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Abstract— In this paper, we analyze a connectivity mainte-
nance problem that arises when two mobile autonomous agents
navigate in an environment containing obstacles. Using the
Rician fading model for the communication channel, we address
the problem for the case when the motion strategies for one of
the agents is adversarial in nature. We investigate a specific kind
of singular surface that appears in the solution to the underlying
pursuit-evasion game, namely the dispersal surface. We present
construction of the projection of several dispersal surfaces for
various obstacle geometries by fixing the initial position of the
evader. Finally, we present numerical simulations for specific
environments containing obstacles.

I. INTRODUCTION

In the last decade, teams of mobile autonomous agents

have been deployed in various military, as well as civilian

scenarios, to accomplish tasks in a cooperative manner.

Maintaining the connectivity of the underlying communica-

tion network in a team seems to be an essential requirement

for the convergence and stability of various control laws

that have been proposed for accomplishing tasks related to

consensus and flocking [18], [16]. A detailed discussion of

various connectivity maintenance problems related to multi-

agent systems can be found in [3]. The limitations on the

power of the transmitting antenna sets a maximum range

for effective communication among the agents. This restricts

the motion of the individual agents since they have to

remain connected to the network while avoiding collision

with obstacles in the environment. Additionally, the obstacles

also deteriorate the quality of communication if they occlude

the mutual line-of-sight between two agents. In this paper,

we analyze such a scenario that arises when two autonomous

mobile agents navigate to explore an environment containing

obstacles.

This work is primarily motivated by exploration scenarios

involving autonomous agents. The problem of maintaining

connectivity also arises in a recent work in [25]. The authors

propose the use of mobile robots as network routers which

can serve as a cost-effective alternative to the current practice

of installing a large number of static routers for the purpose

of providing a good coverage for wireless service in indoor

environments. In one of the models, the end user is assumed
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to be adversarial in nature resulting in a discrete-time pursuit-

evasion game. Our work is in the same vein, but with a

marked distinction in the analysis. We address the problem

in a continuous-time setting, and use the theory of differential

games to solve the resulting pursuit-evasion game.

The scenario we address is one of two holonomic agents

moving in an environment containing polygonal obstacles.

One of the agents, called the pursuer, is assumed to ‘follow’

the other agent so as to maintain a constant line-of-sight,

which is the path of the dominant signal. The other agent

is modeled as an adversary that tries to break the line-of-

sight with pursuer. Therefore, the problem of maintaining a

healthy communication link has been modeled as a visibility

based pursuit-evasion game [11].

The theory of deterministic pursuit-evasion games was

single-handedly created by Rufus Isaacs, which culminated

in his book [10]. An exhaustive analysis of solved and partly

solved zero-sum differential games has been provided in [1]

and [13]. Most of the classical problems in pursuit-evasion

deal with players in obstacle-free space having either con-

straints on their motion or constraints on their control due to

under-actuation. In the recent past, researchers have analyzed

pursuit-evasion problems with constraints in the state space.

In [15], a pursuit-evasion game has been analyzed with

the pursuer and the evader constrained to move on a two-

dimensional conical surface in a three-dimensional space. A

theoretical framework based on the method of characteristics

has been presented in [14] to address such problems. The

inherent hardness in obtaining an analytical solution to the

associated Hamilton-Jacobi-Isaacs equation has led to the

development of numerical techniques for the computation

of the value function. Recent efforts in this direction to

compute an approximation of the reachable sets have been

provided by Mitchell and Tomlin [17], Stipanović, Hwang

and Tomlin [22], and Stipanović, Sriram and Tomlin [24].

Solutions for particular multi-player games were presented

by Pashkov and Terekhov [19], Levchenkov and Pashkov

[12], Hagedorn and Breakwell [9], Breakwell and Hagedorn

[7], Sriram et al. [21], and recently, by Fuchs et al. [8]. More

general treatments of multiplayer differential games were

presented by Starr and Ho [6], Vaisbord and Zhukovskiy

[26], Zhukovskiy and Salukvadze [27], and Stipanović, Ho-

vakimyan and Melikyan [23].

In contradistinction with our previous work in [3], [2],

where a jammer is present in the vicinity, this work deals

with establishing a healthy communication link between

two agents in the absence of explicit information exchange

regarding their motion strategies. An adversarial nature for

the motion of one of the agents is assumed in order to foresee
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a worst-case scenario. Section II presents the formal prob-

lem statement. Section III summarizes a previous analysis

published by the authors to compute the regular trajectories.

Section IV presents the computation of dispersal surfaces

for the case of two singular points. Section V discusses the

computation of the singular surfaces for two corners in the

vicinity of other obstacles and generalizes the construction

to polygonal environments. Finally, Section VI presents our

conclusion and directions for future work.

II. PROBLEM FORMULATION

It is a well-known fact in the communications literature

that the signal received at an antenna from a transmitter

contains a dominant part, which travels along the direct

line-of-sight between the receiver and the transmitter. This

phenomenon is captured by the the Rician fading model [20],

given by the probability distribution function

p(r) =

{

r
σ2 e

−
A2+r2

2σ2 I0
(
Ar
σ2

)
for A ≥ 0, r ≥ 0

0 for r < 0
, (1)

where A denotes the peak amplitude of the dominant signal,

and I0(·) is the modified Bessel function of the first kind

and zero-order. This distribution models the received signal

envelope voltage and takes into account a dominant signal

path, generally assumed to be the line-of-sight, in addition

to weaker multipath signals arriving due to reflections from

the environment. Therefore, in order to maintain a healthy

communication link, the communicating agents must coor-

dinate their movement so as to maintain a line-of-sight at

all times. A plausible way to achieve this is to communicate

their control inputs at every instant. This increases the com-

munication network traffic which might lead to congestion.

In this work, we explore a non-cooperative strategy to avoid

such an unforeseen event.

We consider two agents moving in a planar environment

containing obstacles. One of them is assumed to be the

pursuer, who tries to keep the other agent, an evader, in its

line-of-sight. As previously mentioned, the main motivation

behind modelling the other agent as an adversary is to foresee

worst-case scenarios that may arise in the future due to for

example the agents lacking the information to be able to

coordinate their motion effectively. With the aforementioned

assumptions, we can formulate the following problem.

Consider a pursuer (P ) and an evader (E) that move on

a plane with coordinates xp = (xp, yp) and xe = (xe, ye),
respectively. The controls of the pursuer and the evader are

denoted as v̂p = (vp, θp) and v̂e = (ve, θe), respectively.

where vp and ve are their speeds, and θp and θe are the

corresponding directions of their instantaneous velocities.

The maximum speeds of P and E are vp and ve, respectively.

The motions of the players are governed by the following

equations:

Pursuer : ẋp = vp cos θp, ẏp = vp sin θp

Evader : ẋe = ve cos θe, ẏe = ve sin θe

Let x = [xp yp xe ye]
′ denote the overall state of the

players. The environment contains polygonal obstacles. Wfree

denotes the free workspace, i.e., the set of all points on the

plane that lie outside the obstacles. The visibility polygon

of a point p in the workspace, V (p), is the set of points in

Wfree from which a line segment from p to that point does

not intersect the obstacle region. It is assumed that the evader

lies in the visibility polygon of the pursuer at the beginning

of the game.

The pursuer assumes that the evader is antagonistic in

nature, and wants to escape from its visibility in the least

amount of time possible. To prevent the evader from es-

caping, the pursuer tries to keep the evader in its visibility

polygon, V (p(t)), for the maximum amount of time. The

game ends when the evader breaks the line-of-sight with the

pursuer around any vertex of the polygonal obstacles. Let

T denote the time instant at which the evader succeeds in

breaking the line-of-sight. The outcome of the game is given

by the following function

π(v̂p(·), v̂e(·)) =

∫ T

0

dt = T

As stated earlier, the objective of the pursuer is to maxi-

mize this objective function, which is the time elapsed. On

the other hand, the objective of the evader is to minimize it.

III. REGULAR ANALYSIS

In this section, we summarize our previous results from

[4] and [5]. Let J(x) denote the value of the game at a state

x, which we assume to be C2(x). The Hamiltonian of the

system is given by the following expression:

H(x, Jx) = 1 + Jxp
vp cos θp + Jyp

vp sin θp +

Jxe
ve cos θe + Jye

ve sin θe (2)

Using Isaacs’ first condition from [1] and [10], we obtain the

following expressions for the optimal controls of the players

(v∗p , v
∗

e , θ
∗

p, θ
∗

e) = argmax
vp,θp

min
ve,θe

H(x, Jx)

⇒ v∗p = vp, (cos θ∗p, sin θ
∗

p)‖(Jxp
, Jyp

)

v∗e = ve, (cos θ∗e , sin θ
∗

e)‖(−Jxe
,−Jye

), (3)

where ‖ implies that the vectors are mutually parallel. Addi-

tionally, J(x) satisfies the Hamilton-Jacobi-Isaacs equation

∂Jx

∂τ
−

∂H(x, Jx)

∂x
= 0

⇒ Jx = J0
x

(4)

In the above equation, τ is the retrograde time, i.e., the time

remaining from termination. Substituting (4) into (3) leads

to the following relation between the optimal controls and

the value functions at terminal conditions:

v∗p = vp, (cos θ∗p, sin θ
∗

p)‖(J
0
xp
, J0

yp
)

v∗e = ve, (cos θ∗e , sin θ
∗

e)‖(−J0
xe
,−J0

ye
) (5)
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Fig. 1. Optimal trajectories to a termination situation

Let (xc, yc) be the coordinates of the corner around which

the game terminates. The terminal situations around the

corner are characterized by the following equation

√

(ye − yc)2 + (xe − xc)2
√
(yp − yc)2 + (xp − xc)2

≤
ve

vp
= a (6)

An equality sign between the two terms on the left represents

the manifold that forms the boundary of the termination

situations locally around the corner. We can characterize

the terminal manifold using the variables (xp, xe, ye). Since

J ≡ 0 at termination, we obtain the following relations.

J0
xp

+ J0
ye

∂yp

∂xp

= 0, J0
xe

+ J0
ye

∂yp

∂xe

= 0

J0
ye

+ J0
ye

∂yp

∂ye
= 0 (7)

From (6) and (7), we obtain the following expression for

J0
yp

:

| J0
yp

|=
1

(
√

s2
2

s2
1

+ 1)(ve

√
s2
3

s2
1

− vp)
(8)

where,

s1 = xe − xc

s2 = ye − yc

s3 = xp − xc

Depending on the sign of J0
yp

, there are two possible

trajectories for the players before termination. This is shown

in Figure 1. The trajectory of the players shown in the figure

on the right does not correspond to a saddle-point strategy.

Therefore, the trajectory of the players on the left is the

only possible optimal strategy before termination. From the

analysis, we conclude that the players move along straight

lines in opposite directions, orthogonal to the line-of-sight at

termination.

Dispersal surfaces are commonly encountered in games

of degree. These are singular surfaces on which the players

have more than one saddle-point strategy that leads to the

same payoff at termination [1], [10], [13]. In the following

sections, we present the construction of dispersal surfaces.
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Fig. 2. Geometry around two point obstacles

IV. TWO SINGULAR POINTS

In this section, we present the construction of a dispersal

surface due to the presence of two point obstacles in the

workspace. Since the state space lies in R
4, the dispersal

surfaces lie on a three-dimensional manifold. In order to

depict them on a two-dimensional workspace, we fix the

initial position of the evader and compute the set of initial

positions of the pursuer that lead the players to lie on a

dispersal surface.

Referring to Figure 2, let O1 = (0, a) and O2 = (0,−a)
denote the positions of the two point obstacles. Let E ≡
(xe, ye) denote the initial position of the evader. Let t denote

the time of termination of the game, i.e., if the evader is

initially at E, it breaks the line-of-sight with the pursuer for

the first time at time t.

Since the maximum speed of the evader is ve, the reach-

able set of the evader at time t is Bvet[E], where Br[x] =
{y ∈ R

2 | ‖x− y‖ ≤ r}. Let D denote Bvet[E]. An infinite

number of trajectories for the evader are possible that lie

inside D and do not violate the constraints on the maximum

speed of the evader. Nevertheless, we are only interested in

trajectories traced by the evader when it follows its saddle-

point strategies, which are given by the following theorem.

Refer to Figure 2.

Theorem 1: At termination, the evader is either at A or B

which are the points at which tangents from corners O1 and

O2 meet D, respectively.

Proof: Let us consider the case when the evader breaks

the line-of-sight with the pursuer around O1. As summarized

in Section III, it was shown in [5] that the optimal strategy

for the evader is to move on a straight line with speed

ve before termination. Therefore, the evader must lie on

∂D (boundary of D) at termination. Moreover, the evader’s

path must be perpendicular to the line joing O1 and the

instantaneous position of the evader at termination. Figure

3 shows the two possible positions of the evader on ∂D
that satisfy the aforementioned conditions at termination: A

and A′. The line segments O1A and O1A′ are tangent to

∂D. Using arguments similar to the ones that eliminate one

of the possible trajectories of the players before termination

in Section III, we can conclude that A is the only possible

position of the evader at termination. Similarly, B is the only

position of the evader at termination if the evader breaks the

line-of-sight around O2, as shown in Figure 2.
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Fig. 3. Two possible positions of the evader at termination

Next, we characterize the initial positions of the pursuer

from which the evader can terminate the game in t units of

time. Refer to Figure 4. Consider the case when termination

occurs around O1. From (6), we know that the pursuer lies

on
−−→
D1F at termination. Moreover, the optimal strategy of

the pursuer is to follow a straight line, perpendicular to
−→
AF . From the above facts, we can conclude that the set

of all initial positions of the pursuer is given by the ray l1.

Similarly, if the termination occurs around the corner O2, the

initial position of the pursuer lies on ray l2. Using geometric

arguments, it can be easily shown that the lines on which

the rays l1 and l2 lie, is given by the following

y =

m±

︷ ︸︸ ︷
[

(ye ± a)
√

x2
e + (ye ± a)2 − ve

2t2 ∓ xevet

xe

√

x2
e + (ye ± a)2 − ve

2t2 ± (ye ± a)vet

]

x∓

a∓ vpt

√

1 +m2
2

︸ ︷︷ ︸

c±

, (9)

where the pair (m+, c+) and (m+, c+) are the slopes and

y-intercepts of L1 and L2, respectively.
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Fig. 4. Positions of the pursuer at the initial and terminal time.

From the above discussions, we can conclude the follow-

ing. Let I denote the intersection of rays l1 and l2. If the

initial positions of the pursuer and the evader are I and E,

respectively, the evader has a choice between breaking the

line-of-sight around O1 as well as O2, with both options

leading to the same termination time. Therefore, the initial

position of the players corresponding to this situation lies
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Fig. 5. Singular surfaces for a point obstacle.

on a dispersal surface. The optimal strategy of the pursuer

depends on its knowledge about the instantaneous velocity of

the evader. The coordinates of I are given by the following

expressions

xp =
c− − c+

m− −m+

; yp =
m+c− −m−c+

m+ −m−

(10)

For a fixed initial position of the evader, I traces a curve as

t varies. This curve is the projection of the three-dimensional

dispersal surface along the initial position of the evader.

Figure 5 illustrates the dispersal surfaces for two different

scenarios. The positions of the point obstacles are (0,3) and

(0,-3). The maximum speed of the pursuer is assumed to

be 1. In Figure 5(a), the dispersal surfaces are shown for

four different initial positions of the evader. In Figure 5(b),

dispersal surfaces are shown for varying maximum speeds

of the evader.

V. TWO CORNERS IN A GENERAL POLYGONAL

ENVIRONMENT

In this section, we extend the results of the previous

section and present an explicit construction of the projection

of the dispersal surfaces that arise due to the intersection of

the optimal paths emanating backwards in retrograde time

from two corners, in the presence of other obstacles.

Fig. 6. Dispersal surface in the presence of a corner

Referring to Figure 6, consider an environment having

polygonal obstacles. Let E = (xe, ye) denote the initial

position of the evader on the plane. Let O1 and O2 be corners

of obstacles C1 and C2, respectively, not necessarily distinct,

and visible from E. Similar to the notation adopted in the

previous section, let A and B denote the position of the

evader at termination when it breaks the line-of-sight with
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the pursuer around O1 and O2, respectively. Since A is the

position of the evader at the termination of a play, it must

satisfy the following conditions:

1) A ∈ Wfree

2) A lies on the arc of the semi-circle with O1E as the

diameter.

3) O1 is visible to the evader as it moves on a straight line

joining E and A =⇒ AE ∈ V (O1).

Similar conditions hold for B to qualify as a terminating

position for the evader around corner O2.

Let S̃1 and S̃2 denote the set of all points that satisfy the

above conditions around corners O1 and O2, respectively.

Now we present the construction of S̃1. Referring to Figure

7, let C denote the center of the semi-circular arc O1AE.

We attach a local coordinate frame to each of the points

C, O1 and E, as shown in the figure. Angles are measured

counter-clockwise with respect to the x-axis of the frame

in context. X denotes an obstacle inside the closure of the

semi-circular disk O1AE. Let ∂X denote the boundary of the

obstacle. Since we assume that the evader can see the pursuer

initially, E does not qualify as a point at which the evader can

terminate the game. Moreover, we assume that an obstacle

is a closed polygonal set. Therefore, the terminal position of

the evader can lie on the corner O1 since it is not in Wfree.

Let K̃ denote the set of points on the arc O1AE excluding

the points O1 and E. There exists a natural bijective map

γ : K̃ → (0, π) that maps any point in K̃ to its radial

angle θc in the coordinate frame attached to C. Let S ⊆ K̃

denote the set of all points that are either occluded from

O1 or E by X . Let the tangents from E to X intersect K̃

at f and h. Without loss of generality, let θc(f) > θc(h).
Similarly, the tangents from O1 to X intersect K̃ at g and i

with θc(g) > θc(i). γ(S) is a closed interval in (0, π). Even

if the obstacles have a non empty intersection with K̃, the

previous statement remains true.

Now let us consider the case when there are n > 1
obstacles in the closure of the semi-circular disk. For each

obstacle Xi, we repeat the following steps to construct the

corresponding set Si.

1) Construct the tangents from O1 to obstacle i.

2) Compute the intersection of the tangents with K̃ . Let

the points be denoted as g and l with θc(g) > θc(l).

3) Compute the intersection of the tangents from E to K̃

and denote the points as f and h with θc(f) > θc(h).

Si contains the the set of points p ∈ K̃ such that θc(l) ≤
θc(p) ≤ θc(f). In other words, Si consists of the set of

points that are either occluded from O1 or E by Xi. Define

S1 = K̃ \∪n
i=1S

i. Since S1 is a union of open intervals, it is

open. Therefore γ(S1) =
⋃k1

i=1
(θi, θi+1), where θi = θc(l)

corresponding to obstacle Xi. Every point in S1 is associated

with a unique termination time that is proportional to the

distance of that point from E. Therefore, we can define a

bijective map I1 : S1 → R, such that I1(p) = tp where tp
is the time of termination of the game if the evader starts

at E. From the definition of S1 and the fact that it is the

union of open intervals, we can conclude that I1(S1) =
⋃k1

i=1
(ti, ti+1). Since I1 is bijective, I1(S1) ≃ S1. Similarly,

we can define sets S2 and I2 for termination around O2.

Every point q ∈ S1 has an associated time of termination

tq . The termination positions of the evader for which E lies

on a dispersal surface are given by the following sets:

S̃1 = {q ∈ S1 | ∃q′ ∈ S2 s.t. tq = tq′}

S̃2 = {q ∈ S2 | ∃q′ ∈ S1 s.t. tq = tq′}

From the above, if the players start from an initial position

that lies on a dispersal surface, then S̃1 and S̃2 are the

maximal subsets of S1 and S2, respectively, comprising of

terminal positions of the evader, starting at E.

Lemma 1: The set of points in S̃1 and S̃2 is a union of

open intervals of the form (q1, q2), where q1, q2 ∈ S1.

Proof: By definition, I1(S1) =
⋃k1

i=1
(ti, ti+1) and

I2(S2) =
⋃k2

i=1
(ti, ti+1). Therefore, T = I1(S1) ∩ I2(S2)

is open, since it is an intersection of finite number of open

sets. Moreover, it is also a union of open intervals. Since I1
and I2 are bijective, S̃1 = I−1

1 (T ) and S̃2 = I−1

2 (T ) is a

union of open intervals.

Let P̃ contain the initial positions of the pursuer that lie

on the dispersal surface when the evader is initially at E.

Now we present the construction of P̃ from the sets S̃1 and

S̃2. Let q1 ∈ S̃1 and q2 ∈ S̃2 such that tq1 = tq2 . The

intersection of the lines parallel to q1O1 from H1 and q2O2

from H2 gives the point p. For p to lie in P̃ , it should satisfy

the following conditions:

1) p,D1, D2 ∈ Wfree

2) p ∈ V (D1) ∩ V (D2)
3) (1− t′)p+ t′D1 ∈ V (t′E + (1− t′)A) and (1− t′)p+

t′D2 ∈ V (t′E + (1− t′)B) ∀t′ ∈ [0, t]

The third condition ensures that the pursuer and the evader

are visible to each other at all times t′ ≤ t. For all points

p ∈ P̃ , we can obtain the coordinates (xp, yp) using (10).

We can extend the above analysis to any general environ-

ment containing polygonal obstacles. For any two corners

O1 and O2, first compute the dispersal surface from the

algorithm presented in the aforementioned analysis. Next,

consider all possible pairs of corners O1 and O2 and compute

the dispersal surface for each pair. This completes the con-

struction of the dispersal surface for a given initial position of

the evader E = (xe, ye) in a general polygonal environment.
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(a) (b)

Fig. 8. Projection of the dispersal surface for two different initial positions
of the evader in a closed environment containing obstacles. The center of
the outermost square is the origin. In figure (a), the evader is initially at
(0.3, 0.4). In figure (b), the evader is initially at (−0.3, 0.5). The different
colors correspond to dispersal surfaces for different values of a. The color
blue denotes the case, a = 1. The color magenta denotes the case, a = 0.75.
The color cyan denotes the case a = 0.5. The color red denotes the case,
a = 0.25.

Figure 8 shows the projection of the dispersal surfaces

on the plane for an initial position of the evader. We can

see that as the speed of the evader increases, the dispersal

surfaces get closer to the corners of the environment. This

is intuitive since with increasing speed, the evader can start

from a position that is closer to the corner in order to break

the line of sight.

VI. CONCLUSION

In this paper, we analyzed a connectivity maintenance

problem that arises when two mobile agents navigate in an

environment containing obstacles. Using the Rician fading

model for the communication channel and an adversar-

ial model for the receiver, we reduced the problem to a

visibility-based pursuit-evasion game. We investigated a spe-

cific kind of a singular surface, called the dispersal surface,

which appears in the solution to the pursuit-evasion problem.

We presented the construction of the projection of dispersal

surfaces in the workspace and conducted simulations it for

specific environments.

One of the future directions is to explore the existence

of other kinds of singular surfaces in the above game.

Additionally, different versions of the game can be consid-

ered in which the players have constraints in sensing and

locomotion. Another direction of future research would be

to develop numerical techniques for computing the value

function that yields the optimal trajectories.
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[22] D. M. Stipanović, I. Hwang, and C. J. Tomlin. Computation of an

over-approximation of the backward reachable set using subsystem
level set functions. Dynamics of Continuous, Discrete and Impulsive

Systems, 11:399–411, 2004.
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