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Abstract— In the recent paper [3] a sufficient condition for
Input-Output Finite-Time stability (IO-FTS) has been provided
by the authors. By using an approach based on Reachability
Gramian theory, in this paper we show that such condition,
which requires the solution of a feasibility problem involving
differential linear matrix inequalities (DLMIs), is also necessary
for IO-FTS when the class of system inputs belong to L2. A
numerical example illustrates the proposed technique.
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I. INTRODUCTION

The concept of input-output finite time stability (IO–FTS)
has been recently introduced in [3]; roughly speaking, a sys-
tem is said to be IO–FTS if, given a class of norm bounded
input signals defined over a specified time interval T , the
outputs of the system do not exceed an assigned threshold
during T .

In order to correctly frame the definition of IO-FTS in
the current literature, we recall that a system is said to be
IO Lp-stable [11, Ch. 5] if for any input of class Lp, the
system exhibits a corresponding output which belongs to the
same class. The main differences between classic IO stability
and IO–FTS are that the latter involves signals defined over
a finite time interval, does not necessarily require the inputs
and outputs to belong to the same class, and that quantitative
bounds on both inputs and outputs must be specified. There-
fore, IO stability and IO–FTS are independent concepts.
Furthermore, while IO stability deals with the behavior of
a system within a sufficiently long (in principle infinite)
time interval, IO–FTS is a more practical concept, useful
to study the behavior of the system within a finite (possibly
short) interval, and therefore it finds application whenever
it is desired that the output variables do not exceed a given
threshold during the transients, given a certain class of input
signals.

It is important to remark that the definition of IO-FTS
given in [3] is fully consistent with the definition of (state)
FTS given in [8], where the state of a zero-input system,
rather than the intput and the output, are involved. Sufficient
conditions for (state) FTS and finite time stabilization (the
corresponding design problem) have been provided in the
control literature in the last fifteen years, see for example [5],
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[4], [10], [12] in the context of linear systems, [6], [15] in
the context of impulsive and hybrid systems.

In [3] two sufficient conditions for IO-FTS were provided,
for the class of L2 inputs and the class of L∞ inputs
respectively. Both conditions required the solution of a feasi-
bility problem involving differential linear matrix inequalities
(DLMIs).

The main contribution of this paper shows that, in the
important case of L2 inputs, the condition given in [3] is
also necessary. To prove this result, a machinery involving
the Reachability Gramian is used. More precisely, we shall
prove that, if a given system is IO-FTS, then a generalized
Lyapunov differential equation involving the Reachability
Gramian admits a positive definite solution, which satisfies
over the time interval of interest a certain condition. This in
turn is proven to imply the condition for IO-FTS given in [3];
then we can conclude that the two conditions are equivalent
each other and both are equivalent to IO-FTS.

The paper is organized as follows: in Section II the prob-
lem we deal with is precisely stated and some preliminary
results are given. In Section III the main result, namely a
theorem containing two necessary and sufficient conditions
for IO-FTS, is provided. In Section IV a numerical example
is provided to illustrate the proposed approach. Eventually,
in Section V, some concluding remarks are given.

Notation. Given a vector v ∈ Rn and a matrix A ∈ Rn×n,
we will denote with |v| the euclidian norm of v, and with
|A| the induced matrix norm

|A| = sup
v ̸=0

|Av|
|v|

.

Given the set Ω = [t0, t0 + T ], with t0 ∈ R and T > 0,
the symbol Lp(Ω) denotes the space of vector-valued signals
for which1

s(·) ∈ Lp(Ω) ⇐⇒
(∫

Ω

|s(τ)|pdτ
) 1

p

< +∞ .

Given a symmetric positive definite matrix valued func-
tion R(·), bounded on Ω, and a vector-valued signal s(·) ∈
Lp(Ω), the weighted signal norm(∫

Ω

[
sT (τ)R(τ)s(τ)

] p
2 dτ

) 1
p

,

will be denoted by ∥s(·)∥p ,R. If p = ∞

∥s(·)∥∞ ,R = ess sup
t∈Ω

[
sT (t)R(t)s(t)

] 1
2 .

1For the sake of brevity, we denote by Lp the set Lp
(
[0 ,+∞)

)
.
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When the weighting matrix R(·) is time-invariant and equal
to the identity matrix I , we will use the simplified notation
∥s(·)∥p .

II. PROBLEM STATEMENT AND PRELIMINARY
RESULTS

In general, w(·) ∈ Lp does not guarantee that y(·) ∈ Lp;
therefore it makes sense to give the definition of IO Lp-
stability. Roughly speaking (the precise definition is more
involved, the interested reader is referred to [11], Ch. 5, or
to [1]), system (1) is said to be Lp-stable, if w(·) ∈ Lp

implies y(·) ∈ Lp. The most popular cases are the ones with
p = 2 and p = ∞.

The concept of Lp-stability is generally referred to an
infinite interval of time. In this paper we are interested to
study the input-output behavior of the system over a finite
time interval.

Let us consider a linear time-varying (LTV) system in the
form

Γ :

{
ẋ(t) = A(t)x(t) +G(t)w(t) , x(t0) = 0
y(t) = C(t)x(t)

(1)

where A(·) : Ω 7→ Rn×n, G(·) : Ω 7→ Rn×r, and
C(·) : Ω 7→ Rm×n, are continuous matrix-valued functions;
Γ can be viewed as a linear operator mapping input signals
(w(·)’s) into output signals (y(·)’s).

In the following we will denote by Φ(t , τ) the state
transition matrix of system (1).

A. Definition of IO-FTS

In this section we introduce the concept of IO-FTS for the
class of systems in the form (1). To this end, let us consider
the following definition.

Definition 1 (IO-FTS of LTV systems): Given a
positive scalar T , a class of input signals W defined
over Ω = [t0 , t0 + T ], a continuous and positive definite
matrix-valued function Q(·) defined in Ω, system (1) is said
to be IO-FTS with respect to

(
W , Q(·) ,Ω

)
if

w(·) ∈ W ⇒ yT (t)Q(t)y(t) < 1 , t ∈ Ω .

N
In this paper we consider the class of norm bounded square

integrable signals over Ω, defined as follows

W2

(
Ω , R(·)

)
:=

{
w(·) ∈ L2(Ω) : ∥w∥2,R ≤ 1

}
,

where R(·) denotes a continuous positive definite matrix-
valued function.

In the rest of the paper we will drop the dependency of W2

on Ω and R(·) in order to simplify the notation.

In Section III two necessary and sufficient conditions for
IO-FTS for the class of W2 input signals are provided.

B. Reachability Gramian

We now introduce some preliminary results concerning
the reachability Gramian of LTV systems, which are then
exploited in this paper to prove the main result. More details
can be found in [7].

Definition 2 (Reachability Gramian): The reachability
Gramian of system (1) is defined as

Wr(t , t0) ,
∫ t

t0

Φ(t , τ)G(τ)GT (τ)ΦT (t , τ)dτ .

Note that Wr(t , t0) is symmetric and positive semidefinite
for all t ≥ t0.

Lemma 1 ([7]): Given system (1), Wr(t , t0) is the unique
solution of the matrix differential equation

Ẇr(t , t0) = A(t)Wr(t , t0) +Wr(t , t0)A
T (t) +G(t)GT (t) ,

(2a)
Wr(t0 , t0) = 0 (2b)

�
C. Preliminary Results

In this section we state an equivalent definition of IO-
FTS that can be easily derived when the LTV system (1)
is regarded as a linear operator that maps signals from the
space L2(Ω) to the space L∞(Ω), i.e.:

Γ : w(·) ∈ L2(Ω) 7→ y(·) ∈ L∞(Ω) . (3)

Furthermore, if we equip the L2(Ω) and L∞(Ω) spaces with
the weighted norms ∥ · ∥2,R and ∥ · ∥∞,Q, respectively, the
induced norm of the linear operator (3) is given by

∥Γ∥ = sup
∥w(·)∥2,R=1

[
∥y(·)∥∞,Q

]
,

that is the norm of Γ is computed considering the input
signals in W2. Hence, to require system (1) being IO-FTS
wrt

(
W2 , Q(·) ,Ω

)
is equivalent to require that ∥Γ∥ < 1; the

following theorem holds.

Theorem 1: Given a time interval Ω, the class of in-
put signals W2, and a continuous positive definite matrix-
valued function Q(·), system (1) is IO-FTS with respect
to

(
W2 , Q(·) ,Ω

)
if and only if ∥Γ∥ < 1. �

Given the linear operator (3), its dual operator is

Γ̄ : z(·) ∈ L1(Ω) 7→ v(·) ∈ L2(Ω) ,

corresponding to the dual system [7, pg. 236]

Γ̄ :

{
˙̃x(t) = −AT (t)x̃(t)− CT (t)z(t)
v(t) = GT (t)x̃(t)

. (4)

According to duality, the norm of Γ is defined as

∥Γ∥ = sup
∥z(·)∥1,Q=1

[
∥v(·)∥2,R

]
;

moreover, by definition of dual operator ([14]) we have
that, given z(·) ∈ L1(Ω) and w(·) ∈ L2(Ω),

⟨z ,Γw⟩ = ⟨Γ̄z , w⟩ , (5)
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where, given two signals u(·) and v(·), we have

⟨u , v⟩ =
∫
Ω

uT (t)v(t)dt .

Furthermore it holds that (see [14, p. 195]):

∥Γ∥ = ∥Γ̄∥ . (6)

The next theorem is a generalization of a result given
in [13] to the case of LTV systems, and it allows us to
compute the norm of Γ as a function of the spectral radius
of the reachability Gramian defined in Section II-B.

Theorem 2: Given the LTV system (1), the norm of the
corresponding linear operator (3) is given by

∥Γ∥ = ess sup
t∈Ω

λ
1
2
max

(
Q

1
2 (t)C(t)W (t , t0)C

T (t)Q
1
2 (t)

)
,

(7)
for all t ∈ Ω, where λmax(·) denotes the maximum eigen-
value, and W (t , t0) is the positive semidefinite matrix-
valued solution of

Ẇ (t , t0) = A(t)W (t , t0) +W (t , t0)A
T (t)

+G(t)R(t)−1GT (t) (8a)
W (t0 , t0) = 0 (8b)

Proof. For the sake of simplicity, we consider the weighting
matrices equal to the identity, hence

R(t) = I and Q(t) = I , ∀ t ∈ Ω .

Note that, given this assumption, the solution of (8) is given
by the reachability gramian Wr(t , t0); we will discuss how
to take into account the weighting matrices at the end of the
proof.

First note that, in view of (6), proving (7) is equivalent to
show that

∥Γ̄∥ = ess sup
t∈Ω

λ
1
2
max

(
C(t)Wr(t , t0)C

T (t)
)
,

where Γ̄ is the dual operator of Γ. Taking into account the
definition of Γ̄, let us denote by

H̄(t , τ) = GT (t)ΦT (τ , t)CT (τ)δ−1(τ − t)

the impulsive response of the dual system (4), where δ−1(t)
is the Heaviside step function. Letting

Υ(t) =

∫
Ω

H̄T (t , τ)H̄(τ , t)dt , (9)

if v(·) is the output of system (4), we have

∥v(·)∥2 = ∥
∫
Ω
H̄(· , τ)z(τ)dτ∥2

≤
∫
Ω
∥H̄(· , τ)z(τ)∥2dτ

=
∫
Ω

(
zT (τ)Υ(τ)z(τ)

) 1
2

dτ by (9)

≤
∫
Ω
|Υ(τ)

1
2 | · |z(τ)|dτ

=
∫
Ω
λ

1
2
max

(
Υ(τ)

)
· |z(τ)| dτ

≤ ess supt∈Ω λ
1
2
max

(
Υ(t)

)
·
∫
Ω
|z(τ)| dτ

= ess supt∈Ω λ
1
2
max

(
Υ(t)

)
· ∥z(·)∥1 ,

thus
∥Γ̄∥ ≤ ess sup

t∈Ω
λ

1
2
max

(
Υ(t)

)
. (10)

From Definition 2 the matrix-valued function Υ(t) is equal
to

Υ(t) = C(t)Wr(t , t0)C
T (t) ;

hence (10) reads

∥Γ̄∥ ≤ ess sup
t∈Ω

λ
1
2
max

(
C(t)Wr(t , t0)C

T (t)
)
. (11)

The last part of the proof is devoted to show that (11) is
actually an equality. In order to do that, let

ess sup
t∈Ω

λ
1
2
max

[
Υ(t)

]
= γ ,

therefore (11) reads
∥Γ∥ ≤ γ . (12)

In the following we shall build a sequence of inputs to
system (4) with unit norm in L1(Ω), such that the sequence
of the norms of the corresponding output signals converges
to γ.

To this end consider a subset Ω′ ⊂ Ω, such that, for all
t ∈ Ω′,

λ
1
2
max

(
C(t)Wr(t , t0)C

T (t)
)
≥ γ − ε ,

with ε > 0. Now let σ ∈ Ω′ and consider the sequence of
inputs

zε ,α(t) = h(σ)uα(t) ,

where h(σ) is the unit eigenvector corresponding to the
maximum eigenvalue of C(σ)Wr(σ , t0)C

T (σ), and uα is
a sequence of positive scalar functions with unit norm
in L1(Ω), which approach the Dirac delta function applied
in σ as α 7→ 0. Let

vε ,α(t) = Γ̄zε,α(t) =

∫
Ω

H̄(t , τ)zε ,α(τ) dτ ,

then it is

lim
α→0

∥vε ,α(·)∥22 = hT (σ)C(σ)Wr(σ, t0)C
T (σ)h(σ) ,

and therefore we can conclude that

lim
α 7→0

∥vε ,α(·)∥2 = λ
1
2
max

(
C(σ)Wr(σ , t0)C

T (σ)
)
≥ γ − ε .

Hence, given η > 0, it is possible to choose a sufficiently
small α such that

∥vε ,α(·)∥2 ≥ γ − ε− η .

Taking into account (12), that the scalars ε and η can be
chosen arbitrarily small, and that the set of the signals zε,α
is a subset of the set of the unit norm signals in L1(Ω), we
can conclude that

γ ≥ ∥Γ̄∥ = sup
∥z(·)∥1=1

∥v(·)∥2

≥ sup
zε,α(·)

∥vε,α(·)∥2 = γ

From the last chain of inequality the proof follows.
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Eventually, note that when the weighting matrices are
taken into account the proof still holds by modifying the
model matrices as follows

G̃(t) = G(t)R(t)−
1
2 , C̃(t) = Q

1
2 (t)C(t) ,

and replacing Wr(t , t0) by W (t , t0). �
Remark 1: It is worth to notice that, since all the system

matrices in (1) and the weighting matrices R(·) and Q(·) are
assumed to be continuous, in the closed time interval Ω the
condition (7) is equivalent to

∥Γ∥ = max
t∈Ω

λ
1
2
max

(
Q

1
2 (t)C(t)W (t , t0)C

T (t)Q
1
2 (t)

)
.

N
We conclude the section with the following technical

lemma, which will be useful to prove the main result of
the paper in Section III.

Lemma 2: Given ϵ > 0, the solution of the matrix differ-
ential equation

Ẇϵ(t , t0) = A(t)Wϵ(t, t0) +Wϵ(t, t0)A
T (t)

+G(t)R(t)−1GT (t) + ϵI , (13a)
Wϵ(t0 , t0) = ϵI (13b)

is the positive definite matrix

Wϵ(t, t0) = W (t , t0) + ϵΦ(t, t0)Φ
T (t, t0)

+ ϵ

∫ t

t0

Φ(t , τ)ΦT (t , τ)dτ , (14)

where W (·, ·) is the solution of equations (8).
Proof: The proof follows from direct substitution

of Wϵ(·, ·) in (13), and by the fact that the matrix
Φ(t, t0)Φ

T (t, t0) is positive definite.

III. MAIN RESULT

The main result of this section is the following theorem
that states two necessary and sufficient conditions for the
IO-FTS of system (1).

Theorem 3: Given system (1), the class of inputs W2, a
continuous positive definite matrix-valued function Q(·), and
the time interval Ω, the following statements are equivalent:

i) System (1) is IO-FTS with respect to
(
W2 , Q(·) ,Ω

)
.

ii) The inequality

λmax

(
Q

1
2 (t)C(t)W (t , t0)C

T (t)Q
1
2 (t)

)
< 1 (15)

holds for all t ∈ Ω, where W (·, ·) is the posi-
tive semidefinite solution of the Differential Lyapunov
Equality (DLE) (8).

iii) The coupled DLMI/LMI(
Ṗ (t) +AT (t)P (t) + P (t)A(t) P (t)G(t)

GT (t)P (t) −R(t)

)
< 0

(16a)

P (t) > CT (t)Q(t)C(t) , (16b)

admits a positive definite solution P (·) over Ω.

Proof. We will prove the equivalence of the three statements
by showing that i) ⇒ ii), ii) ⇒ iii), and iii) ⇒ i).[

i) ⇒ ii)
]
. The proof readily follows from Theorems 1

and 2, and from Remark 1.[
ii) ⇒ iii)

]
. Given ϵ > 0, consider the DLE (13), whose

solution Wϵ(·, ·), given by (14), is positive definite and
satisfies the DLMI

− Ẇϵ(t, t0) +A(t)Wϵ(t, t0) +Wϵ(t, t0)A
T (t)

+G(t)R(t)−1GT (t) < 0 . (17)

Now letting

Wϵ(t, t0) = P−1(t) ,

it follows that Ẇϵ(t, t0) = −P−1(t)Ṗ (t)P−1(t), and in-
equality (17) reads

P−1(t)Ṗ (t)P−1(t) +A(t)P−1(t) + P−1(t)AT (t)

+G(t)R−1(t)GT (t) < 0 , (18)

for all t ∈ Ω. By pre- and post-multiply (18) by P (t) we
obtain

Ṗ (t) + P (t)A(t) +AT (t)P (t)

+ P (t)G(t)R−1(t)GT (t)P (t) < 0 , (19)

and (16a) readily follows by applying Schur complements.

In order to prove (16b), first note that Wϵ(·, ·)
ϵ7→0−→ W (·, ·),

hence, by continuity arguments, there exists a sufficiently
small ϵ such that

λmax

(
Q

1
2 (t)C(t)Wϵ(t, t0)C

T (t)Q
1
2 (t)

)
< 1 . (20)

Furthermore, condition (20) is equivalent to

I −Q
1
2 (t)C(t)P−1(t)CT (t)Q

1
2 (t) > 0 , (21)

that, by applying Schur complements, reads(
I Q

1
2 (t)C(t)

CT (t)Q
1
2 (t) P (t)

)
> 0 . (22)

From [2, Lemma 5.3] inequality (22) is equivalent to(
P (t) CT (t)Q

1
2 (t)

Q
1
2 (t)C(t) I

)
> 0 ,

which yields (16b) by applying again Schur complements.[
iii) ⇒ i)

]
. In [3] it has been proven that conditions (16)

imply IO-FTS when the class of W2 signals is considered.
�

As a conclusion of this section, we want to remark that
from Theorem 3 it readily follows that the conditions given
in [3, Th. 3] are also necessary.
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TABLE I
MAXIMUM VALUES OF Q SATISFYING THEOREM 3 FOR THE LTV SYSTEM (23).

IO-FTS condition Sample Time (Ts) Estimate of Qmax Computation time [s]

DLMI (16)

0.05 0.2 2.5
0.025 0.25 12.7
0.0125 0.29 257

0.00833 0.3 1259
Solution of (8) and inequality (15) 0.003 0.345 6

IV. NUMERICAL EXAMPLE

This section shows the effectiveness of the proposed
approach to check the IO–FTS of LTV systems such as (1),
when the input signal belong to class W2.

Let us consider the system

A(t) =

(
0.5 + t 0.1
0.4 −0.3 + t

)
, G =

(
1
1

)
,

C =
(
1 1

)
, (23)

together with the following IO-FTS parameters:

R = 1 , Ω =
[
0 , 0.5

]
.

The conditions stated in Theorem 3 are, in principle,
necessary and sufficient. However, due to the time-varying
nature of the involved matrices, the numerical implementa-
tion of such conditions introduces some conservativeness.

In order to compare each other, from the computational
point of view, the conditions stated in Theorem 3, the output
weighting matrix is left as a free parameter. More precisely,
we introduce the parameter Qmax, defined as the maximum
value of the matrix Q such that system (23) is IO-FTS, and
use the conditions stated in Theorem 3 to obtain an estimate
of Qmax.

To recast the DLMI condition (16) in terms of LMIs, the
matrix-valued functions P (·) has been assumed piecewise
linear. In particular, the time interval Ω has been divided
in n = T/Ts subintervals, and the time derivatives of P (t)
have been considered constant in each subinterval. It is
straightforward to recognize that such a piecewise linear
function can approximate at will a given continuous matrix
function, provided that Ts is sufficiently small.

Given a piecewise linear function P (·), the feasibility
problem (16) has been solved by exploiting standard opti-
mization tools such as the Matlab LMI Toolbox R⃝ [9].

Since the equivalence between IO-FTS and condition (16)
holds when Ts 7→ 0, the maximum value of Q satisfying
condition (16), namely Qmax, has been evaluated for dif-
ferent values of Ts. The obtained estimates of Qmax, the
corresponding values of Ts and of the computation time are
shown in Table I. These results have been obtained by using
a PC equipped with an Intel R⃝i7-720QM processor and 4 GB
of RAM.

We have then considered the problem of finding the
maximum value of Q satisfying condition (15), where W (·, ·)
is the positive semidefinite solution of (8). In particular,

equation (8) has been firstly integrated, with a sample time
Ts = 0.003 s, by using the Euler forward method, and then
the maximum value of Q satisfying condition (15) has been
evaluated by means of a linear search. As a result, it has been
found the estimate Qmax = 0.345, with a computation time
of about 6 s, as it is shown in the last row of Table I.

We can conclude that the condition based on the reach-
ability Gramian is much more efficient with respect to the
solution of the DLMI when considering the IO-FTS analysis
problem.

V. CONCLUSIONS

Necessary and sufficient conditions for IO-FTS are pre-
sented in this paper for the class of W2 input signals. The
proof of the main result is based on Reachability Gramian
theory, and the necessary and sufficient condition is provided
in terms of DLMI feasibility problem. The effectiveness of
the proposed result has been shown by means of a numerical
example.
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