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Abstract— In this paper, a class of discrete-time stochastic
hybrid systems, in which only discrete dynamics are stochastic,
is considered. For this system, a solution method for the optimal
control problem with probabilistic constraints is proposed.
Probabilistic constraints guarantee that the probability that the
continuous state reaches a given unsafe region is less than a
given constant. In the propose method, first, continuous state
regions, from which the state reaches a given unsafe region,
are computed by a backward-reachability graph. Next, mixed
integer quadratic programming problems with constraints de-
rived from the backward-reachability graph are solved. The
proposed method can be applied to model predictive control.

I. INTRODUCTION

Hybrid systems are dynamical systems composed of con-
tinuous dynamics such as differential/difference equations
and discrete dynamics such as finite automata. Recently,
analysis and control of hybrid systems have been extensively
studied in the control theory community and the computer
science community. Furthermore, the framework on analysis
and control of hybrid systems has been extended to stochastic
hybrid systems (SHSs) (see e.g., [1], [9]). SHSs are well
known as a model of communication networks [8] and
biological systems [1], and developing analysis and control
methods is one of the significant works from theoretical and
practical viewpoints.

Although a general class of SHSs has been proposed in
[7], it is difficult to solve control problems, and special
classes are frequently considered. One of the typical classes
is to assume that continuous dynamics are deterministic.
Even if the system is limited to such a class, then there
are several applications such as failure-prone systems [5],
[6]. In control of such a class of SHSs, an approximate
method for solving the finite-time optimal control problem
has been proposed so far [10]. In this problem, the cost
function is given as the expected value of some non-negative
function. In [3], [5], the lower bound of some non-negative
function itself is minimized under the constraint that the
probability that the optimal mode (discrete state) sequence
is realized is larger than a given constant. Especially, in [5],
a given system is modeled by a mixed logical dynamical
(MLD) model [4], and the above problem is reduced to a
mixed integer quadratic programming (MIQP) problem. On
the other hand, in [2], probabilistic reachability has been
discussed for controlled discrete-time stochastic hybrid sys-
tems, and the set of the initial state such that the probability
of staying within a given safe set is maximized is computed.
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In stochastic systems, it is desirable to impose probabilistic
constraints, and the above method is useful for analysis of
SHSs. However, generating the control input has not been
discussed. To our knowledge, the optimal control problem
with probabilistic constraints has not been considered so far.

In this paper, for a class of discrete-time SHSs, in which
continuous dynamics are deterministic and only discrete
dynamics are stochastic, a solution method for the optimal
control problem with probabilistic constraints is proposed,
based on backward-reachability analysis. Probabilistic con-
straints in this paper are given as a constraint that the
probability that the continuous state reaches a given unsafe
region is less than a given constant. The proposed solution
method consists of two steps. First, a backward-reachability
graph is computed. In backward-reachability graphs, paths
of continuous state regions such that the continuous state
reaches a given unsafe region at N discrete-time step are
enumerated, where N is the prediction horizon. Backward-
reachability graphs can be computed by using a suitable
tool to manipulate convex polyhedra, e.g., POLKA [12] and
PolyLib [13]. From the backward-reachability graph, the
probability that the continuous state reaches a given unsafe
region can be computed, and state and input constraints re-
quired for satisfying a probabilistic constraint can be derived.
Next, the optimal input can be generated by solving MIQP
problems with state and input constraints derived from the
backward-reachability graph. MIQP problems can be solved
by using a suitable solver such as CPLEX [11]. The proposed
approach provides us a new framework on optimal control
with probabilistic constraints.

Notation: Let R denote the set of real numbers. Let
{0, 1}n denote the set of n-dimensional vectors, which
consists of elements 0 and 1. For a set M , let 2M denote
the power set. For two events A and B, let P (A|B) denote
the conditional probability.

II. STOCHASTIC HYBRID SYSTEMS

First, a class of stochastic hybrid systems (SHSs) to be
studied here is defined.

Definition 1: A stochastic hybrid system is given by a
tuple

H = (Xc,Xd,Uc, f,P, g) (1)

where

• Xc ⊆ Rnc represents a continuous state space, and is
given as a convex polyhedron. xc ∈ Xc is called here a
continuous state.
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• Xd represents a finite set of a discrete state space with
|Xd| = nd. xd ∈ Xd is called here a mode or discrete
state. In addition, (xd, xc) ∈ Xd × Xc is called here a
hybrid state.

• Uc ⊆ Rmc represents a continuous input space, and is
given as a convex polyhedron. uc ∈ Uc is called here a
continuous input.

• f : Xc×Xd×Uc → Xc represents a flow map. A flow
map expresses continuous dynamics as follows:

xc(k + 1) = Axd(k)xc(k) +Bxd(k)uc(k) + axd(k)

where k ∈ {0, 1, 2, . . .} is discrete time, and Axd
, Bxd

,
and axd

are certain matrices/vectors given for each xd ∈
Xd.

• P represents a finite set of md discrete probabilistic
distributions. A distribution pr ∈ P , r = 1, 2, . . . ,md

is given by {pi(r),j1(r), pi(r),j2(r), . . . , pi(r),jq(r)(r)},
i(r), j1, j2, . . . , jq(r) ∈ Xd, where

pi,j(l) := P (xd(k + 1) = j | xd(k) = i, r = l)

and
∑

j pi(r),j(r) = 1 for fixed r. i(r), j1, j2, . . . , jq(r)
are given, and (i(r), j1), (i(r), j2), . . . , (i(r), jq(r)) cor-
responds to edges in the directed graph expressing
discrete dynamics in SHSs.

• A mapping g : P → 2Xc represents a guard condition.
Each guard condition is given as a convex polyhedron.
Assume that an intersection of guard conditions is
empty except for guard conditions associated with a trap
mode. If the discrete state transits to a given trap mode,
then the discrete state stay at the trap mode.

In this paper, we consider a discrete time setting, and con-
tinuous dynamics are given as linear systems. Basically, the
SHS (1) is the same as discrete hybrid stochastic automata
proposed in [5], but different notations are used.

We show a simple example.
Example 1: Consider a tank system in Fig. 1, where xc

is the water level, uc is the volume of water charged to
the tank. When the mode is “off”, the water level is always
decreased. The transition from “on” (“off”) to “off” (“on”)
is probabilistic. If it is repeatedly failed to switch the mode,
then the mode transits to “stop”. The mode “stop” is a trap
mode, that is, if the mode reaches “stop”, then the mode
stays at “stop”.

In this tank system, nc = 1, Xd = {on, off, stop}, mc =
1, md = 7. Continuous dynamics are given as on: xc(k +
1) = xc(k) + uc(k) − a, off: xc(k + 1) = xc(k) − a, stop:
xc(k+1) = xc(k). P = {p1, p2, . . . , p7} is given as follow:

p1 = {poff,off}, poff,off = 1.0,

p2 = {poff,off , poff,on}, poff,off = 0.1, poff,on = 0.9,

p3 = {poff,stop}, poff,stop = 1.0,

p4 = {pon,on}, pon,on = 1.0,

p5 = {pon,off , pon,on}, pon,off = 0.9, pon,on = 0.1,

p6 = {pon,stop}, pon,stop = 1.0,

p7 = {pstop,stop}, pstop,stop = 1.0.

Fig. 1. Simple tank system

The guard condition for p1 is given by

g(p1) = {xc(k + 1) | N1 ≤ xc(k + 1) < U} .
The guard conditions for p2, . . . , p7 are omitted due to
limited space (see Fig. 1). Note that in Fig. 1, the intersection
of guard conditions except for g(p7) is empty.

III. PROBLEM FORMULATION

In this section, the optimal control problem to be studied
here is formulated.

First, as preparations, we define one symbol. By
πxd(0),xd(1),...,xd(N−1)(0, N − 1) or π(0, N − 1) for short,
we denote the probability that some mode sequence
xd(0), xd(1), . . . , xd(N − 1) is realized. For the example of
Fig. 1, suppose that the initial mode is given as “off”. Then
the probability πoff,on,off(0, 2) that the mode sequence off,
on, off is realized is 0.81.

Next, an unsafe mode is given for the system. In Fig. 1,
“stop” corresponds to an unsafe mode. In addition, an unsafe
state region assigned to an unsafe mode is given. In Fig. 1,
an unsafe state region is xc < L and xc ≥ U . The following
assumptions are made for the unsafe mode and the unsafe
state region.

Assumption 1: The unsafe mode is a trap, i.e., if xd(k) is
the unsafe mode, then for all k̄ > k, xd(k̄) is also the unsafe
mode.

Assumption 2: The unsafe state region is given as one
convex polyhedron.

Assumption 1 implies that if the mode reaches the unsafe
mode, then the system stays at the unsafe mode. The tank
system in Fig. 1 satisfies Assumption 1, but does not satisfy
Assumption 2. If the probabilistic distribution p2 is given
as p2 = {poff,on}, poff,on = 1.0, then this system satisfies
Assumption 2. As one of the other methods, either xc < L or
xc ≥ U may be ignored. Although Assumption 2 is imposed
for simplicity of discussion, the proposed method in Section
IV can be extended to the case that the unsafe state region
is given as more than two convex polyhedra.

Then, for the SHS (1), consider the following optimal
control problem.

Problem 1: Suppose that for the SHS (1), the initial
hybrid state xc(0) = xc0, xd(0) = xd0, the unsafe mode
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d ∈ Xd, the unsafe state region D ⊆ Xc, the constants ε, ρ ∈
[0, 1], the control time N , the weighting matrices Q,Qf ∈
Rnc×nc , R ∈ Rmc×mc , and the offset vector x̄ ∈ Xc are
given. Then find a continuous input uc(0), uc(1), . . . , uc(N−
1) satisfying the following conditions:
(i) the probability that the continuous state reaches a given
unsafe state region is equal to or less than ε,
(ii) for all mode sequences satisfying

π(0, N − 1) ≥ ρ, (2)

the lower bound of the following cost function

J =

N−1∑
i=0

{
x̂T
c (i)Qx̂c(i) + uT

c (i)Ruc(i)
}
+ x̂T

c (N)Qf x̂c(N)

(3)
is minimized, where x̂c(i) := xc(i)− x̄.

First, we discuss the condition (i). In the SHS (1), the input
constraints can be deterministically imposed. However, since
the behavior of the SHS (1) is stochastic, it is not appropriate
to impose the state constraints deterministically. If the system
is not satisfied state constraints, then the system stops in
many situations. So we impose the probabilistic constraint.

Next, we discuss the condition (ii). In standard control
methods of stochastic systems, the expected value of some
non-negative function is minimized. However, for the SHS
(1), it is difficult to evaluate the expected value, because
all combinations of mode sequences must be enumerated. In
this paper, instead of the expected value, the lower bound of
a given cost function is minimized and evaluated. Then, if
the constraint (2) is not imposed in Problem 1, i.e., ρ = 0,
then the behaviors of the SHS (1) are regarded as uncertain
behaviors, and the best performance is derived in Problem
1. However, since combinations of mode sequences selected
with low probability are included, the derived performance
index may not be appropriate. So in order to exclude such
combinations, we impose the constraint (2). One of the
methods for deciding ρ is to give ρ as the mean probability
that some mode sequence is selected.

Problem 1 without the condition (i) has been discussed
in [5], and can be reduced to a mixed integer quadratic
programming (MIQP) problem. However, the probabilistic
constraint has not been considered.

IV. PROPOSED SOLUTION METHOD

In this section, first, the outline of the proposed solution
method of Problem 1 is explained by using a simple example.
Next, a general case is explained.

A. Outline

The proposed solution method consists of two steps.

Procedure for solving Problem 1:
Step 1: Compute a backward-reachability graph from a given
unsafe state region.

Step 2: Solve MIQP problems with constraints derived from
the computed backward-reachability graph.

First, Step 1 is explained by using the tank system in Fig.

Fig. 2. Example of backward-reachability graphs

1. Suppose that the unsafe state region is given as 91 ≤ xc ≤
120. In addition, suppose that the input constraint is given as
20 ≤ u(k) ≤ 30, and a is given as a = 6. Consider finding
the continuous state region such that the continuous state
reaches 91 ≤ xc ≤ 120. Then we can obtain the backward-
reachability graph in Fig. 2. Each node corresponds to a
hybrid state. Note that the continuous state is given as some
region. The label on each edge is a transition probability
at one discrete-time step, and a set of linear inequalities
with respect to the continuous state and input is assigned
to each edge. For example, the transition probability from
(on, [77, 91)) to (stop, [91, 120]) is given as 0.1 under the
constraint 20 ≤ uc ≤ 30. Next, there are two transitions in
(on, [67, 77)). In the transition to (on, [77, 91)), the transition
probability is given as 0.1 under the constraints

xc + uc < 97, uc ≥ 20, xc ≥ 67. (4)

In the transition to (stop, [91, 120]), the transition probability
is given as 0.1 under the constraints

xc + uc ≥ 97, uc ≤ 30, xc < 77. (5)

See Section IV-B for further details. In (on, [67, 77)),
the continuous state can transit to either (on, [77, 91)) or
(stop, [91, 120]) with the probability 0.1 by appropriately
selecting the value of the continuous input. That is, we can
select either 0.1 or 0.01 as the transition probability from
(on, [67, 77)) to (stop, [91, 120]). In other words, if the tran-
sition probability is selected as 0.01, then the probability that
the continuous state avoids the unsafe state region is 0.99.
Thus by using a backward-reachability graph, the probability
that the continuous state reaches a given unsafe state region
can be computed, and the constraints for avoiding the unsafe
state region can be derived.

Next, Step 2 is explained. By assigning a binary variable
to each edge, the SHS (1) can be modeled by a mixed
logical dynamical (MLD) model [4]. Then Problem 1 without
the condition (i) can be reduced to an MIQP problem
[5]. Furthermore, by imposing the constraints derived from
the backward-reachability graph, Problem 1 including the
condition (i) can be reduced to MIQP problems.

The above is the outline of the proposed solution method
of Problem 1. In Section IV-B, a method to compute a
backward-reachability graph is proposed. In Section IV-C,
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we explain details of the procedure for reducing Problem 1
to MIQP problems.

B. Computation of Backward-Reachability Graphs

First, some symbols used in this subsection are defined.
By Pre(X), denote a set of a pair of the hybrid state and
input such that the hybrid state reaches a given set X =
S × T ⊂ Xd ×Xc at one discrete-time step. More precisely

Pre(X) := {(xd, xc, uc) ∈ Xd ×Xc × Uc |
∃x′

c ∈ T, x′
c = Axd

xc +Bxd
uc + axd

} .
By ProX(Y ), denote a projection of Y ⊆ Xd ×Xc × Uc to
the hybrid state space Xd ×Xc. Pre(X) and ProX(Y ) can
be computed by using a suitable tool to manipulate convex
polyhedra, e.g., POLKA [12] and PolyLib [13]. In addition,
for given unsafe mode d ∈ Xd and state region D ⊆ Xc,
define the enlarged unsafe state region Du := {d}×D×Uc.

Then the following procedure for deriving a backward-
reachability graph (N ≥ 2) is proposed.

Procedure for deriving a backward-reachability graph:
Step 1: Set k = 1, and compute

Y1 := Pre(D)−Du, Yi := Pre(ProX(Yi−1))−Du

and Wi := ProX(Yi), i = 1, 2, . . . , p̄, where p̄ = N .

Step 2:
Step 2-1: Split Wi, i = 1, 2, . . . , p̄ to the following two sets

Wi − ∪j �=iWj , Wi ∩ (∪j �=iWj)

where j ∈ {1, 2, . . . , p̄}.
Step 2-2: If obtained convex polyhedra are included in
multiple guard conditions, then split corresponding convex
polyhedra. By X1, X2, . . . , Xp, denote the unsafe region
{d} ×D and obtained convex polyhedra.
Step 2-3: For each Xi, assign the minimum number of
discrete-time steps such that the hybrid state included in Xi

reaches {d} ×D.

Step 3: If a new split does not occur in Step 2, or k = N ,
then go to Step 5. Otherwise, set k = k + 1 and go to Step
4.

Step 4: Except Xi such that the minimum step is N , and
denote remaining Xi by X1, X2, . . . , Xp̄, p̄ ≤ p. Compute

Wi := ProX(Pre(Xi)−Du), i = 1, 2, . . . , p̄

and return to Step 2.

Step 5: Compute a backward-reachability graph, where
vertices correspond to the region X1, X2, . . . , Xp. Edges can
be derived from the minimum number of steps such that the
hybrid state included in Xi reaches {d}×D. The transition
probability and the constraints assigned to each edge can be
derived from data computed in the above step.

Note here that in the proposed procedure, X1, X2, . . . , Xp

are in general non-convex. If Xi is non-convex, then Xi is
expressed by a set of convex polyhedra.

Fig. 3. Step 1 and Step 2. It is omitted to illustrate the space Xd.

Fig. 4. Step 3 and Step 4. It is omitted to illustrate the space Xd.

Using the tank system in Fig. 1, the proposed procedure
is explained. Consider the case of a = 6, N1 = 41,
and N2 = 62. Suppose that the input constraint and the
prediction horizon are given as 20 ≤ uc ≤ 30 and N = 2,
respectively. The enlarged unsafe state region is given as
{stop}× [91, 120]× [20, 30]. Since the dimension of Xc×Uc

is two, we can illustrate the space Xc × Uc such as Fig. 3
and Fig. 4. It is omitted to illustrate the space Xd.

In Step 1, we can obtain Y1 and Y2 shown in Fig. 3,
where the mode for each region is “on”. In addition, W1 =
{on} × [67, 91), W2 = {on} × [43, 77) can be derived.

In Step 2-1, from obtained W1,W2, W1 is split to W1 −
W2 = {on} × [77, 91) and W1 ∩W2 = {on} × [67, 77). In
a similar way, W2 is split to W2 − W1 = {on} × [43, 67)
and W2 ∩W1 = {on} × [67, 77). In Step 2-2, noting N2 =
62, the set {on} × [43, 67) is split to {on} × [43, 62) and
{on} × [62, 77). Thus we can obtain X1, X2, . . . , X5 (i.e.,
p = 5) shown in Fig. 3. In Step 2-3, the minimum numbers of
steps such that the hybrid state included in Xi, i = 1, 2, . . . , 5
reaches {d} ×D are 0, 1, 1, 2, and 2, respectively.

In Step 3, k = 1 is updated to k = 2, and go to Step 4.
In Step 4, X4 and X5 are excepted, because the mini-

mum step is 2(= N). That is, p̄ = 3 holds. In addition,
Pre(X1) − Du, P re(X2) − Du(= Pre(X2)), P re(X3) −
Du(= Pre(X3)) shown in Fig. 4 can be derived, where the
mode for each region is “on”. Thus W1 = {on} × [67, 91),
W2 = {on} × [53, 77), and W3 = {on} × [43, 63) can be
derived, and return to Step 2.

In Step 2-1, W1 = {on} × [67, 91) is split to {on} ×
[67, 77) and {on} × [77, 91). W2 = {on} × [53, 77) is split
to {on}× [63, 67) and a pair of {on}× [53, 63) and {on}×
[67, 77), which is a non-convex polyhedron and is expressed
as two convex polyhedra. W3 = {on} × [43, 63) is split to
{on}× [43, 53) and {on}× [53, 63). In Step 2-2, the region
{on}×[53, 63) is split to {on}×[53, 62) and {on}×[62, 63).
Thus we can obtain X1, X2, . . . , X7 shown in Fig. 4.
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Fig. 5. Example of backward-reachability graphs (N = 5). If the
probability assigned to the edge is equal to 1, then this is not denoted.

In Step 3, since N = 2, go to Step 5.
In Step 5, a backward-reachability graph is computed.

Thus we can obtain the graph shown in Fig. 2.
In the case of N = 5, we can obtain the backward-

reachability graph in Fig. 5.

C. Reduction to MIQP Problems

In this subsection, the outline of a method to model the
SHS (1) as the MLD model is explained by the tank system
in Fig. 1 at first. See [4], [5] for a general case.

First, a binary variable is assigned to each edge in Fig. 1
(see Fig. 6). Assume that the following equality constraint

δ111(k) + δ211(k) + δ12(k) + δ13(k)

+δ122(k) + δ222(k) + δ21(k) + δ23(k) + δ33(k) = 1

holds. In addition, a binary variable δi(k) is assigned to each
node in Fig. 1. “off”, “on” and “stop” correspond to mode
1, 2 and 3, respectively (see also Fig. 6). If the mode at
time k is i, then δi(k) = 1 and δj(k) = 0, j �= i hold. In
this case, the following relations: δ1(k) = δ111(k)+ δ211(k)+
δ12(k)+ δ13(k), δ2(k) = δ122(k)+ δ222(k)+ δ21(k)+ δ23(k),
and δ3(k) = δ33(k) hold. A binary variable assigned to each
edge is associated with a given guard condition. For example,
for the guard condition g(p2), we can obtain [δ111(k) = 1] ∨
[δ12 = 1] → [L ≤ xc(k+1) < N1], which can be expressed
as a set of linear inequalities [4].

Continuous dynamics can be expressed as

xc(k + 1)= δ1(k) (xc(k)− a) + δ2(k) (xc(k) + uc(k)− a)

+δ3(k)xc(k).

Although this expression is nonlinear, this can be trans-
formed into a linear form by using a set of linear inequalities.
Discrete dynamics can be expressed as δ1(k+1) = δ111(k)+
δ211(k) + δ21(k), δ2(k + 1) = δ122(k) + δ222(k) + δ12(k), and
δ3(k + 1) = δ33(k) + δ13(k) + δ23(k).

By using the above expressions, the SHS (1) can be
expressed as the following MLD model:{

x(k + 1) = Ax(k) +Bv(k),
Cx(k) +Dv(k) ≤ E

(6)

Fig. 6. Assignment of binary variables

where x(k) ∈ Rn1 × {0, 1}n2 is the state, v(k) is given by
v(k) = [ uT (k) zT (k) δT (k) ]T , u(k) ∈ Rm1c ×{0, 1}m1d

is the input, and z(k) ∈ Rm2 and δ(k) ∈ {0, 1}m3 are
auxiliary continuous and binary variables, respectively.

Next, consider how to express the constraint (2) as a
linear form. In the case of the tank system in Fig. 1 and
Fig. 6, we can obtain lnπ(0, N − 1) =

∑N−1
k=0 LδL(k),

where L := [ ln0.1 ln0.9 ln0.1 ln0.9 ], δL(k) :=
[ δ111(k) δ12(k) δ122(k) δ21(k) ]

T . So the constraint (2) can
be transformed into a linear inequality constraint by using
the natural logarithm.

Finally, paths such that the condition (i) in Problem 1
is satisfied are enumerated among the computed backward-
reachability graph. By Z(i) ⊆ (Xd × Xc)

N+1, i =
1, 2, . . . , γ̄, denote paths from some hybrid state to an unsafe
state region. By PZ(i), i = 1, 2, . . . , γ̄, denote the probability
that each path is realized. In addition, linear inequality
constraints corresponding to each path are denoted by

F (k, i)x(k) +G(k, i)v(k) ≤ H(k, i) (7)

where k = 0, 1, . . . , N − 1 and i = 1, 2, . . . , γ̄. Note here
that linear inequality constraints are in general time-varying.

Consider the backward-reachability graph in Fig. 2 as
an example. The initial hybrid state is given as (on, 55).
Suppose N = 2. Then we obtain γ̄ = 2,

Z(1) = ((on, [53, 62)), (on, [77, 91)), (stop, [91, 120])) ,

Z(2) = ((on, [53, 62)), (on, [67, 77)), (stop, [91, 120]))

and PZ(1) = 0.1, PZ(2) = 0.1. Linear inequality constraints
can be derived from Fig. 4.

After paths are enumerated according to the initial hybrid
state, we select paths such that the condition (i) in Problem
1 is satisfied. By γ(≤ γ̄), denote the number of selected
paths. By imposing linear inequality constraints (7) to the
system (6), the condition (i) is satisfied, and γ time-varying
MLD models are derived. Note here that even if any model
is selected, then the condition (i) is satisfied. So the optimal
path is selected according to the condition (ii) in Problem 1.

Based on the above discussion, let us consider solving
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Problem 1. Consider the following γ MIQP problems.

i-th MIQP problem (i = 1, 2, . . . , γ):

find v(k), k = 0, 1, . . . , N − 1

min Cost function (3)

subject to System (6), xc(0) = xc0, xd(0) = xd0,

F (k, i)x(k) +G(k, i)v(k) ≤ H(k, i),

lnπ(0, N − 1) ≥ lnρ.

By J∗
i , i = 1, 2, . . . , γ, denote the optimal value of a given

cost function in the i-th MIQP problem. Thus we obtain the
following theorem immediately.

Theorem 1: The optimal value J∗ of a given cost function
in Problem 1 is derived as

J∗ = min
{
J∗
1 , J

∗
2 , . . . , J

∗
γ

}
.

The optimal input sequence is derived as the input sequence
corresponding to J∗.

From this theorem, we see that the optimal input sequence
in Problem 1 can be derived by solving γ MIQP problems.

V. NUMERICAL EXAMPLE

In this section, we show a numerical example. Consider
solving Problem 1 for the tank system in Fig. 1.

Parameters in the tank system are given as a = 6, L = 13,
N1 = 41, N2 = 62, and U = 91. The continuous state space
and the continuous input space are given as Xc = [0, 120] and
Uc = [20, 30], respectively. The initial hybrid state is given
as (off, 20). The unsafe state region is given as [91, 120].
In the cost function (3), N , Q, Qf , R, and x̄ are given as
N = 5, Q = Qf = 1, R = 1, and x̄ = 50, respectively. ε
in the condition (i) of Problem 1 is given as ε = 0.002. ρ in
the constraint (2) is given as ρ = 0.1× 0.93.

Then we obtain the backward-reachability graph in Fig. 5.
From Fig. 5, we can obtain the following three paths such
that the condition (i) of Problem 1 is satisfied:

Path 1: (on, [19, 24)) → (on, [43, 48)) → (on, [62, 63)) →
(on, [67, 77)) → (on, [77, 91)) → (stop, [91, 120]),
Path 2: (on, [19, 24)) → (on, [39, 43)) → (on, [62, 63)) →
(on, [67, 77)) → (on, [77, 91)) → (stop, [91, 120]),
Path 3: (on, [19, 24)) → (on, [38, 39)) → (on, [62, 63)) →
(on, [67, 77)) → (on, [77, 91)) → (stop, [91, 120]).

In addition, PZ(1) = PZ(2) = PZ(3) = 0.001.
By solving the MIQP problem for each path, we can obtain

J∗
1 = 3715, J∗

2 = 3795, J∗
3 = 3830.

So we see that Path 1 (Z(1)) is optimal. In addition, the
optimal continuous input sequence is derived as uc(0) = 28,
uc(1) = 25, uc(2) = 20, uc(3) = 20, and uc(4) = 20.
Sample trajectories of the continuous state in the closed-
loop system are shown in Fig. 7. In addition, the number of
trajectories such that the continuous state reaches the unsafe
state region [91, 120] is 127 for 100000 sample trajectories
of the continuous state. So we see that the probabilistic
constraint in the condition (i) of Problem 1 is satisfied.
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Fig. 7. Sample trajectories of the continuous state

VI. CONCLUSION AND FUTURE WORKS

In this paper, we have considered the optimal control
problem of a class of stochastic hybrid systems. In particular,
probabilistic constraints have been focused. In the proposed
solution method, first, a backward-reachability graph is com-
puted, and next, MIQP problems are solved. The obtained
result is useful as a method to solve the optimal control
problem with probabilistic constraints.

The backward-reachability graph in this paper is closely
related to discrete abstraction techniques in hybrid systems.
It is one of future works to clarify the relation. In addition, it
is also significant to apply the proposed approach to several
applications.

This work was supported by Grant-in-Aid for Young Sci-
entists (B) 23760387 and Scientific Research (C) 21500009.
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