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Abstract— This paper studies invariance with respect to
symmetries in sensory fields, a particular case of which, scale-
invariance, has recently been found in certain eukaryotic as
well as bacterial cell signaling systems. We describe a necessary
and sufficient characterization of symmetry invariance in terms
of equivariant transformations, show how this characterization
helps find all possible symmetries in standard models of
biological adaptation, and discuss symmetry-invariant searches.

I. INTRODUCTION

There has been recent interest, particularly in the systems
biology literature, in the study of symmetry invariances of
responses of dynamical systems. In great part, this interest
was sparked by the discovery of an important transient prop-
erty, related to Weber’s law in psychophysics: fold-change
detection (FCD) in adapting systems, the property that scale
uncertainty does not affect responses. FCD appears to play
an important role in key signaling transduction mechanisms
in eukaryotes, including the ERK and Wnt pathways, as
well as in Escherichia ecoli and possibly other prokaryotic
chemotaxis pathways [1]–[3]. The mathematical analysis of
FCD was started in [3], [4]. More generally, one may ask
about invariance under the action of a more general set of
symmetries in inputs. A particular instance is FCD, which
amounts to scale invariance, i.e., invariance under the action
of the multiplicative group of positive real numbers. The
paper [3] obtained sufficient characterizations of symmetry
invariance using a notion of equivariance, and this charac-
terization was shown to be necessary as well as sufficient
in [5]. Here, we discuss further the main result from [5],
which is framed in terms of a notion which considerably
extends equivariant actions of compact Lie groups. Both [3]
and [5] sketched how to extend the results to motile systems
that explore space, so long as the “motor dynamics” depends
only on an invariant response. Specifically, these results
predicted that E. coli bacteria would produce scale-invariant
searches, meaning that distributions of bacteria, even under
non-uniform and time-varying chemoeffector fields, should
be invariant under any rescaling of the input field. This
prediction was subsequently experimentally verified in [6].
In this note, we also remark that, for a velocity-jump
Markov model, the PDE for the evolution of densities (or
normalized concentrations) in time inherits the symmetry-
invariance property from individual behaviors. Although not
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at all surprising, this provides further theoretical justifica-
tion for passing from individual-based models to population
predictions.

II. SYMMETRIES AND EQUIVARIANCES

We review the general setup in [3], [5]. Consider dynam-
ical systems with inputs and outputs [7],

ẋ = f(x, u) , y = h(x, u) . (1)

The functions f , h describe respectively the dynamics and
the read-out map.∗ Equation (1) is shorthand for

dx

dt
(t) = f(x(t), u(t)) , y(t) = h(x(t), u(t)) .

Here, u = u(t) is a generally time-dependent input (stimulus,
excitation) function, x(t) is an n-dimensional vector of
state variables, and y(t) is the output (response, reporter)
variable. States, inputs, and outputs are constrained to lie
in particular subsets X, U, and Y respectively, of Euclidean
spaces Rn,Rm,Rq .

We assume that for each piecewise-continuous input u :
[0,∞) → U, and each initial state ξ ∈ X, there is a unique
solution x : [0,∞)→ X of (1) with initial condition x(0) =
ξ, which we write as ϕ(t, ξ, u), and we denote the corre-
sponding output y : [0,∞)→ Y, given by h(ϕ(t, ξ, u), u(t)),
as ψ(t, ξ, u). We also assume that for each constant input
u(t) ≡ ū, there is a unique solution x̄ = σ(ū) of the
algebraic equation f(x̄, ū) = 0. Often one also assumes that
this steady state is globally asymptotically stable (GAS): it is
Lyapunov stable and globally attracting for the system when
the input is u(t) ≡ ū: limt→∞ ϕ(t, ξ, u) = σ(ū) for every
initial condition ξ ∈ X. The GAS property is not required
for the results to follow, however.

If X is an open set, or the closure of an open set, in
Rn, the system (1) is said to be analytic if f and h are
real-analytic (can be expanded into locally convergent power
series around each point) with respect to x, and irreducible
if it is accessible and observable.

An accessible system is one for which the accessibility
rank condition holds: FLA(x0) = Rn for every x0 ∈ X,
where FLA is the accessibility Lie algebra of the system.
Intuitively, this means that no conservation laws restrict
motions to proper submanifolds. For analytic systems, ac-
cessibility is equivalent to the property that the set of points
reachable from any given state x has a nonempty interior; see
a proof and more details in the textbook [7]. An observable

∗The results in [5] were stated for h not directly dependent on u, but the
theory is the same in the more general case of u-dependence, as was also
remarked there.
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system is one for which ψ(t, x0, u) = ψ(t, x̃0, u) for all
u, t implies x0 = x̃0. Intuitively, observability means that
no pairs of distinct states can give rise to an identical
temporal response to all possible inputs. For analytic input-
affine systems, observability is equivalent to the property that
any distinct two states can be separated by the observation
space; see [7], Remark 6.4.2 for a proof and discussion.
In the context of applications to biomolecular systems,
analyticity and irreducibility are weak techinal assumptions,
often satisfied.

Adaptation, invariance, and equivariances:
Definition 1: The system (1) perfectly adapts to constant

inputs provided that the steady-state output h(σ(ū), ū) equals
some fixed y0 ∈ Y, independently of the particular input
value ū ∈ U. 2

That is, the steady-state output value is independent of the
actual value of the input, provided that the input is a constant
(a step function).

Invariance will be defined relative to a set P of continuous
and onto input transformations π : U → U. For each input
u(t) and π ∈ P , we abuse notation and denote by “πu” (even
if π is nonlinear) the function of time that equals π(u(t)) at
time t. (The continuity assumption is only made in order to
ensure that πu is a piecewise continuous function of time if
u is. The ontoness assumption, that is, πU = U, and can be
weakened considerably: it is only used in in the main theorem
in order to prove that a system ẋ = f(x, πu), y = h(x, πu)
is irreducible if the original system is irreducible, but far less
than ontoness is usually required for that.)

An example is scale invariance, in which U = R>0 and
P = {u 7→ pu, p ≥ 0}. (Scale invariance is sometimes called
“fold-change detection” (FCD), since the only changes that
can be detected in a response are those due to different fold-
changes in inputs.)

Definition 2: The system (1) has response invariance to
symmetries in P or, for short, is P-invariant if

ψ(t, σ(ū), u) = ψ(t, σ(πū), πu) (2)

holds for all t ≥ 0, all inputs u = u(t), all constants ū, and
all transformations π ∈ P . 2

Under the assumption that the action of P is transitive,
i.e., for any two ū, v̄ ∈ U, there is some π such that v̄ = πū,
P-invariance implies perfect adaptation, because the outputs
in (2) must coincide at time zero, and any two inputs can be
mapped to each other.

Definition 3: Given a system (1) and a set of input trans-
formations P , a parametrized set of differentiable mappings
{ρπ : X→ X}π∈P is a P-equivariance family provided that,
for each π:

f(ρπ(x), πu) = (ρπ)∗(x)f(x, u), h(ρπ(x), πu) = h(x, u)

for all x ∈ X and u ∈ U, where (ρπ)∗ denotes the Jacobian
matrix of ρπ . If this property holds, the system is said to be
ρπ-equivariant under the input transformation π. 2

The main result in [5] is as follows.

Theorem 1: An analytic and irreducible system is P-
invariant if and only if there exists a P-equivariance family.

Remark 1: An interesting consequence of this theorem is
that, if P-invariance holds, then a stronger property holds as
well, namely that

ψ(t, x, u) = ψ(t, ρ(x), πu)

is valid for all t ≥ 0, all inputs u, all transformations π ∈
P , and every initial state x (not necessarily a steady state).
Another interesting fact, which follows from the proof of
the theorem, is as follows. Suppose that we define a “weakly
invariant” system as one for which there exists some constant
ū such that (2) holds: ψ(t, σ(ū), u) = ψ(t, σ(πū), πu) for all
inputs u and all t ≥ 0 (instead of asking that this holds for
every ū). Then, “weak invariance” implies the existence of
an equivariance, and hence also invariance. The irreducibility
property plays a subtle role in these facts. 2

III. WORKING EXAMPLES

We will illustrate our results with the examples in Figs. 1
and 2. The constants α, β, . . . are positive numbers.

ẋ = α(y − y0)
ẏ = βu− µx− γy

ẋ = α(y − y0)
ẏ = β lnu− µx− γy

(a) linear (b) loglinear

ẋ = αx(y − y0)

ẏ = β
u

x
− γy

ẋ = αx(y0 − y)
ẏ = βux− γy

(c) nonlinear I (d) nonlinear II

Fig. 1. Integral feedback systems (assuming u > 0 in (b), and u, x > 0
in (c,d))

ẋ = αu− δx
ẏ = β

u

x
− γy

ẋ = αu− δx
ẏ = βu− γxy

(a) activation inhibition (b) degradation

Fig. 2. Incoherent feedforward loops (IFFL) (assuming u, x > 0 in (a))

Adaptation can be achieved by the architectures repre-
sented in Figs. 1 and 2, integral feedback and incoherent
feedforward loops respectively.

Fig. 1(a) shows the linear integral feedback configura-
tion (PI, or proportional-integral, control) that is classically
treated in control theory. Two other integral feedback config-
urations, also perfectly adapting, are shown in Fig. 1. In (b),
a “loglinear system,” the only difference with (a) is that the
input is logarithmically pre-processed; this does not change
adaptation and stability. In system (c), the memory variable
feeds upon itself, and the ratio u/x, instead of a difference,
is used to compare the current input and memory values. In
system (d), the memory variable also feeds upon itself, and
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the product ux is used in the feedback term to y. Both (c) and
(d) adapt (to ȳ = y0), and x̄ = βu/(γȳ) in (c), x̄ = γȳ/(βu)
in (d). Stability is a bit more subtle, and is based on a control-
Lyapunov approach that recasts (c) as a Hamiltonian system
with added damping. (The ratio “u/x” in (c) is not a natural
choice for biological models; however, one may think of this
term as an approximation of a Michaelis-Menten inhibition
term u/(Km + x), with Km�1.)

Biological motivations for studying these types of systems
are discussed in [5]. Integral feedback plays a role in
blood calcium homeostasis, neuronal control of the prefrontal
cortex, the regulation of tryptophan in E. coli, and in E. coli
chemotaxis

A different type of architecture is based on feedforward as
opposed to feedback interconnections. Feedforward circuits
are ubiquitous in biology, as emphasized in [8], where
they were shown to be over-represented in E. coli gene
transcription networks, compared to other “motifs” involving
three nodes. In particular, in incoherent feedforward loops
(IFFL), as in Fig. 2, the input u directly helps promote
formation of the reporter y and also acts as a delayed in-
hibitor, through an intermediate variable x. This “incoherent”
counterbalance between a positive and a negative effect gives
rise, under appropriate conditions, to adaptation. IFFL’s,
notably including the IFFL shown in Fig. 2(b) (often called
the “sniffer” [9], [10]), are thought to play a role among
other processes in EGF to ERK activation, glucose to insulin
release, ATP to intracellular calcium release, nitric oxide
to NF-κB activation, microRNA regulation, Dictyostelium
chemotaxis and neutrophils, microRNA-mediated loops, and
E. coli carbohydrate uptake via the carbohydrate phospho-
transferase system. The work [11] shows experimentally
and analytically that IFFL’s are especially well-suited to
controlling protein expression under DNA copy variability.

For both systems in Fig. 2, the unique steady state, when
the input u is constant, has coordinates x̄ = αu/δ and ȳ =
y0 = βδ/(αγ). Since ȳ is independent of u, the system
adapts. Global asymptotic stability for (a) follows from the
fact that the x-subsystem is linear and stable, and the y-
subsystem is a stable linear system driven by the converging
signal u/x. For (b) (and several variations of this system),
the GAS property is studied in [10].

IV. FINDING SYMMETRIES USING THE MAIN THEOREM

We show here how Theorem 1 allows one to immediately
determine invariance properties for large classes of two-
dimensional systems, including the integral feedback and
feedforward examples shown in Figs. 1 and 2. In all these
cases, the PDE for equivariances, if there is one, can be easily
solved for in closed form. We consider two-dimensional
systems with output equal to one of the coordinates:

ẋ = f(x, y, u)
ẏ = g(x, y, u)

h(x, y) = y .

As with the examples, we write x = (x, y). We
also write for simplicity (f(x, y, u), g(x, y, u)) instead of

(f1(x, y, u), f2(x, y, u)). We wish to determine for which
possible input set mappings π : U→ U there is an associated
equivariance ρ = ρπ . We drop the subscript and write ρ =
(ρx, ρy). Since h(x, y) = y, the condition h(ρ(x)) = h(x)
says that ρy(x, y) = y. Thus finding ρ is equivalent to finding
its x-component, a function ρx that satisfies:

f(ρx(x, y), y, πu) =
∂ρx

∂x
(x, y) f(x, y, u)

g(ρx(x, y), y, πu) = g(x, y, u)

(no derivative in the second equation because, ∂ρy/∂y = 1).
This is a scalar first order quasi-linear PDE subject to a side
algebraic “boundary condition”.

We specialize next to special two cases that cover many
examples of interest. Particular instances of the first case are
the systems in Figs. 1(c,d) and 2(a). A particular instance of
the second case is the system in Fig. 1(a). We assume that
the systems in both of the next Lemmas are irreducible. For
all our examples, irreducibility is shown in [5].

Lemma 1: Suppose that:

g(x, y, u) = G(uβxµ, y)

and G(·, y) is one-to-one for each fixed y. (Assuming x > 0
if µ < 0 or u > 0 if β < 0.) Then, the only possible
symmetries are fold-changes πu = pu. Furthermore, the
system is invariant under a set P of such symmetries if and
only

p−β/µf(x, y, u) = f(p−β/µx, y, pu) for allx, y, u

and each p in the set.
In the special case in which β=1 and µ=−1, that is, if g

depends on the ratio u/x, this means that f must satisfy:

p f(x, y, u) = f(px, y, pu)

and in the special case β=µ=1, f must satisfy
p−1f(x, y, u) = f(p−1x, y, pu). In either special case, if f
is independent of u, then response invariance to all scaling
transformations (P = R>0) is equivalent to the requirement
that f be be homogeneous of degree 1 in x.

Proof: Since G is one to one on y,

G
(
(πu)β(ρx(x, y))µ, y

)
= g(ρx(x, y), y, πu) =

g(x, y, u) = G
(
uβxµ, y

)
for allx, y, u

implies that:

(πu)β(ρx(x, y))µ = uβxµ for allx, y, u

or, equivalently:(πu
u

)β
=
(
ρx(x, y)

x

)−µ
for allx, y, u .

Define

p :=
(
πu0

u0

) 1
β

for any fixed but arbitrary element u0 ∈ U. It follows that

πu = pu and ρx(x, y) = p−β/µx for allx, y, u ,
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from which all the conclusions are immediate.
A similar proof (see [5]) shows:
Lemma 2: Suppose that:

g(x, y, u) = G(µx+ βu, y)

and G(·, y) is one-to-one for each fixed y. Then, the only pos-
sible symmetries are translations πu = p + u. Furthermore,
the system is invariant under a set P of such symmetries if
and only

f(x, y, u) = f(−(β/µ)p+ x, y, p+ u) for allx, y, u .

and each p in the set. 2

We can now quickly classify the examples shown in Figs. 1
and 2.

The linear integral feedback system in Fig. 1(a) fits the
form in Lemma 2, so it can only be P-invariant with
respect to transformations u 7→ p+ u, and the only possible
equivariance is ρx(x, y) = x + βp/µ. Since f(x, y, u) is
independent of x and u, this is indeed an equivariance. Thus
this system is P-invariant with respect to translations.

The systems in Fig. 1(c,d) and Fig. 2(a) all fit the form in
Lemma 1, so they can only be P-invariant with respect to
scaling transformations u 7→ pu, and the only invariance is
equivalent to the condition

pεf(x, y, u) = f(pεx, y, pu)

where ε is +1 and −1 for the systems in Fig. 1(c,d)
respectively, and is +1 for the system in Fig. 2(a). In
Fig. 1(c,d), the value of ε is irrelevant, because f(x, y, u)
is independent of u and is homogeneous of degree 1 in x,
so the property holds. In Fig. 2(a), f is homogeneous of
degree 1 in x and u simultaneously, so again the property
holds. In summary, all three systems are P-invariant with
respect to scalings P .

The log-linear system in Fig. 1(b) is also P-invariant for
the set of scalings. This may be shown with the equivariance
ρx(x, y) = x+ β ln p/µ.

We remark that, generalizing Fig. 1(a) and Fig. 2(a), any
n-dimensional linear system ẋ = Ax + bu with a stable A
and h(x) = cx such that cA−1b = 0 (i.e., its DC gain is zero)
is P-invariant for u 7→ p+ u, with ρ(x) = x− A−1bp. The
corresponding log-linear system, in which ẋ = Ax+ b lnu,
is invariant with respect to scalings.

Finally, we study the “sniffer” IFFL shown in Fig. 2(b).
The equation “g(ρx(x, y), y, πu) = g(x, y, u)” means that
βπu − γρx(x, y)y = βu − γxy for all x, y, u, and thus
evaluating at y = 0 it follows that πu = u (assuming
β 6= 0). So no nontrivial P-equivariance exists. By the
necessity part of Theorem 1, we conclude that this system
is not P-invariant for any possible P .

V. SYMMETRY-INVARIANT STEERING

We consider next a motile vehicle or organism which
explores a space while measuring the “intensity” of an input
cue (such as a chemoeffector or light). The sensed input
at time t and position r is U(t, r), where r = r(t) is the
current position of the vehicle. The current position r(t)

is derived from the output y(t) of a system (1), through
a computation that takes into account the dynamics of the
motor and steering mechanisms.

Deterministic models for such mechanisms are sometimes
appropriate, and one was described in [3], [5]. An easy
argument for that deterministic model shows that, if y is
invariant under symmetries in inputs, then positions r(t) will
be invariant under symmetry transformations on U .

Deterministic models: We review the argument in [3],
[5]. The simplest model assumes that the position r(t) is
computed by a dynamical system that uses y(t) as input,

q̇ = Q(q, y) , r = R(q) ,

where q(t) is the internal state of the steering and motor
mechanism; the output of this system is the position r(t).
Finally, the loop is closed by the measurement u(t) =
U(t, r(t)). In other words, one has the following feedback
system:

ẋ(t) = f(x(t), u(t)), u(t) = U(t, r)
q̇(t) = Q(q(t), y(t)), y = h(x(t), u(t)), r(t) = R(q(t)) .

Suppose that the original system (1) is P-invariant. One may
then ask what happens if in this feedback system one replaces
U(t, r(t)) by πU(t, r(t)), where π ∈ P is a symmetry,
under the assumption that the system had pre-adapted to
a constant environment U(t, r) ≡ U0 when t < 0 before
being placed in the current environment. Fig. 3 illustrates the
situation. More precisely, suppose that (x, q) is the solution

Fig. 3. Closed-loop diagram for search under symmetry uncertainty for
inputs

with initial conditions x(0) = σ(U0) and q(0) = q0, where
Q(q0, y0) = 0, that is, q0 is a steady state that corresponds
to the adaptation value y0 of the original system. We wish to
compare this solution, for any given π ∈ P , with the solution
(x̃, q̃) of the system with initial conditions x(0) = σ(πU0)
and q(0) = q0, and intensity field πU(t, r) instead of U(t, r).
It is easy to show [5] that ỹ(t) = y(t), ũ(t) = πu(t), and
q̃(t) = q(t) for all t ≥ 0. In particular, for all t ≥ 0 the
position r(t) is the same if the input intensity is U or πI .

Stochastic models: It is often the case that a more accurate
description is one in which the output y(t) drives a stochas-
tic, not a deterministic, steering mechanism: the subsystem
producing the location r(t) is subject to randomness.

An important instance of this is bacterial E. coli chemo-
taxis, where y(t) represents a signal, the level of phos-
phorylated protein CheY, which serves to bias the random
switches between tumbling and swimming (“run”) modes.
Specifically, let us consider the Tu-Shimizu-Berg E. coli
chemotaxis model [12], which may be formulated, for re-
alistic parameters and input levels, as follows: ṁ = F0(y),

2236



y = h(m,u) = G(u/eαm), where F0 is a decreasing
function which crosses zero at some value y = y0 (and G
is a suitable function whose precise form is immaterial for
establishing symmetry). Letting x := eαm and F = αF ,
we may transform this system into a “nonlinear integral
feedback” form,

ẋ = xF (h(x, u))
h(x, u) = G (u/x) .

For this system, homogeneity of f(x, u) = xF (h(x, u))
implies scale invariance, since the unique solution of the
equivariance PDE is ρ(x) = px, for the scaling symmetry
u 7→ pu. Based on this verification of scale-invariant behav-
ior, [3] predicted the invariance of distributions of bacteria
locations under scalings of chemoattractant fields. This pre-
diction was subsequently verified experimentally in [6] by
means of molecular level analysis of intracellular signaling
(FRET experiments) as well as measurements of swimming
behavior at the level of individual cells and populations (in
microfluidic environments).

A simple numerical simulation described in [13] serves to
illustrate the point. This simulation uses (with no change
in parameters) the SPECS agent-based model for E. coli
chemotaxis that was developed in [14].† In this simulation,
cells are allowed to swim in a rectangular channel that
is 2000µm long and 400µm wide, and data is collected
in bins of size 20 (so, there are 100 bins along the long
axis). The ligand gradient is stationary and linear (see below
for boundary values) along the length and constant along
the width. We simulated 1000 cells, all initially placed at
the middle (at length 1000, i.e. bin 50), and plotted the
marginal distributions (along the long axis on which the
chemoattractant varies). Since there behavior is random, the
averages of several (five) trials under each of the conditions
are shown. These average histograms are plotted for the cell
distribution at time t = 500. The blue and green histograms
in Fig. 4 represent, respectively, results for cells pre-adapted
to a concentration 250 (units are µM ), and linear gradient
200 . . . 300, and cells pre-adapted to a concentration 375, and
linear gradient 300 . . . 450 (a scale change by p = 1.5). As
expected, the distributions are very similar. As a control, we
also plotted the results of using, once again, a linear gradient
300 . . . 450, but now pre-adapting cells to a concentration of
250. Since the initial state is not matched, there is no reason
for invariance. Indeed, the resulting red histogram is very
different from the previous ones.

One may mathematically formalize probabilistic behavior,
and show symmetry-invariance of search under randomness,
in several possible ways. For instance, in [5] a simple
result was presented on symmetry-invariance search based
on pathwise equality of stochastic processes. We describe
next a different approach, discussed in [13], that employs
the formalism of velocity-jump processes [15] with added
internal dynamics [16].

†We thank Y. Tu for making this code available.

Fig. 4. Simulations using SPECS code

We wish to model motions in a space RN (typically N =
1, 2, 3; and we assume for simplicity that motion can occur
on the entire space) of individuals (bacteria, vehicles, etc)
whose internal dynamics are described by the states x in (1)
and which change velocities as a function of the output y.
To avoid confusion with the variable x used for the internal
state, we use the letter “s” to denote points in the space RN
in which movement occurs. The input u = u(t, s) represents
an external signal present at time t in location s. The subset
V ⊆ RN denotes the space of possible velocities.

We assume that the system can instantaneously change
orientations. (For E. coli bacteria this would mean that we
are ignoring tumble durations.)

The concentration at time t of individuals present at time
t in location s and having internal state x and velocity v is
denoted by c(t, s, v, x). We interpret c(t, s, v, x) ds dv dx as
the number of individuals located between s and s+ds, hav-
ing velocity between v and v+ dv, and whose internal state
is between x and x+dx. Normalized by the total number of
individuals, one may also think of c as a probability density,
at each time t.

We assume that velocities change at random. The times at
which velocities jump are controlled by a Poisson process
with intensity λ(y). Given that a jump in velocity occurs,
which particular new velocity is picked is itself the result of
a random choice; the kernel Ty(v, v′, y) gives the probability
of a change in velocity from v′ to v. Since T is a probability
density,

∫
V
Ty(v, v′) dv = 1 for every y. Notice that, just as

with the jump instants, the kernel also depends on the state
only through the output y.

Then the evolution (transport, Fokker-Planck, or forward
Kolmogorov) equation for c = c(t, s, v, x) is:

∂c

∂t
+∇s · cv +∇x · cf =

−λ(y)c+
∫
V

λ(y)Ty(v, v′)c(t, s, v′, x) dv′ . (3)

The input at location s and time t is U(t, s), and it appears
in these equations through the vector field f in (1).
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The reference [16] discusses mathematical aspects of the
PDE (3), which will not be discussed here. We focus, purely
formally, on symmetry invariance.

Let us assume given π and an associated equivariance
ρ = ρπ . We will also make the following assumption on
the divergence of f :

(∇x · f)(ρ(x), πu) = (∇x · f)(x, u) (4)

for all x ∈ X and u ∈ U. This property is automatically
satisfied for most of the examples treated in [5], since in
these examples, which are for scale invariance πu = pu, ρ
is a linear mapping. In general, if ρ(x) = Rx for a matrix
R, then the equivariance condition f(Rx, πu) = Rf(x, u)
implies, taking Jacobians, that f∗(Rx, πu) = Rf∗(x, u)R−1.
Since two similar matrices have the same trace, and ∇x · f
is the trace of the Jacobian of f , it follows that (4) is valid.

Our main observation is that the same distribution of
individuals will result if the input field U is replaced by
πU , provided that the internal states are transformed by ρ.
A precise statement is as follows.

Theorem 2: Suppose that c satisfies (3) with respect to an
input field U . Define

c̃(t, s, v, x) = c(t, s, v, ρ−1(x)) .

Then c̃ satisfies (3) with respect to the input field πU .
Proof: We start by writing all the arguments in (3)

explicitly:

∂c

∂t
(t, s, v, x) + (∇s · Γ1)(t, s, v, x) + (∇x · Γ2)(t, s, v, x)

= −λ(h(x, U(t, s)))c(t, s, v, x)

+
∫
V

λ(h(x, U(t, s)))Th(x,U(t,s))(v, v′)c(t, s, v′, x) dv′

where

Γ1(t, s, v, x) = c(t, s, v, x)v
Γ2(t, s, v, x) = c(t, s, v, x)f(x, U(t, s)) .

Since this equation must hold for all x, it holds also when
ρ−1(x) is replaced for x. From the definition of c̃ and
the property h(ρ(x), πu) = h(x, u), which implies that
h(x, πu) = h(ρ−1(x), u) for all u, we conclude that:

∂c̃

∂t
(t, s, v, x) + (∇s · Γ1)(t, s, v, ρ−1(x))

+ (∇x · Γ2)(t, s, v, ρ−1(x))
= −λ(h(x, πU(t, s)))c̃(t, s, v, x)

+
∫
V

λ(h(x, πU(t, s)))Th(x,πU(t,s))(v, v′)c̃(t, s, v′, x) dv′ .

It will follow that c̃ is a solution of (3) with respect to the
input field πU provided that we show:

(∇s · Γ1)(t, s, v, ρ−1(x)) = (∇s · Γ̃1)(t, s, v, x)

(∇x · Γ2)(t, s, v, ρ−1(x)) = (∇x · Γ̃2)(t, s, v, x),

where

Γ̃1(t, s, v, x) = c̃(t, s, v, x)v

Γ̃2(t, s, v, x) = c̃(t, s, v, x)f(x, πU(t, s)) .

These easily follow by elementary calculus (see [13]).
In applications, one is often interested in the distribution

of positions irrespective of internal states x and velocities v:

Q(t, s) =
∫

X

∫
V

c(t, s, v, x) dµX(x) dµV (v)

where µX and µV denote appropriate measures on X and
V (and we assume that c is integrable). Take the density
corresponding to πU , c̃(t, s, v, x) = c(t, s, v, ρ−1(x)), and its
marginal Q̃(t, s) =

∫
X
∫
V
c̃(t, s, v, x) dµX(x) dµV (v). This

is the same as
∫

X
∫
V
c(t, s, v, x)r(x) dµX(x) dµV (v), where

r(x) = 1/ det ρ∗(x). In the special (but usual in examples)
case that ρ is linear, r is a constant, so Q̃(t, s) = rQ(t, s).
It follows that the normalized densities are equal:

Q̃(t, s)∫
Q̃(t, σ) dσ

=
Q(t, s)∫
Q(t, σ) dσ

.

Alternatively, one could introduce a new measure dµ̃X(x) =
r(x)µX, and define Q̃ using this new measure, for all times
t and space positions s, so that Q(t, s) = Q̃(t, s).
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