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Abstract— This study investigates six degrees-of-freedom
nonlinear tracking control of rigid spacecraft under external
disturbances. We propose two nonlinear tracking controllers
having disturbance attenuation ability, namely, a proportional-
derivative (PD)-type H∞ state feedback controller and a
proportional-integral-derivative (PID)-type H∞ state feedback
controller. Both these controllers have positive definite gain
matrices whose conditions to be satisfied are given by linear
matrix inequalities. The properties of these controller are
compared and discussed through numerical studies.

I. INTRODUCTION

Future space programs require agile relative position and
attitude control technology of spacecraft. Rendezvous and
docking, capturing of inoperative spacecraft, and formation
flight in orbit are the typical scenarios where such systems
can be used. A key component for controlling position and
attitude is a tracking controller that controls the six degrees-
of-freedom (six d.o.f) of spacecraft under the influence
of external disturbances. For agility of the spacecraft, we
treat above missions as nonlinear control problems where
translation and rotation are dynamically coupled with each
other.

Many studies have been carried out on the nonlinear
attitude control of rigid spacecraft. Among these studies, the
studies on passivity-based control [1], [2], [3] seem most
promising, because this control technique is simple to imple-
ment, has robust stability against parameter uncertainties, and
can be combined with an adaptive scheme. Attitude tracking
using a proportional-derivative (PD)-type state feedback con-
troller having positive scalar gains is proposed in [2] and it is
extended to backstepping control [4]. However, these control
methods ensure only the asymptotic stability of the relative
attitude under a disturbance-free environment. For achieving
tracking control under disturbance, most researchers have
focused on the nonlinear H∞ controller that makes L2 gain
of closed-loop system from disturbance to controlled output
less than γ > 0 [5], [6], [7]. They also employ PD-type scalar
gain state feedback controllers. However, although these
controllers generally require high feedback gains to achieve
high disturbance attenuation ability, these control methods
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are not realizable because the maximum level of the control
input is constrained by physical limitations. Therefore, we
consider it is not necessarily only approach to the control
purpose.

In light of the above facts, we first extend the results of [2]
to a six d.o.f. PD-type tracking controller that has positive
definite feedback gain matrices, and derive a condition
to prove that this controller is a PD-type H∞ controller.
Then, we propose a proportional-integral-derivative (PID)-
type state feedback controller that can effectively attenuate
the constant signal under disturbance. Next, we derive a PID-
type H∞ state feedback controller. Finally, the properties of
these controllers are compared and discussed via a numerical
study.

The following notations are used throughout the paper.
a× ∈ R

3×3 is the skew symmetric matrix derived from
vector a ∈ R

3. ‖a‖ = (aT a)1/2 denotes vector 2-norm.
A > 0 ( A ≥ 0 ) denotes A being positive (semi) definite,
and λA = ‖A‖ is the induced matrix 2-norm. In is a unit
matrix of size n× n. On×m is a zero matrix of size n×m.
Symbol � denotes a symmetric element.

II. MODELING AND PROBLEM DESCRIPTION

We consider a control problem in which a chaser space-
craft tracks a target point moving in the inertial frame under
the influence of disturbances. Frames and vectors are defined
in Fig. 1, where {i} denotes the inertial frame, and {c}
and {t} are the chaser and target spacecraft fixed frames,
respectively. Our objective is to control the chaser so that its
mass center C tracks point P and frame {c} tracks the frame
{t}.

Fig. 1. Definitions of vectors and frames
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The translation and rotation dynamics of the chaser fixed
frame {c} are given by the following equations [8].

mv̇ + mω×v = f + df , (1)

Jω̇ + ω×Jω = τ + dτ , (2)

where variables v, ω ∈ R
3 are linear and angular velocities,

f, τ ∈ R
3 are the control force and torque inputs, and

df , dτ ∈ R
3 are the disturbance force and torque inputs,

respectively 1. Constant coefficients m ∈ R and J ∈ R
3×3

are the mass and inertia, respectively. The position of mass
center C and the attitude of {c} w.r.t {i} are given by the
following kinematics if a quaternion is used for attitude
parametrization.

ṙ = v − ω×r, q̇ = E(q)ω =
1
2

[
ηI3 + ε×

−εT

]
ω, (3)

where r ∈ R
3 is the position and q = [ εT η ]T ∈ S

3 is the
quaternion with the constraint ‖q‖ = 1, ∀t ≥ 0.

On the other hand, the dynamics and kinematics of the
target motion are described as follows.

mtv̇t + mtω
×
t vt = 0, (4)

Jtω̇t + ω×
t Jtωt = 0, (5)

ṙt = vt − ω×
t rt, q̇t = E(qt)ωt =

1
2

[
ηtI3 + ε×t

−εT
t

]
ωt. (6)

Then, the position and velocity of point P fixed in frame {t}
are given by

rpt = rt + pt, vpt = vt + ω×
t pt, (7)

where the pt ∈ R
3 is a constant vector in fixed frame {t}.

The objective of our tracking control problem is to find
control laws such that

r = rpt , q = qt, v = vpt , ω = ωt

when t → ∞. To this end, an error system in {c} is described
as follows. Let the direction cosine matrix from {t} to {c}
be

C =
(
η2

e − εT
e εe

)
I3 + 2εeε

T
e − 2ηeε

×
e (8)

using the quaternion of relative attitude qe = [ εT
e ηe ]T ,

where εe and ηe are defined as

εe = ηtε − ηεt + ε×εt, ηe = ηηt + εT εt. (9)

The relative position, linear velocity, and angular velocity
are given in the same {c} frame as

re = r − Crpt , ve = v − Cvpt , ωe = ω − Cωt. (10)

Substitution of (10) into (1), (2), and (3) using the identity
Ċ = −ω×

e C yields the following relative motion equations

mv̇e = − m[(ωe + Cωt)×ve + Cv̇pt

1Practically, the resultant inputs f and τ are given by f = fc and τ =
ρ×c fc + τc, respectively, where fc, τc ∈ R

3 are the outputs of force and
torque actuators, respectively, and ρc ∈ R

3 is the arm length from the
mass center to the point of application of force. It should be noted that fc

and τc are uniquely determined from f and τ , respectively, if ρc is given.
Disturbances df and dτ are in the same location.

+ (Cωt)×Cvpt ] + f + df , (11)

Jω̇e = − (ωe + Cωt)×J(ωe + Cωt)

− J(Cω̇t − ω×
e Cωt) + τ + dτ , (12)

ṙe = ve − (ωe + Cωt)×re, (13)

q̇e = E(qe)ωe =
1
2

[
ηeI3 + ε×e

−εT
e

]
ωe. (14)

By transformation, the tracking control problem is reduced
to a regulation problem to design control inputs f and τ such
that

(re, εe, ηe, ve, ωe) → (0, 0, 1, 0, 0)

when t → ∞ under disturbances df and dτ , according to
(11)–(14).

III. CONTROLLER DESIGN
A. PD-Type H∞ State Feedback Controller

First, we investigate PD-type state feedback controller.
Its feature compared with conventional methods is that it
allows matrix feedback gains. By the extension, the design
of feedback gain parameters becomes very flexible. For this
design, we further transform (11)–(14) as

v̄e = ve − (Cωt)×re, (15)

f = f̄ + mδr, (16)

τ = τ̄ + δq, (17)

where f̄ , τ̄ ∈ R
3 are the new inputs, and

δr =2(Cωt)×v̄e + (Cωt)×(Cωt)×re

+ (Cω̇t)×re + Cv̇pt + (Cωt)×Cvpt , (18)

δq =ω×
e JCωt + (Cωt)×J(ωe + Cωt)

+ J(Cω̇t − ω×
e Cωt). (19)

Then, (11)–(14) are simplified as

m ˙̄ve = −mω×
e v̄e + f̄ + df , (20)

Jω̇e = −ω×
e Jωe + τ̄ + dτ , (21)

ṙe = v̄e − ω×
e re, (22)

q̇e = E(qe)ωe. (23)

The above system (20)–(23) is passive w.r.t. inputs u =
[ f̄T τ̄T ]T and outputs y = [ v̄T

e ωT
e ]T (see Appendix

A). By transformation (15)–(17), the control problem is now
to regulate the system (20)–(23) in order to design control
inputs f̄ and τ̄ such that

(re, εe, ηe, v̄e, ωe) → (0, 0, 1, 0, 0).

when t → ∞.
Now, let us consider the state feedback control law that

has positive definite gain matrices as follows:

f̄ = − 1
a2

(kp1re + Kd1 v̄e), (24)
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τ̄ = − 1
b2

(K(qe)εe + Kd2ωe), (25)

K(qe) = (ηeI3 − ε×e )Kp2 + kp3(1 − ηe)I3,

where a2, b2 ∈ R are the positive design parameters,

kp1 > 0, Kp2 = KT
p2

> 0, kp3 > 0, (26)

Kd1 = KT
d1

> 0, Kd2 = KT
d2

> 0, (27)

kp1 , kp3 ∈ R, Kp2 , Kd1, Kd2 ∈ R
3×3,

and the output to be controlled is defined as z = Σζ, where
Σ is the weighting matrix,

Σ = diag{σr, σv, ση, σω},
σr, σv, σω ∈ R

3×3, ση ∈ R,

ζ = [ rT
e v̄T

e 2 cos−1(|ηe|) ωT
e ]T .

From the definition of quaternion, 2 cos−1(|ηe|) of the ele-
ment of ζ represents the eigen-angle around the unit vector
(eigen-axis) with respect to relative attitude [6]. In addition,
regarding the target states, the following assumption is made.

Assumption 1: The target states rt, εt, ηt, vt, ωt, v̇t, and ω̇t

are directly measurable, uniformly continuous, bounded, and
known for all t ∈ [0,∞).

Then, the following theorem can be obtained.

Theorem 1:
Given a1, a2, b1, b2, and γ, where a1, b1 ∈ R are the

positive design parameters, the closed-loop system of (20)–
(23) with (24) and (25) satisfies the L2 gain less than or equal
to γ from disturbance input d = [ dT

f dT
τ ]T ∈ L2[0, T ]

to controlled outputs z if feedback gains satisfy following
conditions

F > 0, 2kp3I3 > Kp2 > kp3I3, R > 0, (28)

R− Σ̄T Σ̄ − 1
4γ2

WT W ≥ 0, (29)

F = diag{F1,F2}, R = diag{R1,R2},

F1 =
[
kp1I3 a1mI3

� a2mI3

]
, F2 =

[
2Kp2 b1J

� b2J

]
,

R1 =

⎡
⎣

a1

a2
kp1I3

a1

2a2
Kd1

� Kd1 − a1mI3

⎤
⎦ ,

R2 =

⎡
⎢⎢⎣

b1

b2
(2kp3I3 − Kp2)

b1

2b2
Kd2

� Kd2 −
3
2
b1λJI3

⎤
⎥⎥⎦ ,

W =

[
a1I3 a2I3 O3×3 O3×3

O3×3 O3×3 b1I3 b2I3

]
,

Σ̄ = diag{σr, σv, πσηI3, σω}.

Moreover, the state variable of the closed-loop system be-
comes

(re, εe, ηe, v̄e, ωe) → (0, 0, 1, 0, 0).

as t → ∞ for arbitrary initial state when d = 0.

Proof: See Appendix B.

Remark 1:
1) The obtained conditions (26)–(29) are linear matrix

inequalities (LMIs) w.r.t. feedback gains that are ef-
fectively solved using convex optimization tools [9].

2) When only the asymptotic stability is required, the
positive definiteness of feedback gains automatically
satisfy (28). This is proved by letting design parameters
a1 = b1 = 0 and a2 = b2 = 1 in the proof.

3) If we set Kp2 = kp3I3, matrix K(qe) becomes positive
scalar constant kp3 .

B. PID-Type H∞ State Feedback Controller

The PD-type H∞ state feedback controller has disturbance
attenuation ability in that it minimizes the L2 norm of the
control output. However, the magnitude of the feedback
control input generally becomes larger when the attenuation
requirement increases. In the classical linear control theory,
the integral compensation is usually used to eliminate the
offset errors caused by the constant step disturbance. This
section proposes a nonlinear PID-type state feedback con-
troller.

We consider the following control law:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f̄ = − 1
a2

(kp1re + Kd1 v̄e) − ki1ξ1

ξ1 =
∫ t

0

(
re +

a2

a1
ω×

e re

)
dt

, (30)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

τ̄ = − 1
b2

(K(qe)εe + Kd2ωe) − ki2ξ2

ξ2 =
∫ t

0

(
εe +

b2

2b1
{(2 − ηe)I3 − ε×e }ωe

)
dt

, (31)

where
ki1 , ki2 ∈ R, ki1 , ki2 > 0, (32)

and other feedback gains and design parameters are the same
as defined in (24) and (25). Then, the following theorem can
be obtained.

Theorem 2:
Given a1, a2, b1, b2, and γ, the closed-loop system of (20)–

(23) with (30) and (31) satisfies the L2 gain less than or
equal to γ from d to z if feedback gains satisfy following
conditions

F̂ > 0, 2kp3I3 > Kp2 > kp3I3, R̂ > 0, (33)

R̂ − Σ̄T Σ̄ − 1
4γ2

WT W ≥ 0, (34)

F̂ = diag{F̂1, F̂2 }, R̂ = diag{R̂1, R̂2 },
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F̂1 =

⎡
⎣kp1I3 a1mI3 a2ki1I3

� a2mI3 0
� � a1ki1I3

⎤
⎦ ,

F̂2 =

⎡
⎣2Kp2 b1J b2ki2I3

� b2J 0
� � b1ki2I3

⎤
⎦ ,

R̂1 =

⎡
⎣

a1

a2
kp1I3 − a2ki1I3

a1

2a2
Kd1

� Kd1 − a1mI3

⎤
⎦ ,

R̂2 =

⎡
⎣b1

b2
(2kp3I3 − Kp2) − (b2 +

b2
2

4b1
)ki2I3

�

b1

2b2
Kd2

Kd2 − 3
2
b1λJI3 − b2

2

16b1
ki2I3

⎤
⎥⎥⎦ .

Moreover, the state variable of the closed-loop system be-
comes

(re, εe, ηe, v̄e, ωe, ξ1, ξ2) → (0, 0, 1, 0, 0, 0, 0).

as t → ∞ for arbitrary initial state when d = 0.

Proof: See Appendix C.

Remark 2:
1) As in Theorem 1, the obtained conditions (26), (27),

and (32)–(34) are LMIs w.r.t. feedback gains, and
controllers (30) and (31) have a scalar proportional
feedback gain kp3 by letting Kp2 = kp3I .

2) It can be shown that the position and attitude can track
their targets without offset errors when the disturbance
is constant. At the steady state, v̄e = 0 and ωe = 0
hold. Therefore, as

K(qe) = Kp2 , ξ1 =
∫ t

0

redt, ξ2 =
∫ t

0

εedt,

the closed-loop system is

1
a2

kp1re + ki1

∫ t

0

redt − df = 0, (35)

1
b2

Kp2εe + ki2

∫ t

0

εedt − dτ = 0. (36)

If we define

e1 =
(∫ t

0

redt − 1
ki1

df

)
,

e2 =
(∫ t

0

εedt − 1
ki2

dn

)
,

then (35) and (36) become

ė1 = − ki1

kp1

e1, ė2 = −ki2K
−1
p2

e1. (37)

Since a2, b2, kp1 , ki1 , ki2 > 0 and Kp2 = KT
p2

> 0,
ei → 0 when t → ∞. Therefore, from (35) and (36),
it can be said that re → 0 and εe → 0 when t → ∞.

IV. NUMERICAL STUDY

The properties of the proposed controllers are compared
and discussed in this numerical study. For this purpose, we
set the physical parameters of the target and the chaser
spacecraft as

mt = 300 [kg], Jt = diag{50, 275, 275}[kgm2].

m = 200 [kg], J =

⎡
⎣75.0 −28.1 −28.1

� 75.0 −28.1
� � 75.0

⎤
⎦ [kgm2].

The target position in the {t} frame is given as pt = [0 5 0]T .
The initial conditions for the chaser spacecraft are

r(0) = [10 10 10]T [m], v(0) = [0 0 0]T [m/s],

q(0) = [0.06 0.69 0.06 0.72]T [-], ω(0) = [0 0 0]T [rad/s],

and those for the target are 2

rt(0) = [3 3 3]T [m], vt(0) = [0 0 0]T [m/s]

qt(0) = [0 0 0 1]T [-], ωt(0) = [0.2 0.2 0.2]T [rad/s].

A. Tracking Performance under Disturbance-Free Environ-
ment

First, we show the six d.o.f. tracking ability of the PD- and
PID-type controllers when d = 0. The PD and PID controller
gains are chosen to satisfy only the conditions (28) and (33),
respectively. The controller gains are set as

PD : a1 = b1 = 0, a2 = b2 = 1,

PID : a1 = 0.2, b1 = 0.1, a2 = b2 = 1,

kp1 = 15I3, Kp2 = 10I3, kp3 = 12,

Kd1 = 120I3, Kd2 = 40I3, ki1 = 0.8, ki2 = 0.3.

Figs. 2 and 3 show the responses of positions, quaternions of
chaser spacecraft, and target of the PD and PID controllers,
respectively. For both controllers, the chaser tracks the target.
However, the performance of the PID controller degrades
because of the time delay introduced by the integral com-
pensation.

B. Tracking under Constant Disturbance

The following three controllers are applied under the same
initial conditions, when constant disturbances

df = [3 3 3]T [N], dn = [3 3 3]T [Nm]

are added:
• Case 1 : PD controller,
• Case 2 : PD H∞ controller when γ = 0.2,
• Case 3 : PID controller.

In Case 2, the design parameters are set as

a1 = 8, b1 = 4, a2 = b2 = 40,

2The attitudes described by quaternion q(0) and qt(0) correspond to
Euler angles of 3-2-1 system of (φ(0), θ(0), ψ(0)) = (80, 80, 80) [deg]
and (φt(0), θt(0), ψt(0)) = (0, 0, 0) [deg], respectively. However, all
simulations are performed using the parameterization of quaternion.
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Fig. 2. PD controller: responses of position (left) and attitude (right) of chaser (solid line) and target (dashed line).
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Fig. 3. PID controller: responses of position (left) and attitude (right) of chaser (solid line) and target (dashed line).

σr = 6I3, σv = 1I3, ση = 3, σω = I3,

and feedback gains are derived by solving LMIs (26)–(29).
In addition, to prevent relative error from vibrating, the
following conditions are added:

Kd1 > 8kp1I3, Kd2 > 8Kp2 , Kd2 > 8kp3I3.

The results are shown in Figs. 4, 5, and 6. The PD controller
fails in tracking, but it succeeds when the H∞ property
is added. However, finally, tracking errors are retained,
although their values are very small. On the other hand, PID
controller achieves the best performance in the steady state,
even though it does not exhibit the H∞ property. However,
near the initial time t = 0, the performance degrades because
of the time delay caused by integral compensation.

C. Disturbance Attenuation Ability

Finally, we examine the disturbance attenuation ability. We
compare the PD and PID controllers, both of which exhibit
the H∞ property when γ = 0.8, 0.4. The design parameters
are set as

a1 = 8, b1 = 4, a2 = b2 = 40,

σr = 6I3, σv = 1I3, ση = 3, σω = I3,

and feedback gains of the PD controller are derived by
solving LMIs (26)–(29) whereas those of the PID controller
are derived by solving LMIs (26), (27), and (32)–(34). In
addition, to prevent relative error from vibrating and integral
gains ki1, ki2 from becoming very small, the following
conditions are applied:

Kd1 > 8kp1I3, Kd2 > 8Kp2 , Kd2 > 8kp3I3,

ki1 > 0.8, ki2 > 0.5.

The disturbance input d ∈ L2[0, T ] is

df = 3 sin
( π

40
t
)
[1 1 1]T [N],

dτ = 3 sin
( π

40
t
)
[1 1 1]T [Nm],

where t ∈ [0, 100]. For the same initial conditions, the re-
sponses of norms of relative positions and attitude described
by Euler angles of 3-2-1 system are obtained. They are shown
in Figs. 7 and 8. It is concluded that the transient property
of the PID H∞ controller is better than that of the PD
H∞ controller. However, the convergence for the sinusoidal
disturbance degrades.
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Fig. 4. PD controller (Case 1) : responses of position (left) and attitude (right) of chaser (solid line) and target (dashed line) under constant disturbance.
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Fig. 5. PD H∞ controller (Case 2) : responses of position (left) and attitude (right) of chaser (solid line) and target (dashed line) under constant
disturbance.
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Fig. 6. PID controller (Case 3) : responses of position (left) and attitude (right) of chaser (solid line) and target (dashed line) under constant disturbance.

V. CONCLUSION

We have investigated six d.o.f nonlinear tracking con-
trol technologies of spacecraft under external disturbance
in order to prepare for the future space missions. To this
end, a PID-type state feedback controller as well as a PD-
type state feedback controller was proposed. The conditions
of the asymptotic stability of error systems and the L2

gain properties of a closed-loop system were obtained. The

performances of the above-mentioned controller have been
compared and discussed through numerical studies. These
controllers require the accurate values of mass and inertia.
However, they can be extended to include parameter adaptive
schemes, as shown in [10].
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APPENDIX

A. Passivity of Systems (20)–(23)

Let us define the storage function as

E =
m

2
‖v̄e‖2 +

1
2
ωT

e Jωe. (38)

The time derivatives of (38) along the trajectories of system
(20)–(23) with df = dτ = 0 become

Ė = mv̄T
e (−mω×

e v̄e + f̄) + ωT
e (−ω×

e Jωe + τ̄ )

= v̄T
e f̄ + ωT

e τ̄

= yT u.

Therefore, system (20)–(23) is passive w.r.t. input u and
output y.

B. Proof of Theorem 1

Let us define the candidate of Lyapunov function as

V =
a2

2
m‖v̄e‖2 +

kp1

2
‖re‖2 + a1mrT

e v̄e +
b2

2
ωT

e Jωe

+ εT
e Kp2εe + kp3(ηe − 1)2 + b1ε

T
e Jωe

=
1
2
χTFχ + kp3(ηe − 1)2, (39)

χ = [rT
e v̄T

e εT
e ωT

e ]T .
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Therefore, V > 0 if F > 0. The time derivative of (39) along
the trajectories of the closed-loop system become 3

V̇ =(a1re + a2v̄e)T (f̄ + df ) + kp1r
T
e v̄e + a1m‖v̄e‖2

+ (b1εe + b2ωe)T (τ̄ + dτ ) + ωT
e K(qe)εe

+
b1

2
ωT

e JT (qe)ωe − b1ε
T
e ω×

e Jωe

= − a1

a2
kp1‖re‖2 − a1

a2
rT
e Kd1 v̄e − v̄T

e (Kd1 − a1mI3)v̄e

− b1

b2
εT
e K(qe)εe − b1

b2
εT
e Kd2ωe − ωT

e Kd2ωe

+
b1

2
ωT

e JT (qe)ωe − b1ε
T
e ω×

e Jωe + (a1re + a2v̄e)T df

+ (b1εe + b2ωe)T dτ , (40)

where T (qe) = ηeI3 + ε×e . In (40), as

‖T (qe)‖ = 1, ‖εe‖ ≤ 1, ‖ω×
e ‖ = ‖ωe‖∣∣∣b1

2
ωT

e JTωe − b1ε
T
e ω×

e Jωe

∣∣∣ ≤ 3
2
b1λJ‖ωe‖2,

and the identity εT
e (ηeI3 − ε×e ) = εT

e ηe yields

−εT
e K(qe)εe = −εT

e {ηe(Kp2 − kp3I3) + kp3I3}εe

= −εT
e G(ηe)εe, (41)

where G(ηe) is described as follows according to ηe.

G(ηe) =

⎧⎨
⎩

ηe(Kp2 − kp3I3) + kp3I3, 1 ≥ ηe > 0

kp3I3, ηe = 0

−|ηe|(Kp2 − kp3I3) + kp3I3, 0 > ηe ≥ −1

From the above equation, G(ηe) > 0 for all ηe if 2kp3I3 >
Kp2 > kp3I3. Furthermore, minimum value of G(ηe) is

min
ηe

G(ηe) = G(−1) = 2kp3I3 − Kp2.

Therefore, if 2kp3I3 > Kp2 > kp3I3, then (41) becomes

−εT
e K(qe)εe ≤ −εT

e (2kp3I3 − Kp2)εe,

and (40) satisfies

V̇ ≤ − a1

a2
kp1‖re‖2 − a1

a2
rT
e Kd1 v̄e − v̄T

e (Kd1 − a1mI3)v̄e

− b1

b2
εT
e (2kp3I3 − Kp2)εe − b1

b2
εT
e Kd2ωe

− ωT
e

(
Kd2 −

3
2
b1λJI3

)
ωe + (a1re + a2v̄e)T df

+ (b1εe + b2ωe)T dτ

= − χTRχ + χT WT d. (42)

By the completion of the square, we obtain

V̇ + ‖z‖2 − γ2‖d‖2 ≤− χTRχ +
1

4γ2
χT WT Wχ

3In the manipulation of equations, following relations are used: ∀a, b, c ∈
R

3, a×a = 0, bT a×b = 0, and bT a×c+ cT a×b = 0.

− γ2‖d − 1
2γ2

Wχ‖2 + ζT ΣT Σζ.

If we note that
d∗ =

1
2γ2

Wχ

is the worst-case disturbance and that

ζT ΣT Σζ ≤ χT Σ̄T Σ̄χ

from 2 cos−1(|ηe|) ≤ π‖εe‖ [6], the inequality

V̇ + ‖z‖2 − γ2‖d‖2 ≤ −χT
(
R− Σ̄T Σ̄ − 1

4γ2
WT W

)
χ

holds ∀d ∈ L2[0, T ]. Therefore, condition (29) implies

V̇ ≤ γ2‖d‖2 − ‖z‖2

indicating that the L2 gain of the closed-loop is less than or
equal to γ [11].

With regard to the asymptotic stability, when d = 0, (42)
becomes

V̇ = −χTRχ

and V̇ ≤ 0 if R > 0. Therefore,

V(x(t)) ≤ V(x(0)), ∀t ≥ 0. (x = [χT ηe]T )

and x is bounded because V is radially unbounded. Fur-
thermore, control inputs (24) and (25) are bounded by the
conditions in Assumption 1. Since ẋ is also bounded,

V̈ = −2χTRχ̇

is bounded and V̇ is uniformly continuous w.r.t. t. Addition-
ally, since V is lower bounded from V ≥ 0,

V̇ → 0 ⇒ χ → 0

when t → ∞ from Lyapunov-like lemma [12]. Therefore,
ηe = 1 when V = 0; that is, the closed-loop system is
asymptotically stable for all initial states.

C. Proof of Theorem 2

Let us define the candidate of Lyapunov function as

V =
a2

2
m‖v̄e‖2 +

kp1

2
‖re‖2 + a1mrT

e v̄e + a2ki1ξ
T
1 re

+
a1

2
ki1‖ξ1‖2 +

b2

2
ωT

e Jωe + εT
e Kp2εe + kp3(ηe − 1)2

+ b1ε
T
e Jωe + b2ki2ξ

T
2 εe +

b1

2
ki2‖ξ2‖2

=
1
2
χ̂T F̂ χ̂ + kp3(ηe − 1)2,

χ̂ = [rT
e v̄T

e ξT
1 εT

e ωT
e ξT

2 ]T .

This is constructed from (39) by adding terms of ξ1 and ξ2.
Therefore, using the same steps those used in the proof of
Theorem 1, we obtain its time derivative as

V̇ ≤ −χT R̂χ + χT WT d.

Along the line of the above discussion, the L2 gain property
of a closed-loop system and the asymptotic stability are
concluded.
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