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Abstract— This paper proposes a parametric identification
method for multi-input multi-output parallel Wiener systems.
The linear dynamic parts of the system are modeled by a
parametric rational function in the continuous or discrete
time variable, while the static nonlinearities are represented
by a linear combination of nonlinear basis functions. The
identification method uses a three step procedure to obtain
initial estimates. In the first step, the frequency response matrix
of the best linear approximation is estimated for different
input excitation levels. In the second step, the power dependent
dynamics are decomposed over a number of parallel orthogonal
branches. In the last step, the static nonlinearities are estimated
using a linear least squares estimation. Finally both linear
and nonlinear parameters are estimated together using a
nonlinear optimization procedure. The method is illustrated
on a simulation example.

I. INTRODUCTION

Wiener systems consist of a linear time invariant (LTI)
dynamic system connected in tandem to a static nonlinearity.
These systems are used to model nonlinear systems for which
the nonlinearity can be concentrated mainly at the output,
or when sensor nonlinearities are present [1]. This model
suffers from a lack of general applicability. A generalization
of the Wiener model to parallel Wiener models is presented
in [2], [3], [4]. Such a parallel Wiener model consists of
a parallel connection of Wiener systems and can cope with
the presence of different signal paths from the input to the
output. It is shown in [3] that parallel Wiener models can
approximate any Volterra series of finite order.

This kind of model structure appears naturally for example
in microwave power amplifiers. The main part of the signal is
amplified to the output in a nonlinear way, through the signal
path. Some distorted part of the signal can also find its way to
the power supply terminal connection, and eventually appear
at the output after reflection and frequency translation. Such
systems can be better modeled by the parallel connection of
Wiener systems. Furthermore, microwave power amplifiers
are modeled as two-port devices. This requires the parallel
Wiener identification method to be extended to multi-input
multi-output (MIMO) parallel Wiener systems.

This paper proposes an identification method that extends
the identification of parallel Wiener systems to MIMO par-
allel Wiener systems. Few identification methods for MIMO
Wiener systems are described in the literature. Previous
work on the identification of MIMO Wiener systems used
for example a subspace approach [5], or an instrumental
variables approach [6]. To the authors knowledge, none of
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Fig. 1. 2-input, 1-output MISO parallel Wiener structure with 2 branches
for each input. f -blocks: static nonlinearities, H-blocks: LTI.

these methods supports a parallel structure from the inputs
to the outputs.

The main contributions of this paper are:
1) The expansion of parallel Wiener system identification

to the MIMO case.
2) To obtain a parallel model whose number of branches

is independent of the degree of nonlinearity. These
branches have a physical interpretation.

3) To select the number of branches based on results of
the identification method.

4) To model the LTI blocks using rational transfer func-
tions.

5) To be applicable to both discrete- and continuous time
models.

The first part of the paper describes the setup. Next the
identification procedure is discussed in some detail, Finally
an illustration on a simulation example shows the theoretical
efficiency and the practical usefulness of the estimator.

II. SETUP

This section introduces the considered class of systems,
the class of excitation signals, and the noise disturbance
model.

A. System and model

The class of nonlinear systems considered here is the
class of MIMO parallel Wiener systems as is shown in
Figure 1. For the sake of brevity, this paper only considers
discrete time linear dynamic systems Hk,l,m(q), with q−1

the backwards shift operator. The method works equally well
for continuous time systems however. The static nonlinearity
of each branch is modeled as a linear combination of
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basis functions, for example it can be written in a power
polynomial form.

zk,l,m(t) = Hk,l,m(q)uk(t) (1)

ym(t) = fm(z1,1,m, . . . , z1,L,m, z2,1,m, . . . , zK,L,m) (2)

=
d∑

i1,1=0

d−i1,1∑
i1,2=0

. . .

d−i1,1−...−iK,L−1∑
iK,L=0

α[i1,1,i1,2,...,iK,L]
m z

i1,1
1,1,m(t)zi1,21,2,m(t) . . . ziK,LK,L,m(t)

herein d is the maximum degree of the nonlinearity, K
the number of inputs, l is the running index indicating the
corresponding parallel branch, with L the considered number
of branches put in parallel for each input of the actual model,
and m is the running index indicating the corresponding
MISO (multi input single output) subsystem. Hk,l,m(q) is
the linear dynamic single-input-single-output (SISO) system
that is associated to branch l and input k of MISO subsystem
m.

B. Excitation signals

We will use excitation signals that belong to the ex-
tended class of Gaussian signals with fixed power spectrum
SU0U0(f). Besides Gaussian noise this class includes also
random phase multisine signals [7], [8], [9]. A periodic signal
u0(t) with period length N is a member of a random phase
multisine excitation set if:

u0(t) = N−1/2

N/2−1∑
k=−N/2+1

Uke
j(2πk t

N+ϕk) k 6= 0

= N−1/2

N/2−1∑
k=1

2Ukcos(2πk
t

N
+ ϕk), (3)

where U−n = Un and ϕ−n = ϕn. The phases ϕn are
random variables that are independent over the frequency
and have a (discrete) uniform distribution on the interval
[0, 2π[, such that E{ejϕn} = 0. The amplitude Un is set in
a deterministic way by the user. Random phase multisines
have the advantage of being periodic, which will cancel
leakage effects. They offer also a full control over the applied
amplitude spectrum to the user. When an infinite number of
realizations is considered, a random phase multisine behaves
as Gaussian noise.

C. Disturbing noise framework

An output error framework is assumed for the noise,
and hence one noise source vm(t) for each output ym is
considered to be present at the output of the device under
test (DUT):

ym(t) = ym,0(t) + vm(t), (4)

with vm(t) a random variable with an arbitrary power spec-
trum Svmvm(f). This noise source is assumed to generate
additive colored (Gaussian) noise with finite second and
fourth order moments. Finite fourth order moments are
necessary to prove the asymptotic convergence properties

of the estimator when the amount of data points grows to
infinity [10].

III. METHODOLOGY

The proposed identification method is explained in this
section. First a summary outline of the proposed method is
given. Thereafter, the different subproblems are discussed in
detail (estimating a best linear approximation (BLA) of the
system, estimating the LTI-blocks and estimating the static
nonlinearity).

A. Basic approach

The identification problem is divided in two subproblems,
similar to what is described in [11] for parallel Hammerstein
systems. First the linear dynamics of the different branches
are estimated as follows:

1) A BLA of the complete system is estimated. This gives
a linear approximation of the dynamics that are present
in the system.

2) If excitation signals belonging to the Gaussian class
of signals are used, Bussgang’s theorem shows that
the nonlinearity of each branch acts as a gain factor,
depending on the total power [12], [7].

3) The BLA of a parallel Wiener system is a weighted
sum of the LTI block response of each branch, where
the static nonlinear block determines the unknown
weighting factor for each branch.

4) If different excitation powers are used, different com-
binations of the same LTI blocks will be obtained.

This results in a set of equations that can be solved to find
estimates for the LTI blocks of the parallel Wiener model.

Next, the static nonlinearities are estimated. To do so
the output of the nonlinear basis functions, for example
(x1

1, x
1
2, x

2
1, x

2
2, x

1
1x

1
2, . . . , x

d−1
1 x1

2, x
1
1x
d−1
2 , xd1, x

d
2), are cal-

culated. The corresponding coefficients of each basis func-
tion to each branch is estimated in least squares sense taking
the intermediate outputs yi,m(t) as an input and ym(t) as the
final output.

A parametric model is obtained by assembling all these
sub-models in the parallel structure. This model will be
used as the initial estimate to a Levenberg-Marquardt [13]
optimization algorithm.

B. Estimating linear dynamics

The LTI blocks of the system will be estimated using a
decomposition of the BLA of the complete system. First,
a nonparametric method to estimate the BLA is explained.
Second, a parametrization of this BLA is introduced. Finally,
the decomposition of the parametrized BLA is performed.

1) MIMO Best linear approximation: The nonparametric
BLA of the complete DUT is estimated for F different RMS
(root mean square) values of the excitation signal to allow
the separation of the dynamics of the different branches. The
MIMO BLA is measured as a set of MISO systems, where
all the signal paths in a particular MISO system leading to
one output are computed simultaneously. To obtain the BLA
from each input to each output, K experiments are made,
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generating K times all the input signals, where K is the
number of inputs. The question how to design these different
inputs is addressed in [9], where orthogonal multisines are
introduced. Using these orthogonal multisines the MIMO
BLA can be calculated using [14]:

Ĝm(jωn) =
1
K
diag

(
|UK |−2

)
Y m(jωn)UH

K(jωn) (5)

where |∗| denotes the absolute value operator, and diag(∗)
takes the diagonal of a square matrix. With UK a matrix
containing the orthogonal multisines of the different experi-
ments and different input ports, Y m a matrix containing the
output signals m of the K different experiments:

UK (jωn) =


w11U

(1)
1

(jωn) w12U
(1)
1

(jωn) · · · w1KU
(1)
1

(jωn)

w21U
(1)
2

(jωn) w22U
(1)
2

(jωn) · · · w2KU
(1)
2

(jωn)

.

.

.

.

.

.
. . .

.

.

.

wK1U
(1)
K

(jωn) wK2U
(1)
K

(jωn) · · · wKKU
(1)
K

(jωn)


Y m(jωk) =

[
Y

(1)
m (jωk) Y

(2)
m (jωk) · · · Y

(K)
m (jωk)

]
(6)

where U (i)
K is the multisine input signal for the i-th experi-

ment as defined in (3), and wki is a weighting factor for input
k of experiment i. These weighting factors are entries of an
arbitrary, deterministic, orthogonal matrix e.g. the discrete
Fourier transform (DFT) matrix:

wki = e−j2π(k−1)(i−1)/K (7)

In practice, the BLA Ĝk,m from input k to output m
is estimated with R different MIMO BLA experiments,
using R different realizations of the random multisine. Each
experiment encompasses P periods of the input. This allows
one to access the frequency response matrix (FRM) of the
BLA (describing the frequency response functions (FRF)
from each input to each output), the power spectrum of
the disturbing noise level, and the level of the nonlinear
distortions separately [15]. For simplicity we assume here
that the measurements start once the system transients are
sufficiently damped (below the noise level). Note however
that using improved FRF measurement methods, this waste
of measurement time can be avoided [16]. Using equation (5)
the BLA Ĝ

[r,p]
k,m(jωn) for period p, and multisine realization

r from input k to output m can be estimated. Each period p
of each input signal realization r is used to obtain the FRF
at a set of frequencies ωn (9). The variability of the FRF
that belongs to one realization yields the noise distortion
variance σ̂2

Ĝ
[r]
k,m

(n) (10), while the variability of the FRF over

the different realizations yields the total distortion variance
σ̂2
Ĝk,m

(n) (11), including the nonlinear distortion of the DUT
[15].

Ĝ
[r]
k,m(jωn) =

1
P

P∑
p=1

Ĝ
[r,p]
k,m(jωn) (8)

Ĝk,m(jωn) =
1
R

R∑
r=1

Ĝ
[r]
k,m(jωn) (9)

σ̂2

Ĝ
[r]
k,m

(jωn) =
P∑
p=1

|Ĝ[r,p]
k,m(jωk)− Ĝ[r]

k,m(jωn)|2

P (P − 1)
(10)

σ̂2
Ĝk,m

(jωn) =
R∑
r=1

|Ĝ[r]
k,m(jωn)− Ĝk,m(jωn)|2

R(R− 1)
, (11)

This nonparametric FRF Ĝk,m(jωn), and the total distor-
tion variance σ̂2

Ĝk,m
(jωn) will be used in the next step to

estimate a parametric model of the BLA of the DUT.
2) Transfer function parametrization : A downside of

a nonparametric approach is the large amount of different
realizations of the input signal that are necessary to average
the disturbances towards zero. A parametric model of the
BLA smooths the data also over the frequencies, and hence
will reduce the variability of the estimates. This means that
less input signal realizations will be required to achieve the
same or a lower model variability.

The considered model is a rational function in z−1:

ĜBLA(jωk, θ) =
b1 + b2z

−1 + · · ·+ bnb+1z
−nb

a1 + a2z−1 + · · ·+ ana+1z−na
, (12)

with nb + na + 2 parameters. Since one parameter can be
chosen freely because of the scaling invariance of the transfer
function, only nb + na + 1 independent parameters need
to be estimated. This leads to a significant reduction in
the parameter count when compared with the nonparametric
approach where N parameters must be estimated, with N
the number of frequency lines.

A maximum likelihood estimator framework is used. As
the estimator uses the previously estimated sample mean and
sample variance of the BLA, a sample maximum likelihood
estimator is used [17], [18]:

Vm(θm, Z) =
N∑
n=1

|êm(jωn, θm, Ẑ(n))|2

σ̂2
Ĝk,m

(jωn)
, (13)

êm(jωn, θm, Ẑ(n)) = Ĝk,m(jωn)− Ĝk,m(jωn, θm) (14)

The parametrization for continuous time models is com-
pletely analog, using s = jω instead of z−1.

3) BLA decomposition: The F parametric transfer func-
tion models from one input to one output for all excitation
levels of the input are evaluated on the same frequency grid
as the nonparametric BLA estimate. The result is stored in
a N × F matrix Ĝk,m:

Ĝk,m=


Ĝ

[1]
k,m

(jω1,θ̂1) Ĝ
[2]
k,m

(jω1,θ̂2) ··· Ĝ
[F ]
k,m

(jω1,θ̂F )

Ĝ
[1]
k,m

(jω2,θ̂1) Ĝ
[2]
k,m

(jω2,θ̂2) ··· Ĝ
[F ]
k,m

(jω2,θ̂F )

...
...

. . .
...

Ĝ
[1]
k,m

(jωN ,θ̂1) Ĝ
[2]
k,m

(jωN ,θ̂2) ··· Ĝ
[F ]
k,m

(jωN ,θ̂F )


This matrix is decomposed as explained in Section III-

A, using a singular value decomposition (SVD). This gives
three matrices as a result:

Ĝk,m = Uk,mΣk,mV Tk,m, (15)
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Fig. 2. MISO Parallel Wiener block diagram representing the static
nonlinearity estimation of second degree for 2 branches and 2 inputs.

where the columns of Uk,m contain the desired estimates of
the LTI blocks:

Uk,m =


Ĥk,1,m(jω1) Ĥk,2,m(jω1) · · · Ĥk,F,m(jω1)

Ĥk,1,m(jω2) Ĥk,2,m(jω2) · · · Ĥk,F,m(jω2)
...

...
. . .

...
Ĥk,1,m(jωN ) Ĥk,2,m(jωN ) · · · Ĥk,F,m(jωN )


The columns of the Uk,m matrix can be seen as a set of

vectors that form an orthogonal basis for the space spanned
by the Ĝk,m matrix. The magnitude of the singular values
represent the importance of each basis vector, and the error
that is made by neglecting them. This means that Ĝk,m can
be approximated using a limited number of U columns. The
error of this approximation depends on the singular values
in the Σ matrix.

Hence, the first L columns of the U matrix, corresponding
with the L highest singular values in the Σ matrix, give an
estimate of the L different LTI blocks in the model. Even
more, based on those singular values one can decide how
many branches are needed to achieve a certain model quality.
Indeed, the singular value σk,l represents the importance of
the corresponding LTI estimate Ĥk,l,m in the final model.

The obtained Ĥk,l,m(jω) estimate is nonparametric again,
but it can be modeled by a rational form using the tech-
niques described in Section III-B.2, resulting in the estimate
Ĥk,l,m(jω, θk,l,m).

C. Estimating static nonlinearity

To estimate the static nonlinearities of the branches
that compose the system, a known set of input sig-
nals u1(t), . . . , uK(t) with the corresponding set of out-
puts y1(t), . . . , yM (t) is selected. Define the outputs
y[i1,1,i1,2,...,i1,L,i2,1,...,iK,L](t) of the nonlinear basis functions
up to degree d (Figure 2), e.g.

zk,l,m(t) = Hk,l,m(q)uk(t) (16)

y[i1,1,i1,2,...,i1,L,i2,1,...,iK,L]
m (t) =

L∏
l=1

K∏
k=1

z
ik,l
k,l,m(t), (17)

1 ≤
∑
k

∑
l

ik,l ≤ d

The modeled output of the parallel Wiener system will be a
linear combination of these reference output signals:

ym(t) = Bθm (18)

=
d∑

i1,1=0

. . .

d−i1,1−...−iK,L−1∑
iK,L=0

α[i1,1,...,iK,L]
m y[i1,1,...,iK,L]

m (t),

where B depends on the calculated outputs y[i]
l,m(t), and

θ̂m =
[
α̂

[1,0,...,0]
m α̂

[0,1,...,0]
m . . . α̂

[0,0,...,d]
m

]
(19)

The coefficients θm are estimated by solving the following
over determined set of equations in least squares sense:

ym = Bθm + v (20)

which gives:

θ̂m = (BTB)−1BT ym (21)

This equation is solved using the pseudo-inverse of B [19].
The columns of B are normalized, dividing them by their 2-
norm, to improve the numerical conditioning of the problem.

D. Estimated system

Once the static nonlinearity and the linear dynamics of
each branch of each subsystem are known, it is possible to
synthesize the full model that yields the outputs ym(t) of the
total system for a set of input signals u1(t), u2(t), . . . , uK(t).
Based on the notations shown in Figure 1, one obtains:

ẑk,l,m(t) = Ĥk,l,m(q)uk(t)

ŷm(t) =
d∑

i1,1=0

d−i1,1∑
i1,2=0

. . .

d−i1,1−...−iK,L−1∑
iK,L=0

(22)

α̂[i1,1,i1,2,...,iK,L]
m ẑ

i1,1
1,1,m(t)ẑi1,21,2,m(t) . . . ẑiK,LK,L,m(t)

Because the identification procedure uses a decomposition
of the BLAs of the system, a physical interpretation can even
be given for this model. The detected number of branches
can represent the number of independent signal flows that
are present within the modeled system, and the singular
value corresponding to a branch of the model represents the
importance of the contribution of that branch in the model
output.

5103



E. Levenberg-Marquardt optimization

The estimates of Section III-D can be used as the initial
estimates of a nonlinear iterative optimization algorithm to
obtain more accurate model estimates. To do so a Levenberg-
Marquardt optimization algorithm is implemented [13], [7].
This algorithm simultaneously optimizes the parameters of
the static nonlinear blocks and LTI blocks present in the
model.

The Levenberg-Marquardt optimization method is a local
nonlinear optimizer. Hence, the obtained minimum of the
cost function can be a local minimum. There is no guaran-
tee that the global minimum is reached using the method
proposed above.

IV. SIMULATION EXAMPLE

A simulation experiment is performed and the simulation
results are discussed.

A. Simulation setup

The procedure is illustrated on the simulation of a 2-input
1-output MISO 2-branch parallel Wiener system as shown
in Figure 1 with additive disturbing output noise. The static
nonlinear blocks are of the polynomial form and are of third
degree. Crossterms are included in the static nonlinearities.

y1(t) = α[1,0,0,0]z1,1(t) + α[2,0,0,0]z21,1(t) + α[3,0,0,0]z31,1(t)

+ α[0,1,0,0]z1,2(t) + α[0,2,0,0]z21,2(t) + α[0,3,0,0]z31,2(t)

+ α[0,0,1,0]z2,1(t) + α[0,0,2,0]z22,1(t) + α[0,0,3,0]z32,1(t)

+ α[0,0,0,1]z2,2(t) + α[0,0,0,2]z22,2(t) + α[0,0,0,3]z32,2(t)

+ α[1,1,0,0]z1,1(t)z1,2(t) + α[0,1,0,1]z1,2(t)z2,2(t)

+ α[1,0,1,1]z1,1(t)z2,1(t)z2,2(t) (23)

The coefficients of the static nonlinearity are tuned so that
for the selected amplitude range of the excitation (between
0.5 and 3 a.u.rms (arbitrary units)) both the even and the odd
nonlinearities contribute significantly to the output (ranging
from 60 to 20 dB lower than the output spectrum). The linear
dynamics of each branch are chosen to be low-pass filters
whose transfer function are given below:

H1,1(z) =
0.6860 + 2.0579z−1 + 2.0579z−2 + 0.6860z−3

1− 2.2805z−1 + 1.7661z−2 − 0.4412z−3
(24)

H1,2(z) =
0.0017 + 0.0050z−1 + 0.0050z−2 + 0.0017z−3

1− 2.6748z−1 + 2.5171z−2 − 0.8290z−3
(25)

H2,1(z) =
0.0071 + 0.0212z−1 + 0.0212z−2 + 0.0071z−3

1− 2.2746z−1 + 1.8872z−2 − 0.5559z−3
(26)

H2,2(z) =
0.0035 + 0.0106z−1 + 0.0106z−2 + 0.0035z−3

1− 2.4053z−1 + 2.0128z−2 − 0.5792z−3
(27)

The disturbance noise v(t) is white Gaussian noise with
a standard deviation of 10−5 a.u., which gives a signal-
to-noise ratio (SNR) between -90 and -120 dB depending
on the input excitation level. The BLA is calculated over 2
periods for 20 realizations of the input over 10 RMS values,
linearly distributed between 0.5 and 3 a.u.rms. A random
phase multisine with a constant power spectrum is used as

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

−140

−120

−100

−80

−60

−40

−20

0

20

frequency (Hz)

m
ag

ni
tu

de
 (

dB
)

Output spectrum: y
1

Fig. 3. Simulation output spectrum with noise on the output, signal to
distortion ratio ≈ 40 (SDR) dB. Full line: output of the true system. Dash
dotted line: output of the optimized model. Triangles: error of the optimized
model, squares: initial estimated model. Top crosses: total variance within
the excited frequency band, bottom crosses: noise variance within the excited
frequency band.

an excitation. Excitations with a period length of 1024 data
points are used and 127 frequencies are excited between DC
and 0.124fsample, with DC excluded. The sample frequency
fsample is normalized to one.

B. Simulation results

The estimated nonlinear MISO parallel Wiener model
before and after optimization are compared with the exact
output of the simulated system in the presence of output
noise, as is shown in Figure 3. The level of the total distortion
and the additive noise distortion are calculated with the BLA-
method, and are represented on the same graph.

The model resulting from the initial parameter estimates
explains a significant part in the nonlinearities present of
the system. The model error before optimization is already
20 to 40 dB lower then the total distortion present in the
outputs of the simulated system. After optimization with
the Levenberg-Marquardt optimization algorithm, the error
further decreases down to the noise floor. This shows that
the proposed identification method followed by a Levenberg-
Marquardt optimization are able to model MISO, and with
extension MIMO, parallel Wiener systems.

V. CONCLUSION

A parametric identification for MIMO parallel Wiener
systems, using a three step procedure is presented, together
with a Levenberg-Marquardt optimizer to further improve the
estimates.

The idea is to first identify the best linear approximation
(BLA) of the system for different excitation levels using
either Gaussian noise or random phase multisine excitations.
Next the dynamics of the individual branches are obtained
by the decomposition of the BLAs. Finally, a linear least
squares estimation of the nonlinearities for each branch of
the system is made.

Compared with the existing algorithms for MIMO Wiener
systems, a major advantage of this method is the possibility
of modeling parallel branches, where the number of branches
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does not depend on the nature of the nonlinearities, but rather
on the number of physical signal paths that are present in
the system. This number of branches can be selected based
on results of the identification method.
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