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Abstract— Lyapunov-Krasovskii functionals have been shown
to have connections with input-output techniques considering
delay operators mapping L2 to L2. It is shown here that
Lyapunov-Razumikhin functions can also be connected to the
input-output framework by considering operators on L∞ and
the corresponding Small-Gain Theorem. Several important
results from the Lyapunov-Razumikhin Theorem are retrieved
and extended.

Index Terms— Time-delay systems; Lyapunov-Razumikhin
Functions; Robust stability; ∗-norm

I. INTRODUCTION

The stability analysis and control of time-delay is an active
research domain and many approaches have been developed
along years: frequency domain techniques [1], [2], [3],
Lyapunov-Krasovskii and Lyapunov-Razumikhin approaches
[4], [5], [6], [7], [2], [8], small-gain-based methods [1], IQCs
techniques [9], [10], well-posedness approaches [11], [12]
and ISS techniques [13]. The approaches based on Lyapunov-
Krasovskii Functionals (LKFs) are one of the most spread
since they lead to LMI results, can be applied to a wide
range of problems and may provide necessary and sufficient
conditions, but very often at the expense of computational
complexity and poor scalability. More recently, input-output
approaches (IQC, well-posedness) have led to drastic im-
provements with respect to these drawbacks, at least for the
stability analysis problem [14], [15], [16].

There is, although yet not fully proved, a connection
between L2 input-output approaches and LKFs; see e.g.
[17], [18] and [8, Section 3.2.1.6]. LKFs may indeed be
viewed as robustness analysis tools in the L2-norm for time-
delay systems. However, the existence of an equivalent LKF
formulation, given a combination of delay operators in the
L2 input-output framework, is still an open question.

One important particularity of many LKFs is the con-
sideration delay derivative upper bound constraint. Recent
works [19], [20], [14], [21] have attempted to get rid of this
constraint1 due to possible applications to aperiodic sampled-
data systems [23], where the delay-derivative equals one al-
most everywhere, and networked control systems (NCSs) for
which abrupt changes in the delays values are possible. Such
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1It is important to mention that, according to several works, when the
delay-derivative exceeds one, severe well-posedness problems may occur
[22].

a constraint is however naturally excluded when Lyapunov-
Razumikhin Functions (LRFs) are used and this explains
their presence in the context of NCCs and network analysis.
Nevertheless, their utilization is not so easy since they very
often lead tedious and haphazard-looking manipulations,
conservative results and quasi-convex conditions. Despite
of that, Razumikhin’s approach yields structurally simple
results, involving a few number of variables and small matrix
inequalities, at the difference of some LKFs approaches.
For these reasons, the results are more scalable than those
obtained from LKFs and the control design made simpler.

We will show here that it is possible, using input/output ap-
proaches, to obtain generalized Razumikhin-like conditions,
difficult to obtain using a direct approach via the Lyapunov-
Razumikhin Theorem. To this aim, a matrix inequality test
for the computation of an upper bound on the QL∞-norm is
obtained. This result is extended to incorporate D-scalings
in order to prepare its use for the robust stability analysis of
uncertain linear systems perturbed by BIBO stable operators.
It is shown that the general conditions of the Lyapunov-
Razumikhin Theorem in the linear case are the same as
the conditions of scaled-small gain result in the QL∞-norm.
By using delay and integral operators combinations, delay-
independent and delay-dependent stability conditions, inde-
pendent of the delay-derivative, are finally obtained. While
the delay-independent result is equivalent to the Lyapunov-
Razumikhin condition, the delay-dependent results take a
slightly more general form. Compared to the original result
from the application of Lyapunov-Razumikhin Theorem, the
obtained conditions are less complex since they involve fewer
nonlinear terms.

The goal of the paper is to bring a new insight on
Razumikhin’s approach by showing the connection with
input/output approaches. Interestingly, the provided approach
leads to quick and easy calculations in contrast to the usual
Razumikhin approach which needs model transformations,
bounding procedures and incorporation of the Razumikhin
condition. The operator approach has the potential of leading
to a wide diversity of results according to the considered
combination of operators. Indeed, as discussed in [24], many
operators corresponding to Taylor expansion remainders can
be generated and used to describe a time-delay system.
Fragmented operators may be considered as well [18].

The paper is structured as follows: Section II discusses
about the QL∞-norm and the corresponding operator norm,
the ∗-norm. In Section III, a scaled-small gain in the ∗-norm
is developed for robust stability analysis. In Section IV, we
apply the developed results in the context of stability analysis
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of time-delay systems with unconstrained delay-derivative.
The notations are standard. Given two real symmetric

matrices A,B, A ≺ (�)B means that A − B is negative
(semi)definite. The Kronecker product is denoted by ⊗.

II. PRELIMINARIES

A. Signal Norms

We consider in this paper the space of bounded functions
also taking bounded values on measure zero sets. Given a
bounded function w : R+ → Rn, the L∞-norm and the
QL∞-norm (Q for quadratic) defined as

||w||L∞ = sup
t≥0
||w(t)||∞

||w||QL∞ = sup
t≥0
||w(t)||2.

(1)

both induce the same space of bounded functions, i.e. w ∈
L∞ ⇔ w ∈ QL∞. They indeed define the same topology
on the space of bounded functions since

||w||L∞ ≤ ||w||QL∞ ≤
√
n||w||L∞ (2)

for any function L∞ 3 w : R → Rn. This norm has
been first introduced in [25] in order to provide tractable
conditions for peak-to-peak gain minimization. Until now,
there is unfortunately no efficient way of minimizing the
L∞-norm or using it for robustness analysis by simple means
[26].

Note also that it is voluntary here to consider the supre-
mum rather than the essential supremum in the norm def-
inition since the norm based on the latter does not al-
ways characterize the pure time-varying delay operator as
a bounded operator. To see this, consider the time-varying
delay operator

Dh : w(t) → w(t− h(t)) (3)

defined for any bounded input function w : R → Rn and
delay h : R→ R+. Choosing the input

w(t) =

{
1 if t = t0
0 otherwise

(4)

and the delay

h(t) =

{
0 if t ∈ [0, t0]
t− t0 otherwise

(5)

we obtain

w(t− h(t)) =

{
1 if t ≥ t0
0 otherwise.

(6)

Using the above signals, we obtain the results of Table I.
We can see that the use of the ’ess sup’-based norm leads
to an unbounded operator which is not desirable. Note that
this may also occur with bounded delays. It will be shown
in Section IV, that the QL∞-norm indeed defines bounded
delay operators for any delay trajectory.

norm ||w|| ||Dh(w)|| ||Dh||
ess sup || · ||∞ 0 1 +∞

QL∞ 1 1 1

TABLE I
COMPARISON OF NORMS AND INDUCED-NORMS FOR INPUT SIGNAL (4)

AND DELAY (5)

B. Systems Norms

It is important to discuss briefly about the operator-norm
induced by the QL∞-norm which we refer to as the ∗-norm.
This norm induces the same topology as the L∞-induced
norm (the L1-norm) on the space of asymptotically stable
linear systems:

Proposition 1: For any given bounded operator H (finite
L1- and ∗-norms) mapping p inputs to q outputs, we have

p−1/2||H||L1
≤ ||H||∗ ≤ q1/2||H||L1

. (7)
Proof: The proof follows from inequality (2).

This shows that in the SISO case, the two norms coincide.
Moreover, when the number of output is one, then the ∗-norm
is always smaller than the L1-norm. In such circumstances,
when considering the stability of an interconnection of a sys-
tem H with an uncertain term ∆ verifying ||∆||∗ = ||∆||L1

,
the use of the ∗-norm may be beneficial since ||H||∗ ≤
||H||L1

, authorizing then a larger set of uncertainties. It is
however difficult to conclude on anything in the general
MIMO case.

C. Computational Results

Let us consider here, an LTI system H whose state-space
representation is given by

ẋ(t) = Ax(t) +Bw(t)
z(t) = Cx(t) + Fw(t)
x(0) = x0

(8)

where x, x0 ∈ Rn, w ∈ Rp and z ∈ Rq are respectively the
system state, the initial condition, the exogenous input and
the controlled output.

There is, at this time, no efficient way of comput-
ing/optimizing the exact ∗-norm. A Riccati inequality ap-
proach was proposed in [25] to compute an upper-bound
on the ∗-norm. Later, a quasi-LMI (qLMI) solution was
proposed in [27]. We continue in the same vein and consider
the matrix inequality framework. We, however, slightly im-
prove the qLMI result by providing a smaller one involving
(possibly) fewer decision variables:

Lemma 1 (∗-Bounded Real Lemma): The LTI system H
with state-space representation (8) is asymptotically stable if
there exist a symmetric matrix P � 0 and scalars ξ, ζ, ε > 0
such that the matrix inequality

ATP + PA+ ξP + εI PE 0 0

? −ζI 0 FT

? ? −ξP CT

? ? ? −ζI

 � 0 (9)

holds. Moreover, in such a case, we have ||H||∗ ≤ ζ. M
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Proof: The proof is inspired from [27] but with different
subtleties allowing to derive a more compact and flexible
result. The proof is divided in two parts. First, we provide
two matrix inequality conditions that characterize an upper-
bound on the ∗-norm of a given system. The second part is
devoted to the merging of these conditions into a single one
by variable elimination.

Part 1. We start from the following matrix inequalities[
ATP + PA+ ξP + εI PE

? −Q

]
≺ 0 (10)

and ξP 0 CT

? ζI −Q FT

? ? ζI

 � 0 (11)

defined for some matrices P = PT � 0, Q = QT � 0
and scalars ε, ξ, ζ > 0. We prove now that the feasi-
bility of the above conditions implies that the ∗-norm is
bounded from above by ζ. The first inequality is equivalent
to V̇ (t) + ξV (t) − w(t)TQw(t) ≤ −εx(t)Tx(t), for all
x(t) ∈ Rn, w(t) ∈ Rp and where V (t) = x(t)TPx(t).
Hence the quadratic function V (t) cannot exceed the value
ξ−1w(t)TQw(t). From the second inequality, we have that

ζ−1

[
CT

FT

] [
CT

FT

]T
−
[
ξP 0
0 ζI −Q

]
� 0. (12)

Thus we get

z(t)T z(t) ≤ ζξx(t)TPx(t) + ζw(t)T (ζI −Q)w(t)

≤ ζw(t)TQw(t) + ζw(t)T (ζI −Q)w(t)

≤ ζ2w(t)Tw(t)
(13)

and hence ||z||QL∞ ≤ ζ||w||QL∞ .
Part 2. Note that, using a Schur complement, the second

inequality is equivalent to

Q � ζI −
[
0 FT

] [ξP CT

C ζI

]−1 [
0
F

]
. (14)

Hence, letting Q to be equal to the RHS, substituting it into
the first matrix inequality, we get a matrix inequality which is
identical to (9) modulo a Schur complement. This concludes
the proof.

It has been possible to merge the two inequalities due
to the full symmetric term Q in the inequalities. In the
initial formulation, the change of variables is not possible
due to the presence of a diagonal term (µI) instead of a full
symmetric one in the present case. Closed inequalities have
also been considered in order to equate some variables. This
will appear to be useful in the sequel.

III. ROBUST STABILITY ANALYSIS IN THE ∗-NORM

Let us consider here the uncertain LTI system

ẋ(t) = Ax(t) +Bw0(t)
z0(t) = Cx(t) + Fw0(t)
w0(t) = ∆(z0)(t)
x(0) = x0

(15)

where x, x0 ∈ Rn, w0 ∈ Rn0 and z0 ∈ Rn0 are the system
state, the initial condition, the robustness-channel input and
output respectively. The uncertain operator ∆ is assumed to
be bounded, i.e. ||∆||∗ ≤ η−1, η > 0. Similarly as in [28],
the set of D-scalings is defined as

Dk
∆ :=

{
U ∈ Rk×k : U = UT � 0, U∆ = ∆U

}
(16)

and captures the structure of the operator ∆ through a
commutation property. We are now able to state the following
result:

Theorem 1 (Scaled Small ∗-Gain Theorem): The uncer-
tain system (15) is asymptotically stable if there exist sym-
metric matrices P � 0, S ∈ Dn0

∆ and scalars ε, ξ > 0 such
that the matrix inequality
ATP + PA+ ξP + εI PE 0 0

? −ηS 0 FTS

? ? −ξP CTS
? ? ? −ηS

 � 0 (17)

holds. M
Proof: Following [28], introduce a nonsingular matrix

L such that ∆L = L∆, thus ∆ = L∆L−1. Incorporating the
scalings in the system (15), we obtain the ’scaled’ system

˙̃x(t) = Ax̃(t) +BL−1w̃(t)
z̃(t) = LCx̃(t) + LDL−1w̃(t)

(18)

where w̃(t) = Lw(t) and z̃(t) = Lz(t). Substituting then the
above system into (9) with ζ = η, performing a congruence
transformation with respect to diag(I, L, I, L) and defining
S := LTL ∈ Dn0

∆ yield the result.

IV. INPUT/OUTPUT INTERPRETATION OF THE
LYAPUNOV-RAZUMIKHIN THEOREM

We use here the developed results to study the stability
of delay-systems with a particular emphasis on connections
with the Lyapunov-Razumikhin Theorem [4]. Let us consider
the following linear time-delay system

ẋ(t) = Ax(t) +Bx(t− h(t))
x(s) = φ(s), s ≤ 0

(19)

with time-varying delay h : R → R+ and functional initial
condition φ ∈ L∞((−∞, 0],Rn). We make no assumption
on the delay h(t) for the moment.

A. General Connection to the Lyapunov-Razumikhin Theo-
rem

Let us recall the simplified Lyapunov-Razumikhin The-
orem for global asymptotic stability of linear time-delay
systems of the form (19) for which we assume for simplicity
that the delay is constant and bounded, i.e. h ∈ [0, h̄]:

Theorem 2 ([2, Proposition 5.1]): Assume there exists a
bounded quadratic function W satisfying

W (x) ≥ ε||x||22 (20)

for some ε > 0 and whose derivative along the system
trajectory Ẇ (x(t)) verifies

Ẇ (x(t)) ≤ −ε||x(t)||22, (21)
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whenever

W (x(t+ θ)) ≤ pW (x(t)), θ ∈ [−h̄, 0] (22)

for some constant p > 1. Then the time-delay system
(19) with constant delay h ∈ [0, h̄] is globally uniformly
asymptotically stable. M

Note that the condition (21)-(22) is equivalent to the
inequality

W (x(t)) <
1

p
W (x(t+ θ)), θ ∈ [−h̄, 0] (23)

since W (x(t)) decreases when condition (22) holds. This
hence defines, for each t ≥ 0, an invariant subset for
W (x(t)) depending on W (x(t+θ)). Moreover, since p > 1,
then W (x(t)) contracts to 0 as time goes. We show now that
this condition is naturally enforced using Theorem 1. To this
aim, substitute in (17): z(t) ← x(t), w(t) ← x(t − h(t)),
C ← I , D ← 0 and E ← B. Then, following the same
arguments as in the proof of Lemma 1, this implies that

x(t)TSx(t) ≤ η2x(t− h(t))TSx(t− h(t)). (24)

Hence, picking the Lyapunov-Razumikhin function W (x) =
xTSx and p = η−1/2, we can see that Theorem 1 implies
the stability condition of the Lyapunov-Razumikhin Theo-
rem. Therefore, asymptotic stability is ensured provided that
η < 1, emphasizing the small-gain interpretation of the
Razumikhin condition.

Note that in the proposed formulation the storage function
V = xTPx generally differs from the the Lyapunov-
Razumikhin function W = xTSx. We will however see in
Section IV-C that they may coincide.

B. Norms of Delay Operators

The following discussion addresses the problems of
∗-norm computation of some delay operators.

Lemma 2: The operator Dh defined in (3) satisfies

||Dh||∗ = 1 (25)

for any delay h : R+ → R+. M
Proof: Under the standard assumption of zero initial

conditions, it is clear that

sup
t≥0
||w(t− h(t))||22 = sup

s≥0
||w(s)||22

for any h : R+ → R+ and any w ∈ L∞. This bound is
indeed attained as shown in Section II-A.

Lemma 3: The operator2 Sh := (I −Dh) ◦ I satisfies

||Sh||∗ = h̄ (26)

for any h : R+ → [0, h̄]. M
Proof: Considering again zero initial conditions, we

have∣∣∣∣∣
∣∣∣∣∣
∫ t

t−h(t)

w(s)ds

∣∣∣∣∣
∣∣∣∣∣
2

2

≤ h(t)

∫ t

t−h(t)

||w(s)||22ds

≤ h(t)2 sup
t≥0
||w(t)||22

(27)

2I and ◦ are the integration and the composition operators respectively.

where the first inequality has been obtained using the
Jensen’s inequality. Hence, we have ||Sh||∗ ≤ h̄. To see that
this bound is attained, it is enough to choose the constant
input signal w ≡ 1 and the constant delay h ≡ h̄.

In the following, we use the above delay-operators and the
Scaled Small ∗-Gain Theorem to derive stability results for
time-delay systems. It is also shown that these results can be
interpreted as generalized Razumikhin’s criteria.

C. Delay-Independent Stability

Using the Dh operator defined in (3), the system (19) can
be equivalently rewritten as

ẋ(t) = Ax(t) +Bw(t)
z(t) = x(t)
w(t) = Dh(z)(t)

(28)

where the operator Dh is considered as a norm-bounded
uncertainty with ∗-norm equal to 1. Applying the Scaled
Small ∗-Gain Theorem obtained in Section IV-B, we get the
following theorem for delay-independent stability:

Theorem 3: The system (19) is asymptotically stable in-
dependently of the delay if there exist a matrix P = PT � 0
and a scalar ξ > 0 such that the matrix inequality[

ATP + PA+ ξP PB
? −ξP

]
≺ 0 (29)

holds.
Proof: Substituting the system (28) into the matrix

inequality (17) with η = 1 yields
ATP + PA+ ξP + εI PB 0 0

? −S 0 0
? ? −ξP S
? ? ? −S

 � 0. (30)

Equivalently we have[
ATP + PA+ ξP + εI PB

? −S

]
� 0 (31)

and −ξP + S � 0 which is, in turn, equivalent to (29). The
proof is complete.

We can recognize in the above result the matrix inequality
condition for delay-independent stability obtained using the
Lyapunov-Razumikhin Theorem [4], [6], [2]. It is interest-
ing to note that, using the same operator but in the L2-
framework, i.e. using the usual Scaled Small-Gain Theorem,
equivalence is shown with the Lyapunov-Krasovskii Func-
tional [8, Section 3.2.1.6]:

V (xt) = x(t)TPx(t) +

∫ t

t−h(t)

x(s)TQx(s)ds

with symmetric matrices P,Q � 0.
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D. A First Result on Delay-Dependent Stability

To study delay-dependent stability, let us consider the
following nonequivalent comparison system for (19):

˙̃x(t)

z(t)

 =


A+B 0 −h̄BA −h̄B2

I 0 0 0
I 0 0 0
0 I 0 0



x̃(t)

w(t)


w = diag(Dh,Sh,Sh)(z).

(32)
for which we assume that h(t) ∈ [0, h̄] for all t ≥ 0 and
some h̄ > 0. Using the Scaled Small ∗-Gain Theorem, we
get the following result for delay-dependent stability:

Theorem 4: The system (19) is asymptotically stable for
all h(t) ∈ [0, h̄], h̄ > 0 if there exist symmetric matrices
P, S1 � 0 and a scalar ξ > 0 such that the matrix inequalityM+ ξP −h̄PBA −h̄PB2

? −ξP + S1 0
? ? −S1

 ≺ 0 (33)

holds where M = (A+B)TP + P (A+B).
Proof: The D-scaling corresponding to the uncertainty

structure is given by

diag

(
S1,

[
S2 Q

QT S3

])
� 0.

After substitution of the comparison system (32) into the
Scaled Small ∗-Gain Theorem. A Schur complement and a
row/colmun reorganization yieldM+ ξP + εI −h̄PBA −h̄PB2

? −S2 −Q
? ? −S3

 � 0 (34)

and [
−S1 + S3 QT

? −ξP + S1 + S2

]
� 0. (35)

Note that (35) is equivalent to[
S2 Q

QT S3

]
�
[
−S1 + ξP 0

? S1

]
. (36)

Finally, equating the matrices and substituting into (34) yield
the result.

We show below that the above theorem reduces to the
Lyapunov-Razumikhin condition of [2, Corollary 5.8] and
can then be viewed as a more general Razumikhin condition.

Corollary 1: The system (19) is asymptotically stable for
all h(t) ∈ [0, h̄], h̄ > 0 if there exist a symmetric matrix P �
0 and scalars ξ, ε1, ε2 > 0 such that the matrix inequality:h̄−1M+ (ε1 + ε2)P −PBA −PB2

? −ε2P 0
? ? ε1P

 ≺ 0 (37)

holds.
Proof: Setting S1 = µ1P , ξ = µ1 + µ2, µ1, µ2 > 0

and multiplying then the obtained matrix inequality by h̄−1,
we get the result where εi = µih̄

−1, i = 1, 2.

Note that the condition (33) obtained from the Scaled
Small ∗-Gain Theorem is easier to solve since it involves
a smaller number of nonlinear terms.

Example 1: Let us consider the time-delay system (19)
with matrices

A =

[
−2 0
0 −0.9

]
and B =

[
−1 0
−1 −1

]
.

Using Theorem 4, the maximal delay h̄ = 0.98 is obtained
as roughly determined in [19], [14].

Example 2: Let us consider now the matrices [29]

A =

[
0 1
−1 −2

]
and B =

[
0 0
−1 1

]
.

Using Theorem 4, the maximal delay h̄ = 0.1739 is obtained.

E. A Second Result on Delay-Dependent Stability

Consider now the comparison system ˙̃x(t)
z(t)

 =

A+B 0 −h̄B
I 0 0
A B 0

[x̃(t)
w(t)

]
w = diag(Dh,Sh)(z).

(38)

where h(t) ∈ [0, h̄] for some h̄ > 0. We obtain the following
theorem:

Theorem 5: The system (19) is asymptotically stable for
all h(t) ∈ [0, h̄], h̄ > 0 if there exist symmetric matrices
P, S1, S2 � 0 and a scalar ξ > 0 such that the matrix
inequalities [

M+ ξP −h̄PB
? −S2

]
≺ 0 (39)

and [
−S1 +BTS2B BTS2A

? −ξP + S1 +ATS2A

]
� 0 (40)

hold where M = (A+B)TP + P (A+B).
Proof: The proof is similar to the one of Theorem 4

and is omitted.
It is also interesting to stress that using the same operator,

but in the L2-framework, equivalence3 is shown with the
Lyapunov-Krasovskii Functional:

V (xt) = x(t)TPx(t) +

∫ t

t−h(t)

x(s)TQx(s)ds

+

∫ 0

−h̄

∫ t

t+s

ẋ(θ)TRẋ(θ)dθds

(41)

for some symmetric matrices P,Q,R � 0. Note however,
that is functional would lead to a delay-derivative-dependent
result.

3in terms of the resulting LMI conditions.
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V. CONCLUSION

Razumikhin-like results have been obtained by consid-
ering an input/output approach in the QL∞-norm. It has
been shown that the Razumikhin condition has a small-
gain interpretation using the ∗-norm, corresponding to the
norm induced by the QL∞-norm. Several standard delay
operators have been considered and have led to generalized
Razumikhin conditions. Although, drastic improvements of
Razumikhin idea have not been obtained, this approach
brings a new insight on Razumikhin’s approach and opens
the door of input/ouput techniques for the derivation of stabil-
ity results independent of the delay derivative. Future works
will be devoted to the study of possible improvements of the
Razumikhin’s approach using this input-output framework.
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