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Abstract— This paper considers a class of infinite dimensional
systems with structured perturbation. Such a perturbation is
assumed to be expressed in terms of the output operator
and an unknown matrix. The proposed adaptive observers
include a coupling term which penalizes the disagreement
of the estimates. The enforcement of consensus is applied to
both state and parameter estimates, thereby constituting the
main contribution of this work. Due to the specific operator
Lyapunov equation that the nominal plant operator satisfies, the
convergence of the estimation errors along with the asymptotic
convergence of the state and parameter deviations from the
mean are established. Extensive simulation studies examine also
the case of adapting the consensus gains, which describe the
case where the consensus gain is adjusted according to the
disagreement of the estimates.

Index Terms— Infinite dimensional systems; adaptive estima-
tion; multi-agent systems; consensus filters.

I. INTRODUCTION

The goal of this work is to introduce adaptive estimation

in multi-agent systems in which the underlying process is

governed by a class of infinite dimensional systems. The

infinite dimensional system under consideration assumes a

structured perturbation in which the nominal plant operator

generates an exponentially stable C0 semigroup [1] with a

prescribed decay rate. The additive perturbation is assumed

to be parameterized by the output operator in a collocated

fashion and multiplied by an unknown matrix gain that is

desired to be identified on-line.

To aid in the on-line estimation of the process state and the

matrix gain, a network of N agents is employed. Using the

same output measurements, the N agents generate N interac-

tive adaptive observers. The way that the adaptive observers

interact is through a coupling term which penalizes the dis-

agreement of the pairwise difference of all estimates. How-

ever, unlike earlier efforts primarily considered by the finite

dimensional community [2], the penalization of mismatch is

enforced on both the state and the parameter estimates. Using

a metric for the agreement that is independent of the network

topology, as was introduced in the finite dimensional case

[3], it is shown that the penalty term in both the state and

parameter estimates results in the deviations-from-the-mean-

estimate to converge asymptotically to zero. In fact, under

certain conditions, one can argue an exponential convergence

of the deviations-from-the-mean-estimate to zero.

The rest of the manuscript is as follows: the class of

systems under consideration along with a summary of the
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adaptive observer considered in [4] is presented in Section II.

The proposed adaptive consensus observers are presented in

Section III along with the relevant convergence results. The

special case of the adaptation of the consensus gains, which

considers the case wherein the penalty term is weighted

by a gain that is adjusted adaptively and dependant on the

disagreement of the estimates is considered in Section V.

Extensive numerical studies are presented in Section V and

conclusions follow in Section VI.

II. CLASS OF SYSTEMS AND THEIR ADAPTIVE

OBSERVERS

The class of systems under consideration is described by

the following evolution equation in a Hilbert space X

ẋ(t) = A0x(t)+Bu(t)+∆Ax(t), x(0) = x0 ∈ X ,

y(t) =Cx(t),
(1)

and which defines systems with structured perturbation. The

nominal operator A0 is assumed to generate an exponentially

stable C0 semigroup T (t), t ≥ 0 on X [1], which satisfies the

following trivial case of operator Lyapunov equation

A∗
0 +A0 ≤−ωI, ω > 0. (2)

Such a condition is typically satisfied by diffusion-advection

partial differential equations. The input operator may or may

not be collocated to the output operator, but the additive

perturbation of the nominal plant operator A0, given by

∆A =C∗ΓC, (3)

assumes a collocated form, and which may represent a

passive feedback loop. Of course, when B = C∗, we then

have the familiar collocated input-output case. The operator

Γ ∈ L(Rm,Rm) is unknown and it is desired to be identified

on-line using input and output signals. The input operator

B ∈ L(Rn,X) and the output operator C ∈ L(X ,Rm) may not

necessary form a square system, unless the number of inputs

n is equal to the number of outputs m. For the purpose of

adaptive estimation, the number of inputs is not necessarily

required to be the same as m, as long as the perturbation of

the operator satisfies the specific structure given in (3)

The above is essentially the same class of systems con-

sidered in [4]. Summarizing the result of [4] on the adaptive

observer of (1), we arrive at the following adaptive observer

˙̂x(t) = A0x̂(t)+Bu(t)+C∗Γ̂(t)y(t)

x̂(0) 6= x(0),
(4)

where Γ̂(t) is the adaptive estimate of the unknown Γ, and

x̂(t) is the adaptive estimate of the plant state x(t). Central to
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the derivation of adaptive parameter laws, is the appropriate

Lyapunov function. Defining the state error e(t), x̂(t)−x(t)
we have from (1), (2), (4)

ė(t) = A0e(t)+C∗
(

Γ̂(t)−Γ
)

y(t)

e(0) 6= 0.

(5)

In addition to the state space X , we consider the parameter

space Q defined as the space of bounded operators from

R
m to R

m equipped with the Frobenius norm [5]. Using

the following Lyapunov functional for the derivation of the

adaptive law of Γ̂(t)

V (t) = |e(t)|2X + 〈Φ(t),Φ(t)〉Q (6)

where Φ(t), Γ̂(t)−Γ denotes the parameter error, we have

〈 ˙̂
Γ(t),Ψ〉Q =−〈Ce(t),Ψy(t)〉Rm , Γ̂(0) 6= Γ, (7)

where Ψ ∈ Q is a test function. The above adaptation can be

placed in a more familiar form

˙̂
Γ(t) =−(Cx̂(t)− y(t)) · yT (t), Γ̂(0) 6= Γ, (8)

and which reveals that the proposed adaptation is feasible

since it uses the available signals Cx̂(t) and y(t). The time

derivative of the Lyapunov functional given by

V̇ (t)≤−ω|e(t)|2X ≤ 0, (9)

allows one to conclude that |e(t)|X is uniformly continuous

and integrable, and along with the application of Barbǎlat’s

lemma [6], ensures that limt→∞ |e(t)|X = 0, [4]. Convergence

of Γ̂(t) to Γ can be established with the additional condition

of persistence of excitation [7].

III. ADAPTIVE CONSENSUS FILTERS

We now assume that there N agents, each of which can

implement its own adaptive estimator as summarized in (4),

(8) above. Further, it is assumed that each agent can interact

and exchange information with the remaining N −1 agents,

on both its own estimate of the state x(t) and its estimate of

the parameter Γ; this means that we have complete graph.

The proposed adaptive consensus observers are given by

˙̂xi(t) = A0x̂i(t)+Bu(t)+C∗Θ̂i(t)y(t)

−
N

∑
j=1

(x̂i(t)− x̂ j(t)) , x̂i(0) 6= x(0),

˙̂
Γi(t) =−(Cx̂i(t)− y(t)) · yT (t)

−
N

∑
j=1

(
Γ̂i(t)− Γ̂ j(t)

)
, Γ̂i(0) 6= Γ, i = 1, . . . ,N.

(10)

To examine the stability properties of the above adaptive

observers, one must consider all of the adaptive estimates

collectively. Towards this end, we define the individual state

errors ei(t), x̂i(t)−x(t) and the individual parameter errors

Φi(t) = Γ̂i(t)−Γ, i = 1, . . . ,N. One immediately has

ėi(t) = A0ei(t)−
N

∑
j=1

(ei(t)− e j(t))+C∗Φi(t)y(t)

Φ̇i(t) =−Cei(t) · yT (t)−
N

∑
j=1

(Φi(t)−Φ j(t))

ei(0) 6= 0, Φi(0) 6= 0, i = 1 . . . ,N.

(11)

Using the above system, we can now state the first result.

Lemma 1: Given the infinite dimensional system (1)

where the nominal operator A0 generates and exponentially

stable C0 semigroup T (t) on X with (2) satisfied, we consider

the N interactive consensus filters (10). Then we have:

• If y is bounded, then all signals are bounded and

lim
t→∞

|ei(t)|X = 0, i = 1, . . . ,N.

Proof: We consider the following Lyapunov functionals

Vi(t) = |ei(t)|2X + 〈Φi(t),Φi(t)〉Q, i = 1, . . . ,N. (12)

Each one has a derivative along (11) given by

V̇i(t)≤−ω|ei(t)|2X −2
N

∑
j=1

〈ei(t),(ei(t)− e j(t))〉X

−2
N

∑
j=1

〈Φi(t),(Φi(t)−Φ j(t))〉Q, i = 1, . . . ,N.

(13)

Since the collective error dynamics must be examined for

assessing the stability of the adaptive observers, then we have

V (t) =
N

∑
i=1

Vi(t)

which produces

V̇ (t)≤−ω
N

∑
i=1

|ei(t)|2X −2
N

∑
i=1

N

∑
j=1

〈ei(t),(ei(t)− e j(t))〉X

−2
N

∑
i=1

N

∑
j=1

〈Φi(t),(Φi(t)−Φ j(t))〉Q.

(14)

Using the following result for the disagreement potential [3],

2
N

∑
i=1

N

∑
j 6=i

〈ai,ai −a j〉=
N

∑
i=1

N

∑
j 6=i

|ai −a j|2, i = 1, . . . ,N,

we then have that

V̇ (t)≤−ω
N

∑
i=1

|ei(t)|2X −
N

∑
i=1

N

∑
j 6=i

|ei(t)− e j(t)|2X

−
N

∑
i=1

N

∑
j 6=i

|Φi(t)−Φ j(t)|2Q.
(15)

For shorthand notation, we define the pairwise errors

ei j(t) , ei(t)− e j(t),

= x̂i(t)− x̂ j(t), x̂i j(t)
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Φi j(t) , Φi(t)−Φ j(t),

= Γ̂i(t)− Γ̂ j(t), Γ̂i j(t).

This then simplifies the Lyapunov derivative

V̇ (t)≤−ω
N

∑
i=1

|ei(t)|2X −
N

∑
i=1

N

∑
j 6=i

|ei j(t)|2X −
N

∑
i=1

N

∑
j 6=i

|Φi j(t)|2Q.

Similar results to the single adaptive observer are obtained,

namely that each |Φi(t)|Q is uniformly continuous, that each

|ei(t)|2X is uniformly continuous and integrable and that

lim
t→∞

|ei(t)|X = 0, i = 1, . . . ,N.

Additionally, we have also |ei j(t)|2X and |Φi j(t)|2Q uniformly

continuous and integrable.

The last result on the pairwise errors provides the nec-

essary conditions for the agreement of the parameter esti-

mates Γ̂i(t) and the state estimates x̂i(t). A way to assess

the agreement of the adaptive observers, as was originally

proposed for the finite dimensional case [3], is to consider

a meaningful metric that is independent of the network

topology [3]. We define the deviation from the mean estimate

for the estimate of the state x(t) and of the unknown

parameter Γ as follows

δi(t), x̂i(t)−
1

N

N

∑
j=1

x̂ j(t), i = 1, . . . ,N, (16)

and

ζi(t), Γ̂i(t)−
1

N

N

∑
j=1

Γ̂ j(t), i = 1, . . . ,N. (17)

This then leads to the following result on the agreement of

the adaptive estimates.

Lemma 2: Consider the N adaptive observers given by

(10) and assume that the conditions in Lemma 1 are satisfied.

Then we have that both pairwise state and parameter errors

converge to zero

lim
t→∞

|ei j(t)|X = 0, lim
t→∞

|Φi j(t)|Q = 0, i, j = 1 . . . ,N

A consequence of the above is that the deviations also

converge to zero

lim
t→∞

|δi(t)|X = 0, lim
t→∞

|ζi(t)|Q = 0, i, j = 1, . . . ,N.

Proof: To show convergence of the deviations, which

would demonstrate that all estimates agree with each other,

we relate the deviations to the pairwise errors via

δi(t) = x̂i(t)−
1

N

N

∑
j=1

x̂ j(t)

=
1

N

N

∑
j=1

(x̂i(t)− x̂ j(t)) =
1

N

N

∑
j=1

x̂i j(t)

=
1

N

N

∑
j=1

ei j(t)

(18)

and

ζi(t) = Γ̂i(t)−
1

N

N

∑
j=1

Γ̂ j(t)

=
1

N

N

∑
j=1

(Γ̂i(t)− Γ̂ j(t)) =
1

N

N

∑
j=1

Γ̂i j(t)

=
1

N

N

∑
j=1

Φi j(t).

(19)

From

V̇ (t)≤−ω
N

∑
i=1

|ei(t)|2X −
N

∑
i=1

N

∑
j 6=i

|ei j(t)|2X −
N

∑
i=1

N

∑
j 6=i

|Φi j(t)|2Q,

we have that each |Φi(t)|Q is uniformly continuous and that

each |ei(t)|2X is uniformly continuous and integrable. Now

using the fact that

lim
t→∞

|ei(t)|X = 0, i = 1, . . . ,N,

then we also have that

lim
t→∞

|ei j(t)|X = 0, i, j = 1, . . . ,N.

From (18), the fact that N < ∞ and use of triangle inequality,

yields

lim
t→∞

|δi(t)|X = 0, i = 1, . . . ,N.

Now, from (11)

Φ̇i(t) =−Cei(t) · yT (t)−
N

∑
j=1

Φi j(t).

The fact that ei(t) is uniformly continuous and that the

plant output y is bounded along with the fact that Φi j(t)
is uniformly continuous allows one to conclude that Φ̇i(t) is

uniformly continuous. Similarly

Φ̇i j(t) = Φ̇i(t)− Φ̇ j(t), i, j = 1, . . . ,N,

is also uniformly continuous. Application of Barbǎlat’s

lemma then yields

lim
t→∞

|Φi j(t)|Q = 0, i, j = 1, . . . ,N.

Equation (19) then provides the requisite convergence

lim
t→∞

|ζi(t)|Q = 0, i = 1, . . . ,N.

Remark 1: The results of Lemma 2 show that all the

estimates, both state and parameter, are cohesive, i.e. they

asymptotically converge

x̂1(t) = x̂2(t) = . . .= x̂N(t),

Γ̂1(t) = Γ̂2(t) = . . .= Γ̂N(t).

However, only state estimates converge to the true state via

lim
t→∞

|ei(t)|X = 0, i = 1, . . . ,N.
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Remark 2: The results in Lemma 2 can be strengthened

when one considers the pairwise errors in both the state and

the parameter errors. From (11) one has

ėi j = A0ei j(t)−Nei j(t)+C∗Φi j(t)y(t)

Φ̇i j(t) =−Cei j(t) · yT (t)−NΦi j(t).

From (12), one can define the pairwise Lyapunov function

Vi j(t)= |ei j(t)|2X + |Φi j(t)|2Q. The derivative of Vi j(t) becomes

V̇i j(t)≤−ω|ei j(t)|2X −N|ei j(t)|2X −N|Φi j(t)|2Q.
Using Bellman-Gronwal Lemma [8], one can argue the

exponential convergence of the pairwise errors and via (16),

(17), the exponential convergence of the deviations-from-the-

mean-estimates (18), (19) in their respective norms.

IV. ADAPTATION OF CONSENSUS WEIGHTS

In the proposed adaptive observer, the consensus was en-

forced in both the state and parameter estimation equations.

However, both penalty terms, described by the summations in

(11), had a uniform-in-time weight. One may elect to adjust

the consensus weight adaptively. This would describe the

case that as the estimates tend to agree with each other, then

the penalty of their disagreement must adjust accordingly.

Indeed, one way to ensure that the consensus gain is adjusted

according to the distance between any two estimates is to

utilize adaptively adjusted consensus gains. We consider the

following

˙̂xi(t) = A0x̂i(t)+Bu(t)+C∗Θ̂i(t)y(t)

−ηi(t)
N

∑
j=1

(x̂i(t)− x̂ j(t)) , x̂i(0) 6= x(0),

˙̂
Γi(t) =−(Cx̂i(t)− y(t)) · yT (t)

−θi(t)
N

∑
j=1

(
Γ̂i(t)− Γ̂ j(t)

)
, Γ̂i(0) = Γ.

where ηi(t) and θi(t) are the adaptive consensus gains.

To derive the adaptation rules of these gains, we follow a

procedure similar to the previous case. The associated error

equations are given by

ėi(t) = A0ei(t)−ηi(t)
N

∑
j=1

ei j(t)+C∗Φi(t)y(t), ei(0) 6= 0,

Φ̇i(t) =−Cei(t) · yT (t)−θi(t)
N

∑
j=1

Φi j(t), Φi(0) 6= 0.

Using the following Lyapunov functionals

Wi(t) = |ei(t)|2X + 〈Φi(t),Φi(t)〉Q +η2
i (t)+θ2

i (t),

for i = 1, . . .N, we arrive at

Ẇi(t)≤−ω|ei(t)|2X −2ηi(t)
N

∑
j=1

〈ei(t),ei j(t)〉X +2η̇i(t)ηi(t)

−2θi(t)
N

∑
j=1

〈Φi(t),Φi j(t)〉Q +2θ̇i(t)θi(t)

The choices





η̇i(t) =
N

∑
j=1

〈ei(t),ei j(t)〉X

θ̇i(t) =
N

∑
j=1

〈Φi(t),Φi j(t)〉Q

, i = 1, . . . ,N

produce

Ẇi(t)≤−ω|ei(t)|2X ≤ 0, i = 1, . . . ,N

The above only provides the convergence of the state errors

|ei(t)|X to zero. The reason is that the adaptation rules

eliminate the presence of the pairwise errors in Ẇi(t) thereby

removing their integrability property. However, the fact that

|ei(t)|X goes to zero allows one to conclude that |ei j(t)|X
also goes to zero and therefore one may achieve agreement

of the state estimators

lim
t→∞

|δi(t)|X = 0, i = 1, . . . ,N.

To incorporate the benefits of the convergence to the mean

estimate and the adaptation of the consensus weights, one

may consider adaptation of the consensus gains in the state

error equation only. This is summarized in the lemma below.

Lemma 3: Consider the infinite dimensional system (1)

with y ∈ L∞. If adaptation of the consensus weights is

required without any requirements on the convergence of the

disagreement of both the state and parameter estimates, then

the following adaptive observer

˙̂xi(t) = A0x̂i(t)+Bu(t)+C∗Γ̂i(t)y(t)−ηi(t)
N

∑
j=1

x̂i j(t),

˙̂
Γi(t) =−(Cx̂i(t)− y(t)) · yT (t)−θi(t)

N

∑
j=1

Γ̂i j(t),

η̇i(t) =
N

∑
j=1

〈ei(t),ei j(t)〉X , ηi(0) = ηi0,

θ̇i(t) =
N

∑
j=1

〈Φi(t),Φi j(t)〉Q, θi(0) = θi0,

x̂i(0) 6= x(0), Γ̂i(0) 6= Γ, i = 1, . . . ,N,

ensures that limt→∞ |ei(t)|X = 0, i = 1, . . . ,N, and all other

signals are bounded. Additionally, all the deviations of the

state estimates from the mean estimate converge

lim
t→∞

|δi(t)|X = 0, i = 1, . . . ,N.

If instead only the adaptation on the state consensus gain is
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activated, the following adaptive observer

˙̂xi(t) = A0x̂i(t)+Bu(t)+C∗Γ̂i(t)y(t)−ηi(t)
N

∑
j=1

x̂i j(t)

˙̂
Γi(t) =−(Cx̂i(t)− y(t)) · yT (t)−

N

∑
j=1

Γ̂i j(t)

η̇i(t) =
N

∑
j=1

〈ei(t),ei j(t)〉X , ηi(0) = ηi0,

x̂i(0) 6= x(0), Γ̂i(0) 6= Γ, i = 1, . . . ,N,

ensures that limt→∞ |ei(t)|X = 0, i = 1, . . . ,N, and both devi-

ations of the estimates from the mean estimate converge

lim
t→∞

|δi(t)|X = 0, lim
t→∞

|ζi(t)|Q = 0, i = 1, . . . ,N.

Proof: The proof follows from the arguments made

above. However, the proof for the latter part of the lemma

is summarized here. Using a Lyapunov functional for the

second case

Yi(t) = |ei(t)|2X + 〈Φi(t),Φi(t)〉Q +η2
i (t), i = 1, . . . ,N

we arrive at

Ẏi(t)≤−ω|ei(t)|2X −
N

∑
i=1

N

∑
j 6=i

|Φi j(t)|2Q, i = 1, . . . ,N

which yields the uniform continuity of |ei(t)|X , |Φi(t)|Q
and ηi(t). Additionally, we have integrability of |ei(t)|2X and

|Φi j(t)|2Q which provide the requisite convergence.

V. NUMERICAL EXAMPLES

To demonstrate the proposed consensus adaptive filter, we

consider the following diffusion equation with collocated

input and output

∂x

∂t
=

∂2x

∂ξ2
+b(ξ)u(t); x(0, t) = 0 = x(1, t), x(ξ,0) = x0(ξ),

y(t) =

∫ 1

0
b(ξ)x(ξ, t)dξ,

where b ∈ L2(0,1) = X . The input distribution function is

taken as b(ξ) = 1, on [0, 1
2
) and b(ξ) = 0 elsewhere. We

let D(A0) = {h ∈ L2(0,1) : h, dh
dξ

are absolutely continuous,

d2h
dξ2 ∈ L2(0,1) and h(0) = 0 = h(1)} and define A0h = d2h

dξ2

for h ∈ D(A0). Then A0 has compact resolvent, eigenvalues

λn = −n2π2, n ∈ N and eigenvectors φn =
√

2sin(nπξ),
n ∈ N, which form an orthonormal basis for L2(0,1). A0

is exponentially stable, self-adjoint and for x ∈ D(A0),
〈x,A0x〉 ≤ −‖x‖2, and it generates a contraction semigroup.

As a consequence, equation (2) is satisfied with ω = 2.

Additionally, y(t) = 〈b,x(·, t)〉=Cx(·, t) and B =C∗, i.e. we

have collocated input and output.

A finite element Galerkin approximation scheme based

on spline elements [9] with 50 elements was used for

the spatial discretization of the PDE. The resulting finite

dimensional ODE systems were integrated in time using a

Fehlberg fourth-fifth Runge-Kutta method in the Fortranr

code rkf45.f.
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Fig. 1. Case 1: Evolution of parameter deviations with consensus.

A. Case 1: consensus filters with 4 agents

The number of agents was taken to be N = 4. The

initial condition for the state was taken as x(ξ,0) = sin(πξ),
whereas the initial guesses for the four state estimates

were x̂1(ξ,0) = cos(2πξ)−1, x̂2(ξ,0) = sin(2πξ), x̂3(ξ,0) =
0.5(1−cos(2πξ)), x̂4(ξ,0) = 0, 0≤ ξ≤ 1. The unknown gain

was chosen as Γ = 1 and the initial guesses for the four

adaptive estimates were Γ̂1(0) = 0.4, Γ̂2(0) = 3.4, Γ̂3(0) =
1.2, Γ̂4(0) = 1.8, with an adaptive gain of 10 used in (10).

The measure of disagreement ζi(t) is presented in Fig-

ures 1 and 2 with and without consensus, where one may

observe the fast convergence of the parameter deviations

when consensus is enforced..

Figures 3 and 4 depict the evolution of the output estima-

tion error y(t)− ŷi(t) and the output state deviations given by

Cδi(t). In both cases, it can be observed that when consensus

is enforced, then the estimation errors converge to zero faster.

B. Case 2: consensus filters with 3 agents and adaptation of

consensus gains

Following Lemma 3, we consider the adaptation of the

consensus gains ηi(t). Using the same infinite dimensional

system with only three agents–where for initial conditions of

x̂i(t) and Γ̂i(t), we consider the first three from the previous

case–we simulated it with ηi(0) = 1, i = 1,2,3. Figure 5

depicts the evolution of the three adaptive estimates of the

consensus gains ηi(t). It is observed that the gains settle to

a value less than one when the disagreement between the

estimates gets smaller.

VI. CONCLUSIONS

We have considered a special case of structurally perturbed

infinite dimensional systems and proposed adaptive consen-

sus observers to estimate both the unknown state and the

unknown parameters in the structured perturbation. The use

of consensus enforcement which penalized the disagreement
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Fig. 2. Case 1: Evolution of parameter deviations without consensus.
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Fig. 3. Case 1: Evolution of state deviations with consensus.

between the estimates, ensured that the deviation-from-the-

mean-estimate converges to zero. Simulation studies showed

that such convergence is exponential, as predicted from

Remark 2.

A class of systems where the nominal plant operator may

satisfy a more general version of the operator Lyapunov

equation is warranted, as it would allow non-collocated

systems to be considered. However this may come at a price,

as the solutions to Lyapunov equations may not be coercive

and therefore may weakened the stability arguments for both

the state errors and the deviations-from-the-mean-estimate.

These are currently being pursued by the author.
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