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Abstract— We consider continuous-time consensus seeking
systems whose time-dependent interactions are cut-balanced, in
the following sense: if a group of agents influences the remaining
ones, the former group is also influenced by the remaining ones
by at least a proportional amount. Models involving symmetric
interconnections and models in which a weighted average of the
agent values is conserved are special cases. We present a result
guaranteeing the convergence of every cut-balanced system,
and giving a sufficient condition on the evolving interaction
topology for the limit values of two agents to be the same. This
condition is also necessary up to a zero-measure subset of the
initial conditions. Using the fact that our convergence requires
no additional condition, we show that it also applies to systems
where the agent connectivity and interactions are random, or
endogenous, that is, determined by the agent values. We also
derive corresponding results for discrete-time systems.

I. INTRODUCTION

We consider continuous-time consensus seeking systems
of the following kind: each of n agents, indexed by i =
1, . . . , n, maintains a value xi(t), which is a continuous func-
tion of time and evolves according to the integral equation
version of

d

dt
xi(t) =

n∑
j=1

aij(t) (xj(t)− xi(t)) . (1)

Throughout we assume that each aij(·) is a nonnegative and
measurable function. We introduce the following assumption
which plays a central role in this paper.

Assumption 1: (Cut-balance) There exists a constant K ≥
1 such that for all t, and any subset S of {1, . . . , n}, we have∑

i∈S,j /∈S

aij(t) ≤ K
∑

i∈S,j /∈S

aji(t). (2)

Intuitively, if a group of agents influences the remaining
ones, the former group is also influenced by the remaining
ones by at least a proportional amount. This condition may
seem hard to verify in general. But, several important par-
ticular classes of consensus-seeking systems automatically
satisfy it. These include symmetric systems (aij(t) = aji(t)),
type-symmetric systems (aij(t) ≤ Kaji(t)), and, as will be
seen later, any system whose dynamics conserve a weighted
average (with positive coefficients) of the agent values.
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We present a result establishing that, under the cut-balance
condition (2), and without any further assumptions, each
value xi converges to a limit. Moreover, xi and xj converge
to the same limit if i and j belong to the same connected
component of the “unbounded interactions graph,” i.e., the
graph whose edges correspond to the pairs (j, i) for which∫∞
0
aij(τ) dτ is infinite. (As we will show, while this is a

directed graph, each of its weakly connected components is
also strongly connected.) Conversely, xi and xj generically
converge to different limits if i and j belong to different con-
nected components of that graph. (This latter result involves
an additional technical assumption that

∫ T

0
aij(τ) dτ < ∞

for every T <∞.)
Motivation for our condition comes from the fact that

there are many systems in which an agent cannot influence
the others without being subjected to at least a fraction
of the reverse influence. This is, for example, a common
assumption in numerous models of social interactions and
opinion dynamics [7], [17] or physical systems.

A. Background

Systems of the form (1) have attracted considerable atten-
tion [14], [22], [24], [25], [31] (see [23], [26] for surveys),
with motivation coming from decentralized coordination,
data fusion [5], [32], animal flocking [8], [12], [30], and
models of social behavior [3], [4], [7], [9], [16], [17].

Available results impose some connectivity conditions on
the evolution of the coefficients aij(t), and usually guarantee
exponentially fast convergence of each agent’s value to a
common limit (“consensus”). For example, Olfati-Saber and
Murray [24] consider the system

d

dt
xi(t) =

∑
j:(j,i)∈E(t)

(xj(t)− xi(t))

with a time-varying directed graph G(t) =
({1, . . . , n}, E(t)); this is a special case of the model
(1), with aij(t) equal to one if (j, i) ∈ E(t), and equal
to zero otherwise. They show that if the out-degree of
every node is equal to its in-degree at all times, and if
each graph G(t) is strongly connected, then the system is
average-preserving and each xi(t) converges exponentially
fast to 1

n

∑
j xj(0). They also obtain similar results

for systems with arbitary but fixed aij . Moreau [21]
establishes exponential convergence to consensus under
weaker conditions: he only assumes that the aij(t) are
uniformly bounded, and that there exist T > 0 and δ > 0
such that the directed graph obtained by connecting i to j

whenever
∫ t+T

t
aij(τ) dτ > δ has a rooted spanning tree,
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for every t. Several extensions of such results, involving for
example time delays or imperfect communications, are also
available.1

All of the above described results involve conditions
that are easy to describe but difficult to ensure a priori,
especially when the agent interactions are endogenously
determined. This motivates the current work, which aims
at an understanding of the convergence properties of the
dynamical system (1) under minimal conditions. In the
complete absence of any conditions, and especially in the
absence of symmetry, it is well known that consensus seeking
systems can fail to converge; see e.g., Ch. 6 of [1]. On the
other hand, it is also known that more predictable behavior
and positive results are possible in the following two cases:
(i) symmetric (suitably defined) interactions, or (ii) average-
preserving systems (e.g., in discrete-time models that involve
doubly stochastic matrices).

B. Our contribution

Our cut-balance condition subsumes the two cases dis-
cussed above, and allows us to obtain strong convergence
results. Indeed, we prove convergence (not necessarily to
consensus) without any additional conditions, and then pro-
vide sufficient and (generically) necessary conditions for
the limit values of any two agents to agree. In contrast,
existing results show convergence to consensus under some
fairly strong assumptions about repeated or permanent global
connectivity, but offer no insight on the possible behavior
when convergence to consensus fails to hold. Note though
that our result is not strictly stronger than those based
on repeated connectivity. In particular, our result does not
apply to certain hierarchical systems where a group of nodes
“follows” the others, and where convergence is easily shown
under an assumption of sufficient connectivity.

The fact that our convergence result requires no assump-
tion other than the cut-balance condition is significant be-
cause it allows us to study systems for which the evolution of
aij(t) is a priori unknown, possibly random or depending on
the vector x(t) itself. In the latter models, with endogenously
determined agent interconnections, it is essentially impossi-
ble to check a priori the connectivity conditions imposed in
existing results, and such results are therefore inapplicable. In
contrast our results apply as long as the cut-balance condition
is satisfied. The advantage of this condition is that it can be
often guaranteed a priori, e.g., if the system is naturally type-
symmetric.

Similar convergence results are available for the special
case of discrete-time symmetric or type-symmetric systems
[2], [10], [13], [15], [16], [22], though they are obtained
with a different methodology. Discrete time is indeed much
simpler because one can exploit the following fact: either
two agents interact on a set of infinite length or they stop
interacting after a certain finite time. We will indeed show

1It is common in the literature to treat the system (1) as if the derivative
existed for all t, which is not always the case. Nevertheless, such results
remain correct under an appropriate reinterpretation of (1).

that such existing discrete-time results can be easily extended
to the cut-balanced case.

C. Outline

The remainder of the paper is organized as follows. We
present our main results in Section II. We discuss their appli-
cation to systems with random interactions and endogenously
determined interactions in Sections III and IV respectively.
We then prove an analogous result for discrete-time systems
in Section V, and end with some concluding remarks in
Section VI. The proof of our main result, omitted for space
reasons, is available in [11].

II. ARBITRARY TIME-DEPENDENT INTERACTIONS

We now state formally our main theorem, based on an
integral formulation of the agent dynamics. The integral
formulation avoids issues related to the existence of deriva-
tives, while allowing for discontinuous coefficients aij(t)
and possible Zeno behaviors (i.e., a countable number of
discontinuities in a finite time interval).

Without loss of generality, we assume that aii(t) = 0
for all t. We define a directed graph, G = ({1, . . . , n}, E),
called the unbounded interactions graph, by letting (j, i) ∈
E if

∫∞
0
aij(t) dt = ∞. The following assumption will be

in effect in some of the results.
Assumption 2: (Boundedness) For every i and j, and

every T <∞,
∫ T

0
aij(t) dt <∞.

Before stating our result, we remind the reader that a
directed (sub)graph is strongly connected if every two nodes
i, j, are joined by a directed path, i.e., if there exists a
sequence i0 = i, i1, . . . , ipij= j such that (ik, ik+1) is an arc
of the graph for every k. A directed (sub)graph is weakly
connected if every two nodes i, j are joined by a path that
may include reverse edges: i0 = i, i1, . . . , ipij

= j such that
for every k, at least one of (ik, ik+1) and (ik+1, ik) is an
arc of the graph. A weakly/strongly connected component
is a maximal weakly/strongly connected subgraph; i.e., a
subgraph that is weakly/strongly connected and that is not
included in any larger weakly/strongly connected subgraph.
Every directed graph admits a unique decomposition into
weakly/strongly connected components.

Theorem 1: Suppose that Assumption 1 (cut-balance)
holds. Let x : <+ → <n be a solution to the system of
integral equations

xi(t) = xi(0) +

∫ t

0

n∑
j=1

aij(τ) (xj(τ)− xi(τ)) dτ, (3)

for i = 1, . . . , n. Then,
(a) The limit x∗i = limt→∞ xi(t) exists, and x∗i ∈

[minj xj(0),maxj xj(0)], for all i.
(b) Every weakly connected component of G is strongly

connected.
(c) For every i and j, we have∫∞

0
aij(t) |xj(t)− xi(t)| dt < ∞. Furthermore,

if i and j belong to the same connected component
of G, then x∗i = x∗j .
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If, in addition, Assumption 2 (boundedness) holds, then:
(d) If i and j belong to a different connected component

of G, then x∗i 6= x∗j , unless x(0) belongs to a particular
n−1 dimensional sub-space of <n, determined by the
functions aij(·).

We note that Theorem 1, proved in [11], has an analog
for the case where each agent’s value xi(t) is actually a
multi-dimensional vector, obtained by applying Theorem 1
separately to each component.

The cut-balance condition is a rather weak assumption,
but may be hard to check, especially when the interactions
are not known in advance and depend on the evolution of
the states. The proposition that follows provides five specific
cases of cut-balanced systems that often arise naturally. Its
proof, relying on simple algebraic manipulations, is available
in [11]. It should however be understood that the class of cut-
balanced systems is not restricted to these particular cases.

Proposition 1: A collection of nonnegative coefficients
aij(·) that satisfies any of the following four conditions also
satisfies the cut-balance condition (Assumption 1).

(a) Symmetry: aij(t) = aji(t), for all i, j, t.
(b) Type-symmetry: There exists K ≥ 1 such that 0 ≤

K−1aji(t) ≤ aij(t) ≤ Kaji(t), for all i, j, t.
(c) Average-preserving dynamics:

∑
j aij(t) =

∑
j aji(t),

for all i, t.
(d) Weighted average-preserving dynamics: There exist

wi > 0 such that
∑

j wiaij(t) =
∑

j wjaji(t), for
all t and i.

(e) Bounded coefficients and set-symmetry. There exists
M ≥ α > 0 such that for all i, j, t, either aij(t) = 0 or
aij(t) ∈ [α,M ]; and, for any subset S of {1, . . . , n},
there exist i ∈ S, j 6∈ S with aij(t) > 0 if and only if
there exist i′ ∈ S, j′ 6∈ S with aj′i′(t) > 0.

Note that condition (d) remains sufficient for cut-balance
if the weights wi change with time, provided that the
ratio (maxi wi(t))/(mini wi(t)) remains uniformly bounded.
Besides, the connectivity condition in (e) is equivalent to
requiring every weakly connected component to be strongly
connected in the graph obtained by connecting (i, j) if
aij(t) > 0, for every t.

III. SYSTEMS WITH RANDOM INTERACTIONS

We give a brief discussion of systems with random inter-
actions. Consensus seeking systems where interactions are
determined by a random process have been the object of
several recent studies. For example, Matei et al. [19] consider
the case where the matrix of coefficients aij(t) follows
a (finite-state) irreducible Markov process, and is always
average-preserving. They prove that the system converges
almost surely to consensus for all initial conditions if and
only if the union of the graphs corresponding to each of
the states of the Markov chain is strongly connected. This
result is extended to continuous-time systems in [18]. In
[27], Tahbaz-Salehi and Jadbabaie consider discrete-time
consensus-seeking systems where the interconnection is gen-
erated by an ergodic and stationary random process, without
assuming that the average is preserved. They prove that the

system converges almost surely to consensus if and only if an
associated average graph contains a directed spanning tree.

It turns out that convergence for the case of random inter-
actions is a simple consequence of deterministic convergence
results. In our case, Theorem 1 can be directly applied to sys-
tems where the coefficients aij(·) are modeled as a random
process whose sample paths satisfy the cut-balance condition
with probability 1 (possibly with a different constant K for
different sample paths, and even in the absence of a global
upper bound on K.). Indeed, if this is the case, Theorem
1 implies that each xi(t) converges, with probability 1.
Furthermore, if P(

∫∞
0
aij(t)dt = ∞) = 1, then x∗i = x∗j ,

with probability 1. Similarly, a probabilistic analysis of the
graph of unbounded interactions G can also yield an estimate
of the probability of (local) consensus.

IV. SYSTEMS WITH ENDOGENOUS CONNECTIVITY

Theorem 1 dealt with the case where the coefficients
aij(t) are given functions of time; in particular, x(t) was
generated by a linear, albeit time-varying, differential or
integral equation. We now show that Theorem 1 also applies
to nonlinear systems where the coefficients (and the inter-
action topology) are endogenously determined by the vector
x(t) of agent values. This is possible because Theorem 1
allows for arbitrary variations of the coefficients aij(t), thus
encompassing the endogenous case.

Corollary 1: For every i and j, we are given a nonnegative
measurable function aij : <+×<n → <+. Let x : <+ → <n

be a measurable function that satisfies the system of integral
equations

xi(t) = xi(0)+

∫ t

0

∑
j

aij(τ, x(τ)) (xj(τ)− xi(τ)) dτ (4)

for i = 1, . . . , n. Suppose that there exists K ≥ 1 such that
for all x, and t, and any subset S of {1, . . . , n}, we have∑

i∈S,j /∈S

aij(t, x) ≤ K
∑

i∈S,j /∈S

aji(t, x).

(a) The limit x∗i = limt→∞ xi(t) exists, and x∗i ∈
[minj xj(0),maxj xj(0)].

Define a directed graph G = ({1, . . . , n}, E) by letting
(j, i) ∈ E if and only if

∫∞
0
aij(t, x(t)) dt =∞. Then:

(b) Every weakly connected component of G is strongly
connected.

(c) If i and j belong to the same connected component of
G, then x∗i = x∗j .

Proof: Let us fix a solution x to Eq. (4). For this
particular function x, and for every i, j, we define a
(necessarily measurable) function âij : <+ → <+ by letting
âij(t) = aij(t, x(t)). By the assumptions of the corollary, the
functions âij satisfy the cut-balance condition (Assumption
1). Furthermore, x is also a solution to the system of (linear)
integral equations

xi(t) = xi(0) +

∫ t

0

âij(τ) (xj(τ)− xi(τ)) dτ,
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for i = 1, . . . , n. The result follows by applying Theorem 1
to the latter system.

Note that the nonlinear system of integral equations (4)
considered in Corollary 1 may have zero, one, or multiple
solutions. Our result does not have any implication on the
existence or uniqueness of a solution, but applies to every
solution, if one exists. Naturally, Corollary 1 also holds if the
coefficients aij(x, t) satisfy stronger conditions such as type-
symmetry or the condition

∑
j wjaji(t, x) =

∑
j wiaij(t, x)

for some positive coefficients wi, as in Proposition 1.
We note that part (d) of Theorem 1 does not extend to

the nonlinear case where the coefficients aij also depend on
x. Indeed, the proof of Corollary 1 applies Theorem 1 to an
auxiliary linear system, and the choice of this linear system is
based on the actual solution x(·). Part (d) of Theorem 1 does
apply to this particular linear system, and implies that x∗i is
indeed different from x∗j whenever i and j belong to different
connected components of the associated graph G, unless x(0)
belongs to a lower-dimensional exceptional set. However,
this exceptional set is associated with the particular linear
system, which is in turn determined by x(0); different x(0)
can be associated with different exceptional sets D(x(0)).
So, it is in principle possible that every x(0) in a full-
dimensional set falls in the exceptional set D(x(0)). This
is not just a theoretical possibility, as illustrated by the four-
dimensional example that follows.

Example 1: Let n = 4. Consider a sorted initial vector,
so that x1(0) ≤ x2(0) ≤ x3(0) ≤ x4(0). Suppose that
the coefficients aij have no explicit dependence on time,
but are functions of x, with a13(x) = a31(x) = 1 and
a24(x) = a42(x) = 1 as long x1 < x2 < x3 < x4.
Otherwise, a13(x) = a31(x) = a24(x) = a42(x) = 0. All
other coefficients are 0. These coefficients are symmetric, and
thus cut-balanced. The corresponding system has a solution
of the following form: x1(t), x2(t) keep increasing and
x3(t), x4(t) keep decreasing, until some time t∗ at which
agents 2 and 3 hold the same value; after that time, all
values remain constant. Thus, there is a 4-dimensional set
of initial conditions for which the resulting limits satisfy
x∗2 = x∗3. Note that

∫∞
0
aij(t) dt =

∫ t∗

0
aij(t) dt <∞, for all

i, j, and the unbounded interactions graph G has no edges.
Yet, despite the fact that nodes 2 and 3 belong to different
strongly connected components, x∗2 and x∗3 are equal on a
4-dimensional set of initial conditions. �

Finally, we note that the condition on the graph G in
Corollary 1 can be nontrivial to verify for some systems,
because G depends on the evolution of x via the aij(t, x(t)),
and the evolution of x is a priori unknown. And indeed, one
may not always know whether G will be connected so that
the system will converge to consensus. However, as will be
seen in the application below, the first part of the Corollary
guarantees the convergence of any system satisfying the cut-
balance condition. And, one can then use conditions on the
graph G to characterize the possible limiting states x∗.

We now point out an application of Corollary 1. We
consider a nonlinear multi-agent system of a form studied
in [4], [6], [9], [14], [17], [20] (often in the context of

bounded confidence models) in which the agent values
evolve according to the integral equation version of

d

dt
xi(t) =

∑
j: |xi(t)−xj(t)|<1

(xj(t)− xi(t)) . (5)

The evolution of the interaction topology for this system
is a priori unknown, because it depends on the a priori
unknown evolution of x. In addition, the interaction topology
can, in principle, change an infinite number of times during
a finite time interval. Determining whether such a system
converges can be difficult. And indeed, the convergence
of an asymmetric counterpart of (5) remains open [20].
Observe now that (5) is of the form (4), with aij(x) = 1 if
|xi − xj | < 1, and aij(x) = 0 otherwise. The coefficients aij
are symmetric and therefore satisfy the cut-balance condition
in Corollary 1. Part (a) of the corollary implies that the limit
x∗i = limt→∞ xi(t) exists for every i. Suppose now that for
some i, j, we have

∣∣x∗i − x∗j ∣∣ < 1. Then, there exists a time
after which |xi(t)− xj(t)| < 1 and therefore aij(x(t)) = 1.
As a consequence,

∫∞
0
aij(x(t)) dt =∞, and Corollary 1(c)

implies that x∗i = x∗j . This proves that the system converges,
and that the limiting values of any two agents are either equal
or separated by at least 1, a result which had been obtained
by ad hoc arguments in [10].

Exactly the same argument can be made for a system that
evolves according to the integral equation version of

d

dt
xi(t) =

∑
j: |xi(t)−xj(t)|<r (xj(t)− xi(t))∑

j: |xi(t)−xj(t)|<r 1
.

(We let ẋi(t) = 0 whenever the denominator on the right-
hand side is zero.) This system satisfies a type-symmetry
condition with K = N . A variant of such a system, with a
different interaction radius ri for each i, has been studied in
[14] under the assumption that the graph of interactions is
strongly connected at every t.

A further variation of (5) is of the form

d

dt
xi(t) =

∑
j

f(xj(t)− xi(t)) (xj(t)− xi(t)) , (6)

where f is an even nonnegative function. A multidimensional
version of (6), where each xi is a vector, is studied in [6],
for the special case of a radially decreasing function f that
becomes zero beyond a certain threshold. (The results in
[6] also allow for a continuum of agents, which appear for
example when studying discrete-agent models in the limit of
a large number of agents). The system (6) is of the form
(4), with aij(x) = f(xi − xj). It satisfies a type-symmetry
condition, with K = 1, and Corollary 1 implies convergence.
Moreover, if f is bounded and is continuous except on a
finite set, then for any i, j, either x∗i = x∗j , or x∗i − x∗j
belongs to the closure of the set {z : f(z) = 0} of roots
of f . To see this, Corollary 1 asserts that if x∗i 6= x∗j , then∫∞
0
f(xi(t)−xj(t)) dt <∞, which implies that xi(t)−xj(t)

cannot stay forever in a set on which f admits a positive
lower bound.
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V. DISCRETE-TIME SYSTEMS

Much of the literature on consensus-seeking processes
actually concerns discrete-time systems. Typical results guar-
antee convergence to consensus under the assumption that
the system is “sufficiently connected” on any time interval
of a certain length [12], [22], [29] and sometimes provide
bounds on the convergence rate. When interactions are type-
symmetric, convergence to consensus is guaranteed under
the weaker assumption that the system remains “sufficiently
connected” after any finite time [2], [13], [22] and results
2.5.9 and 2.6.2 in [15]. One can then deduce that type-
symmetric systems always converge to a limit, at which we
have consensus within each of possibly many agent clusters
[10], [16].

We show here how the convergence proof in [2], [10] can
be extended to prove that cut-balance is also a sufficient
condition for convergence in the discrete-time case, as in
Theorem 1. A special case of this result asserts the conver-
gence of systems that preserve some weighted average of
the states, and thus includes a sample path version of recent
results of [28] on stochastic consensus-seeking systems.

Discrete-time systems are in some sense simpler because
of the absence of Zeno behaviors or unbounded sets of
finite measure. However, they allow for large instantaneous
variations of the agents’ values. In particular, an agent could
entirely “forget” its value at time t when computing its
value at time t + 1, leading to instabilities where agents
keep switching their values. For this reason, we introduce
two additional assumptions: each agent is influenced by its
own value when computing its new value, and every positive
coefficient is larger than some fixed positive lower bound.

Theorem 2: Let x : N→ <n satisfy

xi(t+ 1) =

n∑
j=1

aij(t)xj(t), i = 1, . . . , n,

where aij(t) ≥ 0 for all i, j, and t, and
∑n

j=1 aij(t) = 1
for all i and t. Assume that the following conditions hold.
(a) Lower bound on positive coefficients: there exists some

α > 0 such that if aij(t) > 0, then aij(t) ≥ α, for all
i, j, and t.

(b) Positive diagonal coefficients: aii(t) ≥ α, for all i, t.
(c) Cut-balance: for any nonempty proper subset S of
{1, . . . , n}, there exist i ∈ S, j 6∈ S with aij(t) > 0 if
and only if there exist i′ ∈ S, j′ 6∈ S with aj′i′(t) > 0.

Then, the limit x∗i = limt→∞ xi(t) exists, and x∗i ∈
[minj xj(0),maxj xj(0)]. Furthermore, consider the directed
graph G = ({1, . . . , n}, E) in which (j, i) ∈ E if aij(t) > 0
infinitely often. Then, every weakly connected component of
G is strongly connected, and if i and j belong to the same
connected component of G, then x∗i = x∗j .

Proof: One can verify that every weakly connected
component of G is strongly connected, exactly as in the
proof of Theorem 1 in [11]. Consider such a connected
component C. It follows from the definition of G that there
exists a time t∗ after which aij(t) = aji(t) = 0 for any
i ∈ C and j 6∈ C. Thus, the values xi(t) with i ∈ C

do not influence and are not influenced by the remaining
values after time t∗. In particular, if t∗ ≤ t′ < t, then
minj∈C xj(t

′) ≤ xi(t) ≤ maxj∈C xj(t
′) holds for all i ∈ C;

furthermore, maxi∈C xi(t) and mini∈C xi(t) are monotoni-
cally nonincreasing and nondecreasing, respectively.

We now show that there exists a constant γ > 0
such that for any t′ ≥ t∗, there exists a t′′ > t for
which maxi∈C xi(t

′′)−mini∈C xi(t
′′) ≤ γ

(
maxi∈C xi(t

′)−
mini∈C xi(t

′)
)
. We assume that |C| ≥ 2, because otherwise

the claim is trivially true.
We assume that maxi∈C xi(t

′) = 1 and mini∈C xi(t
′) =

0; the argument can be carried out for any other values by
appropriate scaling and translation. For any t, let Ck(t) be the
set of indices i ∈ C for which xi(t) ≥ αk. Clearly, C0(t

′) is
nonempty. Consider some t and k such that ∅ 6= Ck(t) 6= C.
We distinguish two cases.

(i) Suppose that aij(t) = 0 for all i ∈ Ck(t) and j ∈
C \ Ck(t). Then, for any i ∈ Ck(t), we have

xi(t+ 1) =

n∑
j=1

aij(t)xj(t) =
∑

j∈Ck(t)

aij(t)xj(t).

Since on the one hand we have aij(t) = 0 for every
j 6∈ Ck(t), and

∑
j aij(t) = 1, and on the other hand

xj(t) ≥ α for all j ∈ Ck, this implies that xi(t + 1) ≥∑
j∈Ck(t)

aij(t)α
k ≥ αk. Therefore, i belongs to Ck(t+1)

as well. So, in this case we have Ck(t) ⊆ Ck(t+ 1).
(ii) Suppose now that aij(t) > 0 for some i ∈ Ck(t) and

j ∈ C \Ck(t). Then the cut-balance condition, together with
t ≥ t∗, implies that ai′j′ > 0 for at least one i′ ∈ C \Ck(t)
and j′ ∈ Ck(t). For this i′, we have

xi′(t+ 1) =

n∑
j=1

ai′j(t)xj(t) =
∑
j∈C

ai′j(t)xj(t)

≥ ai′j′(t)xj′(t) ≥ α · αk = αk+1

where we have used the fact that xj(t) ≥ mini∈C xi(t
′) ≥ 0,

for all j ∈ C and t ≥ t′. Therefore, i′ ∈ Ck+1(t +
1). Moreover, for any i ∈ Ck(t), we have xi(t) =∑

j∈C aij(t)xj(t) ≥ aii(t)xi(t) ≥ α · αk = αk+1, because
aii(t) ≥ α for all i and t. Thus, if aij(t) > 0 for some
i ∈ Ck(t) and j ∈ C \ Ck(t), then the set Ck+1(t + 1)
contains Ck(t) and at least one additional node.

Recall now that C0(t
′) is nonempty. Moreover, the def-

inition of C as a strongly connected component of G
implies that for any t and any nonempty set S ⊂ C,
there exists a t̂ and some i ∈ S, j ∈ S \ C, such
that aij(t̂) > 0. Then, a straightforward inductive argu-
ment based on the above two cases shows the existence
of a time t′′ > t′ at which C|C|−1(t

′′) = C, i.e., a
time t′′ at which mini∈C xi(t

′′) ≥ α|C|−1. Since xi(t)
remains less than or equal to 1 for i ∈ C and t > t′,
we conclude that maxi∈C xi(t

′′) − mini∈C xi(t
′′) ≤ (1 −

α|C|−1) (maxi∈C xi(t
′)−mini∈C xi(t

′)) . This inequality,
together with the fact that maxi∈C xi(t) and mini∈C xi(t)
are respectively nonincreasing and nondecreasing after time
t∗, implies the convergence of xi(t), for all i ∈ C, to a
common limit.
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Observe that part (d) of Theorem 1, convergence to
generically different values for the different components of
G, has no counterpart for the discrete-time case. Indeed, if
aij(1) = 1/n for all i, j, the system reaches global consensus
after one time step, irrespective of G.

Condition (c) in Theorem 2 has a graph-theoretic interpre-
tation. For every t, let Gt be the graph on n nodes obtained
by connecting j to i if aij(t) is positive. Condition (c) is
satisfied if and only if for every t, every weakly connected
component of Gt is strongly connected, see Proposition 1(e).

Finally, note that convergence results for discrete-time
consensus seeking systems with random or endogenously
determined interactions can be easily derived from Theorem
2 exactly as in Section III and Corollary 1, respectively.

VI. CONCLUDING REMARKS

In this paper, we introduced a cut-balance condition, which
is a natural and perhaps the broadest possible symmetry-like
assumption for consensus seeking systems. This assumption
is satisfied, in particular, if the dynamics preserve a weighted
average, or if no agent can influence another without incur-
ring a proportional reverse influence. We have presented a
result stating, in the absence of any additional assumptions,
that the cut-balance assumption is sufficient for convergence
of continuous-time consensus seeking systems. We provided
a characterization of the resulting local consensus, in terms
of the evolution of the interaction coefficients. We then
applied our results to systems with random and endogenously
determined connectivity. Similar results were also obtained
for the discrete time case.

A possible extension of this work would be the general-
ization of our results to models involving a continuum of
agents, which appear naturally when studying discrete-agent
models, in the limit of a large number of agents. We discuss
some of the main challenges posed by this problem in [11].
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