥ k3‖x‖2. The rest of the proof is based on

standard Lyapunov stability arguments and is ommitted due

to space limitations.

Several remarks are in order:

• The optimization problem (29) is a convex one: the

optimization criterion comprises a quadratic function with

respect to the decision variables P̄,F, Q̄ while all of the

constraints are Semi-Definite constraints (and thus convex).

• As it seen in the proof of Theorem 1, the optimization

problem (29) is equivalent to (24) and thus, if the approxi-

mation error term is small enough, then the solution to (29)

corresponds – approximately – to the optimal solution of the

problem at hand.

• Most importantly, according to Theorem 1, the solution to

the optimization problem (29) is able to provide an efficient

control design even in cases where the approximation error

is not negligible. Theorem 1 provides an easy-to-calculate

formula – see relation (33) – to check whether a particular

choice for the approximators size L provides the required

controller efficiency. In other words, even in cases where the

particular choice for L is far from providing a close-to-the-

optimal performance (i.e., a significantly larger L – and thus

a significantly more complicated controller – is required to

get a close-to-optimal performance), the proposed scheme

provides a control design that is efficient.

Furthermore to Theorem 1 and by using the same argu-

ments as those of [2] it can be seen that in case (33) holds,

then the solutions of the overall system satisfy the following

inequality:

‖z(t)| ≤ α1 exp
−α2t ‖z(0)‖+ α3 (48)

α1 =

√

ǫ2
ǫ1
, α2 =

(

ǫ3
2ǫ1

−
ǫ1 +O(1/L)

2ǫ22

)

α3 = C = O(1/L)

What is important about (48) is that the design constants ǫi
in the optimization problem (36) can serve as tuning/design

parameters in a similar fashion as e.g., the LQ matrices in

Linear-Quadratic control design applications: (48) can be

used to evaluate the effects and trade-offs of different choices

for ǫi on the overshoot, convergence and steady-state closed-

loop performance and thus it can provide a guide on how to

choose ǫi so that the desired performance is obtained.

V. INDUCING ADAPTATION WITHIN CONVCD

As ConvCD assumes perfect knowledge of the system

dynamics it may become inefficient in cases of system uncer-

tainties or variations or, even worse, in cases where minor or

major faults or anomalies affect the system dynamics. Thus

in order for ConvCD to be practically efficient, an adaptive

self-tuning/re-design tool is required that will take care of all

the above-mentioned factors that may affect the efficiency of

ConvCD. This will be a topic of future research.

By exploiting the convex nature of ConvCD, an adaptive

tuning scheme has been developed in the past [3], [4],

[5] which overcomes the severe shortcomings of existing

adaptive and self-tuning schemes of poor transient perfor-

mance and controller instability or failure in cases of loss-

of-controllability. The adaptive tuning scheme [3], [4], [5]

is applicable to the revised ConvCD methodology presented

in this paper: application of this adaptive scheme results in

the same stability and convergence properties as the ones

reported in [3], [4], [5]. The interested reader is referred

there for more details.
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