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Abstract— This paper addresses the asynchronous dynamic
formation problem for swarm robots based on multi-group
shape transformation. Considering robot swarm as a whole will
make achieving the adaptation to the environment very difficult.
Decomposition of multi-robot system into smaller groups gives
capability and flexibility in complex pattern transformation
which remarkably increases environmental adjustability. Unlike
existing methods in dynamic formation control of swarm robots
which is limited to synchronous shape transformation of the
whole system, and is causing unnecessary repositioning of some
robots; the proposed method can deal with asynchronous shape
transformation which leads to efficient dynamic formation
control. The stability of the system is examined by introducing
a Lyapunov-like function. Simulation results are presented to
illustrate the performance of the proposed method.

I. INTRODUCTION

Formation control has gained wide applications in mobile
autonomous agents [1], unmanned aerial vehicles [2] and
mobile sensor networks [3],[4]. Several approaches have
been developed to solve formation control problem which
can be mainly categorized as behavior-based approach
[5],[6], leader-follower approach [7] and virtual structure
strategy [8].

In formation navigation, two types of formation structure
are possible: fixed and dynamic formation. Fixed formation
is more suitable for obstacle-free environments in which
formation can be preplanned. Formation control with fixed
structure has been studied extensively in the literature.
Hendrickx et al. [9] introduced the persistent directed graph
concept to analyze the rigidity of the shape formations. Some
applications of rigid formation can be listed as: cooperative
object transportation [10], automated highway systems [11]
and satellite formation flying [12], [13]. For large number
of robots, rigid formation can be interpreted as fixed shape
formation, such that group of robots maintains a consistent
shape during movement. Hsieh and Kumar [14] addressed
2D pattern formation by developing communication-less
decentralized controllers. Cheah at al. [15] proposed a
region-based shape controller for swarm of robots such that
the robots move inside a desired moving region.

Despite of the above mentioned applications of the fixed
formation, it is too restricted in utilization due to limitations
in operating versatility. In real implementation, the group
formation must have the ability to adapt to the environment
and avoid obstacles. For small number of robots, dynamic
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formation is achievable by reconfiguration of robots’
positions. Desai [16] studied the formation reconfiguration
problem based on the transition from one control graph to
another. Defoort et al. [17] addressed time-varying leader-
follower formations. For large number of robots, dynamic
formation can be obtained by changing the shape of the
group. Belta and Kumar [18] introduced an abstraction
manifold; such that shape variables can be controlled
independently, which can lead to change in the shape of the
formation. Hou et al. [19] addressed the dynamic region
formation problem based on shape transformation. Sun
et al. [20] considered generalized superellipse formation
with time-varying parameters. Varghese and Mckee [21]
addressed pattern transformation for swarm of robots based
on Moebius transformation.

Existing methods on dynamic formation is based on
synchronous shape transformation, in the sense that
overall shape of the group is deformed simultaneously
which leads to repositioning of all robots. In most
applications repositioning of all robots is unnecessary and
inefficient; therefore to eliminate the superfluous movements,
asynchronous shape transformation must be applied. In
this paper, we propose multi-group shape transformation to
overcome asynchronous dynamic shape formation problem
for swarm of robots. Decomposition of multi-robot system
into smaller groups and independent control of each group
gives capability in complex dynamic formation, such
as group separation which is advantageous in obstacle
avoidance, multi-group reconfiguration, and asynchronous
shape transformation. Asynchronous shape transformation is
defined as an independent shape formation control of each
group. Here, asynchronous is considered from two different
aspects: non-simultaneity in time such that deformation
of groups can happen at the different moments, therefore
local transformation can be achieved. The second aspect
is non-consensusness in occurred transformations which
means groups can deform with different transformation
model like expansion in one group and contraction in
another group. The main contributions of this paper can be
summarized as follows: (i) introducing the idea of multi-
group coordination to solve dynamic formation problem
for swarm of robots; and simplifying the complex pattern
transformation into multi-group shape transformation. (ii)
Independent control of each group gives capability and
flexibility in group separation and asynchronous shape
transformation, which remarkably enhances the ability of
environmental adjustability.
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The paper is organized as follows. Section 2 presents the
equations describing the motion of multi-group of robots.
Section 3 presents a multi-group shape transformation strat-
egy. Social interactions which are decomposed to intra-group
interactions and inter-group interactions, are also introduced.
An adaptive interaction force is developed to deal with
inter-group interactions. A control law for dynamic group
formation is presented in Section 4. Section 5 presents the
simulation results and section 6 concludes this paper.

II. DYNAMIC EQUATIONS OF MULTI-GROUP ROBOTIC

SYSTEM

The dynamic equations of N groups of robots which each
group has nk members can be represented as follows :⎧⎨⎩

G1 : M1i (x1i) ẍ1i + C1i (x1i, ẋ1i) ẋ1i + D1i (x1i) ẋ1i

+g1i(x1i) = u1i

G2 : M2i (x2i) ẍ2i + C2i (x2i, ẋ2i) ẋ2i + D2i (x2i) ẋ2i

+g2i(x1i) = u2i
...

GN : MNi(xNi)ẍNi +CNi(xNi, ẋNi)ẋNi +DNi(xNi)ẋNi

+gNi(xNi) = uNi
(1)

where Gk represent group k, the subscript ki refers to
member i of group k, k = 1,2, ...,N, i = 1,2, ...,nk, xki ∈ ℝ

ℕ

are generalized coordinates, Mki(xki) ∈ ℝ
ℕ×ℕ are symmetric

and positive definite inertia matrices, Cki(xki, ẋki)∈ℝ
ℕ×ℕ are

matrices of Coriolis and centripetal terms which together
with inertia matrices satisfy skew-symmetric property,
Dki(xki) ∈ ℝ

ℕ×ℕ represent the positive definite damping
matrices, gki(xki) ∈ ℝ

ℕ denote gravitational force vectors,
and uki ∈ ℝ

ℕ denote the control inputs.

By linear parameterization, the dynamic equation of each
robot can be written as [22]:

Mki(xki)ẍki +Cki(xki, ẋki)ẋki +Dki(xki)ẋki +gki(xki)

= Yki(xki, ẋki, ẋki, ẍki)θki (2)

where Yki(xki, ẋki, ẋki, ẍki) are known regressor matrices and
θki are unknown parameter vectors.

III. MULTI-GROUP SHAPE TRANSFORMATION

In region based shape control, a controller is designed
such that all robots move inside a specified region. The
restriction of this method is the difficulty in representing
complex shapes. By formulating a group coordination prob-
lem, we can decompose every complex shape to several
simple regions. In this case, complex shapes can be formed
by using some basic building blocks of regions such as circle,
ellipse and rectangle. An example is alphabetic letters. As
illustrated in figure 1, a mathematical description of letter
”R” is difficult, but by dividing into simple regions the
complex formation is formulated into group coordination
problem of several simple regions.
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Fig. 1: Decomposition of R into simple regions.

 

Fig. 2: An example of asynchronous dynamic formation of
multi-group system.

The idea of multi-group coordination gives advantage
not only in complex formation problem but also in
complex pattern transformation. Independent control of
each group make easy the achievement of group separation,
multiple group reconfiguration and asynchronous shape
transformation. An illustration of asynchronous dynamic
formation of multi-group system is shown in figure 2.
This example considers the movement of swarm of robots
in plane-shaped formation through narrow passageway.
Existing methods deal with this problem by contracting
or rotating the group as a whole. However, this leads to
unnecessary movements of robots located at the middle
of the group. An efficient solution for this problem is
the transformation of involved robots which in this case
are those that formed wings of the plane. It can be seen
that asynchronous dynamic formation not only increase
environmental adjustability, but is also more efficient than
synchronous transformation.

The desired shape functions that define time-varying
shapes for each group can be specified as follows:⎧⎨⎩
fG1 = [ fG11(ΔX1io1), fG12(ΔX1io2), ..., fG1m1

(ΔX1iom1)]
T ≤ 0

fG2 = [ fG21(ΔX2io1), fG22(ΔX2io2), ..., fG2m2
(ΔX2iom2)]

T ≤ 0
...

fGN = [ fGN1(ΔXNio1), fGN2(ΔXNio2), ..., fGNmN
(ΔXNiomN )]

T≤ 0
(3)

where ΔXkiol = (RkSk)
−1Δxkiol , such that Rk(t) and Sk(t)

represent the time-varying rotation matrices and the time-
varying scaling (or shearing) matrices which at least belong
to class 퓒2; Δxkiol = xki −xkol , xkol(t) is a reference point of
the lth desired region of group k, l = 1,2, ...,mk. fGkl (ΔXkiol)
are shape functions such that the boundedness of fGk(ΔXkiol)

ensure the boundedness of
∂ fGk

(ΔXkiol)

∂ΔXkiol
. Since all the specified

subregions for each group move with the same speed;
therefore, xkol is a constant offset of xko.
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We define the following potential energy functions for
each group ⎧⎨⎩

PG1i
(ΔX1i) =

m1

∑
l=1

PG1l (ΔX1iol)

PG2i
(ΔX2i) =

m2

∑
l=1

PG2l (ΔX2iol)

...

PGNi
(ΔXNi) =

mN

∑
l=1

PGNl (ΔXNiol)

(4)

where PGki
(ΔXkiol) is potential function for robot i of group

k. The functions PGkl (ΔXkiol) are defined as follows

PGkl (ΔXkiol) =
1
n

kkl
[
max

(
0, fGkl (ΔXkiol)

)]n
=

{
0, fGkl

(ΔXkiol)≤ 0
kkl
n f n

Gkl
(ΔXkiol), fGkl

(ΔXkiol)> 0
(5)

where kkl are positive constants. n is positive constant, and is
defined in a way that the potential functions at least belong to
class 퓒2. The shape control forces for whole swarm to form
the specified region can be obtained by partial differentiation
of potential functions with respect to ΔXkiol as⎧⎨⎩

Δξ1i =
m1

∑
l=1

kkl
[
max

(
0, fG1l (ΔX1iol)

)]n−1
(

∂ fG1l
(ΔX1iol)

∂ΔX1iol
)T

Δξ2i =
m2

∑
l=1

kkl
[
max

(
0, fG2l (ΔX2iol)

)]n−1
(

∂ fG2l
(ΔX2iol)

∂ΔX2iol
)T

...

ΔξNi =
mN

∑
l=1

kkl
[
max

(
0, fGNl (ΔXNiol)

)]n−1
(

∂ fGNl
(ΔXNiol)

∂ΔXNiol
)T

(6)

After defining the control force for shape formation, we
define the interaction force between robots. In this regard
two potential functions are defined; the first one is related to
intra-group interactions which occur between members of a
group to maintain minimum distance between them as well
as keeping group unity. This potential function decomposes
environment around each robot to four areas. Separation
area, in order to keep minimum distance between robots;
Neutral area, which robots can choose a desired range with
respect to each other in order to increase the flexibility of
movement; Attractive area in order to keep the group unity
during movement; Inactive area, which appears by increasing
distance among robots and vanishing in attractive force. The
second potential function is related to inter-group interactions
which occur between members of one group with other
groups and only need to ensure minimum distance between
them. The first proposed interaction potential functions for
members of group k are defined as follows:

Q(ΔXkik j) = ∑
k j∈Nki

kkik j

n

[
max

(
0,g(ΔXkik j)

)]n
(7)

where Nki refers to neighbors of robot i of group k; and for
each ki and k j we have ΔXkik j = (RkSk)

−1Δxkik j such that
Δxkik j = xki − xk j, kkik j are positive constants and

g
(
ΔXkik j

)
=

(
1− e−a1(∥ΔXkik j∥2−d2

1 )

)(
1− e−a2(∥ΔXkik j∥2−d2

2 )

)
≤ 0

(8)
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Fig. 3: Function [max(0,g(.))]n and potential function Q

where a1, a2, d1 and d2 are positive constants, such that,
specify the width of each area. The function [max(0,g(.))]n

and potential function Q is shown in figure 3. It can be
seen that interaction forces only exert between one robot
and its neighbors and by increasing the distance, the force
goes to zero. In this case each robot only needs to know its
neighboring robots. From (8) it can be seen that

g(ΔXkik j) = g(ΔXk jki) (9)

∂g(ΔXkik j)

∂ΔXkik j
=−∂g(ΔXk jki)

∂ΔXk jki
(10)

The interaction force between members of group k can be
obtained by partial differentiation of the potential function
with respect to ΔXkik j as follows

Δρki−k j =

∑
k j∈Nki

kkik j
[
max

(
0,g(ΔXkik j)

)]n−1
(

∂g(ΔXkik j)

∂ΔXkik j

)T

︸ ︷︷ ︸
Δρ̄ki−k j

(11)

To maintain a minimum distance between the members
of neighboring groups, the following objective function is
proposed

h(ΔXkik̄ j) =−
(

1− e
−a(
∥∥∥ΔXkik̄ j

∥∥∥2−d2)

)
≤ 0 (12)

where ΔXkik̄ j =(RkSk)
−1Δxkik̄ j such that Δxkik̄ j = xki−xk̄ j and

subscript k̄ j refers to those members which are neighbors of
robot i of group k but don’t belong to group k; a and d are
positive constants. The following potential energy function
can be defined

H(ΔXkik̄ j) = ∑
k̄ j∈Nki

kkik̄ j

n

[
max

(
0,h(ΔXkik̄ j)

)]n
(13)

where kkik̄ j are positive constants. The function
[max(0,h(.))]n and potential function H is shown in
figure 4. The inter-group interaction force can be defined by
partial differentiation of (13) with respect to ΔXkik̄ j,

Δψki−k̄ j =

∑
k̄ j∈Nki

kkik̄ j

[
max

(
0,h(ΔXkik̄ j)

)]n−1
(

∂h(ΔXkik̄ j)

∂ΔXkik̄ j

)T

︸ ︷︷ ︸
Δψ̄ki−k̄ j

(14)
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Fig. 4: Function [max(0,h(.))]n and potential function H

In order to deal with the stability of multi-group system
with inter-group interactions, we propose adaptive interaction
force. In adaptive interaction force, the direction of interac-
tion force is updating in such a way that robots from different
groups will not get stuck in local minima (as illustrated
in figure 5). Hence, adaptive interaction force, Δηki−k̄ j, for
each ki and k̄ j, is considered as the interaction force which
can update the direction of inter-robot force and can be
mathematically expressed as follows

Δηki−k̄ j = ∑
k̄ j∈Nki

퓡
(

θki−k̄ j

)
Δψ̄ki−k̄ j (15)

where Δψ̄ki−k̄ j can be computed based on (14) and

퓡
(

θki−k̄ j

)
are rotation matrices and θki−k̄ j are rotation

angles that shall be defined in a way to guarantee the
stability of system. The details will be given in later
development.

IV. ASYNCHRONOUS DYNAMIC SHAPE CONTROL

METHODOLOGY

In this section, we present the multi-group shape controller
for formation of complex patterns. First, a reference vector
ẋrki is defined for member i of group k as follows:

ẋrki = ẋko − (RkSk)
d
[
(RkSk)

−1
]

dt
Δxki − (RkSk)Δεki (16)

where Δxki = xki − xko and Δεki = αkiΔξki + γΔρki−k j, such
that αki and γ are positive constants. By differentiating (16)
with respect to time, we obtain

ẍrki = ẍko − d [(RkSk)]

dt

d
[
(RkSk)

−1
]

dt
Δxki

− (RkSk)
d2
[
(RkSk)

−1
]

dt2 Δxki − (RkSk)
d
[
(RkSk)

−1
]

dt
Δẋki

− d [(RkSk)]

dt
Δεki − (RkSk)Δε̇ki (17)

Using the reference vector, a sliding vector can be defined
for robot i of group k as follows:

ski = ẋki− ẋrki =Δẋki+(RkSk)
d
[
(RkSk)

−1
]

dt
Δxki+(RkSk)Δεki

(18)

 െ߰߂௞തೕି௞೔ ߠ௞೔ି௞തೕ ത݇௝  ݇௜  

Direction of 
movement of kത୨ Direction of 

movement of k୧ 
௞೔ି௞ത߰߂௞തೕି௞೔ െߠ ೕ 

െߟ߂௞೔ି௞തೕ 

െߟ߂௞തೕି௞೔ 
Fig. 5: Adaptive interaction force

where Δẋki = ẋki− ẋko. The feedback law for group formation
for robot i of group k can be expressed as

uki = −Kskiski − (RkSk)
−T kpk

{
Δεki +λkΔηki−k̄ j

}
+Yki(xki, ẋki, ẋrki, ẍrki)θ̂ki (19)

where Kski are positive matrices, kpk are positive constants
and superscript −T refers to inverse transpose; θ̂ki are
estimated parameters vectors. The parameters update laws
are expressed as follows

˙̂θ ki =−LkiY
T
ki(xki, ẋki, ẋrki, ẍrki)ski (20)

where Lki are positive constants. Therefore the closed-loop
equations can be written as

Mki(xki)ṡki +Cki(xki, ẋki)ski +Dki(xki)ski

+Kskiski +Yki(xki, ẋki, ẋrki, ẍrki)Δθki

+(RkSk)
−T kpk

{
Δεki +λkΔηki−k̄ j

}
= 0 (21)

where Δθki = θki − θ̂ki and λk are positive constants.

For stability analysis the following Lyapunov-like candi-
date is proposed

V =
N

∑
k=1

[
nk

∑
i=1

1
2

sT
kiMki(xki)ski +

nk

∑
i=1

1
2

Δθ T
ki L

−1
ki Δθki

+
nk

∑
i=1

1
n

αkikpk

mk

∑
l=1

kkl [max(0, fGkl (ΔXkiol))]
n

+
1
2

nk

∑
i=1

1
n

γkpk ∑
k j∈Nki

kkik j[max(0,g(ΔXkik j))]
n

]
(22)

By differentiating the Lyapunov-like candidate with re-
spect to time, substituting the closed-loop equations and
considering the skew-symmetricity of the matrix Ṁki(xki)−
2Cki(xki, ẋki), V̇ is obtained as follows

V̇ =
N

∑
k=1

[
−

nk

∑
i=1

sT
kiKskiski −

nk

∑
i=1

sT
kiDki(xki)ski

−
nk

∑
i=1

sT
ki(RkSk)

−T kpk

{
Δεki +λkΔηki−k̄ j

}
+

nk

∑
i=1

αkikpk ΔẊT
ki Δξki +

1
2

nk

∑
i=1

γkpk ∑
k j∈Nki

ΔẊT
kik jΔρ̄ki−k j

]
(23)
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Using (9) and (10), it can be easily shown that
nk

∑
i=1

γkpk∑
k j∈Nki

ΔẊT
kik jΔρ̄ki−k j = 2

nk

∑
i=1

γkpk ΔẊT
ki Δρki−k j (24)

Therefore the derivative of Lyapunov-like candidate can
be rewritten as

V̇ =
N

∑
k=1

[
−

nk

∑
i=1

sT
kiKskiski −

nk

∑
i=1

sT
kiDki(xki)ski

−
nk

∑
i=1

kpk Δεki
T Δεki −

nk

∑
i=1

sT
ki(RkSk)

−T kpk λkΔηki−k̄ j

]
(25)

In order to meet the stability, we define inter-group inter-
action terms, Δηki−k̄ j, so that

nk

∑
i=1

sT
ki(RkSk)

−T kpk λkΔηki−k̄ j = 0 (26)

In this regard, we update the adaptive interaction force (see
(15)) between each member of group ki and its out-group
neighbors k̄ j as follows

Δηki−k̄ j = ∑
k̄ j∈ℕki

퓡
(

θki−k̄ j

)
Δψ̄ki−k̄ j (27)

where 퓡
(

θki−k̄ j

)
are rotation matrices and Δψ̄ki−k̄ j are

introduced by equation (14). Substituting (27) into (26) and
simplifying, (26) can be expressed as

yT퓡
(

θkik̄ j

)
Δψ̄ki−k̄ j = 0 (28)

where y = kpk(RkSk)
−1ski − kpk̄

(Rk̄Sk̄)
−1sk̄ j. We define ro-

tation matrices such that equation (26) is satisfied; that is
rotating the inter-group interaction force such that becomes
perpendicular to y. In fact, asynchronous transformation of
shapes for different groups causes different desired speed
during transient response. In this regard, 퓡

(
θki−k̄ j

)
is

responsible to rotate inter-group interaction force in such a
way that robots will not get stuck into local minima. For
steady state response which groups move within the desired
region, y= 0 therefore no updates in the rotation matrices are
needed since equation (28) is satisfied for any 퓡

(
θki−k̄ j

)
,

hence previous value of θki−k̄ j can be used. Similar idea is
also used in force control of robots [23]. An example of a
rotation matrix in 2D is given as follows

퓡(θkik̄ j) =

[
cos(θkik̄ j) −sin(θkik̄ j)

sin(θkik̄ j) cos(θkik̄ j)

]
(29)

where the rotation angle θkik̄ j is defined as

θkik̄ j = tan−1

⎧⎨⎩− yT Δψ̄ki−k̄ j

yT

[
0 −1
1 0

]
Δψ̄ki−k̄ j

⎫⎬⎭ (30)

As it was mentioned, for the case that y = 0 no update in
rotation angles are needed since equation (28) is satisfied
for any 퓡(θkik̄ j); therefore, previous value of θkik̄ j can be

used. Hence, 퓡(θkik̄ j) is always defined.

Now we are able to state the following theorem:
Theorem: The multi-group system, represented by equation
(1) with the adaptive control scheme (19) and the parameter
update law (20), result in the convergence of ski → 0 and
Δεki → 0 for all k = 1,2, ...,N, and i = 1,2, ...,nk, as t → ∞.
Proof: Since Mki(xki) and Lki are positive definite, so V is
positive definite in ski and Δθki. Therefore, ski, fGkl (Δxkiol),
g(Δxkik j) and h(Δxkik̄ j) are bounded. Hence, Δξki, Δρki−k j

and Δψki−k̄ j are bounded and from (16) we reach to the
boundedness of ẋkri and consequently from (18) we can
conclude the boundedness of ẋki. Since ẋki are bounded, we
can conclude that Δẋkik j and Δẋkik̄ j are bounded. Therefore
Δξ̇ki, Δρ̇ki−k j and Δψ̇kik̄ j are bounded and the boundedness
of ẍko ensure the boundedness of ẍrki. Hence, from closed
loop equation (21) we can conclude the boundedness of ṡki

and this lead to boundedness of V̈ , which means that V̇ is
uniformly continuous. By Barbalat’s Lemma, it then follows
V̇ goes to zero as t → ∞, so it can be concluded that ski and
Δεki goes to zero.

V. SIMULATIONS

In this section, we consider a scenario to demonstrate
the performance of the proposed method in dealing with
dynamic formation problem. In this scenario, swarm
of 150 robots is decomposed to 6 groups to form a
plane-shaped pattern. The building blocks of regions used
to achieve the specified shape are consisted of circle,
triangle rectangle and parallelogram. To examine the
capabilities of the proposed method in dynamic situation,
the swarm goes through a narrow passageway. Initial
positions were generated randomly for all robots as shown
in figure 6(a). Figures 6(b)-6(d) depict snapshots of the
swarm movement. The solid lines represent the desired
shape of each group. The controller parameters are set as
Kski = diag{50,50}, kpk = 15, kkl = 5, kkik j = 1 and kkik̄ j = 1.

VI. CONCLUSIONS

In this paper, we have proposed the multi-group shape
transformation to deal with asynchronous dynamic formation
of robot swarms. Asynchronous dynamic formation control
increases the ability of whole system in adaptation to the
environment. In multi-group robotic system, independent
control of each group gives capability in achieving
group separation, multiple group reconfiguration and
asynchronous shape transformation. Unlike synchronous
shape transformations which lead to unnecessary relocation
of robots, asynchronous shape transformation is more
efficient in the sense that redundant deformations are
eliminated. A Lyapunov-like function has been presented
for the stability analysis of the system. Finally, simulation
results have been presented to illustrate the performance of
the proposed method in achieving asynchronous dynamic
formation.
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Fig. 6: Asynchronous dynamic plane-shaped formation by 6-group of robots.
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