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Abstract— This paper establishes practical stability results
for an important range of approximate discrete-time filtering
problems involving mismatch between the true system and the
approximating filter model. Using local consistency assumption,
the practical stability established is in the sense of an asymp-
totic bound on the amount of bias introduced by the model
approximation. Significantly, these practical stability results do
not require the approximating model to be of the same model
type as the true system. Our analysis applies to a wide of range
of estimation problems and justifies the common practice of
approximating intractable infinite dimensional nonlinear filters
by simpler computationally tractable filters.

I. INTRODUCTION

Many filtering problems involve estimation of system
quantities from noisy measurements in situations where the
exact (or true) model of the system is either unknown or
is more complicated than can be handled using standard
techniques. In these types of problems, approximate filters
are often designed on the basis of an approximating system
that reasonably represents the true dynamics. For example,
using this informal idea, nonlinear dynamics are sometimes
approximated by hidden Markov model (HMM) or linear
dynamics. These two type of approximating models lead to
the application of HMM filters or Kalman filters in a wide
range of signal and image processing applications [1]–[3].

Despite the successful application of approximate filters in
a large number of applications, conditions that ensure reason-
able filter behaviour have not yet been completely established
in many situations. Specifically, only a small number of
stability results in situations involving model errors have
been presented. These include stability with respect to model
mismatch for Kalman filters [4], [5] and particle filters
[6]–[8]. Further, some convergence and stochastic stability
results for extended Kalman filters are presented in [9], [10].
Moreover, practical stability of general nonlinear observer in
a deterministic setting is presented in [17]

In recent work, relative entropy concepts have been ex-
ploited to determine the similarity of different model de-
scriptions [3], [14], [15]. Specifically, in [14], it has been
shown that the relative entropy rate (RER) between the joint
state and measurement processes of two HMMs is related
to the probabilistic distance (or relative likelihood) between
the HMMs. This relationship suggests a connection between
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RER and the filter performance, and importantly, allows the
use of RER in the design of HMMs to approximate uncertain
nonlinear dynamics [3]. These results motivate consideration
of relative entropy concepts in general filtering problems.

In this paper, we extend the deterministic practical stability
result in [17] to a stochastic setting. We establish practical
stability of general approximating filters with respect to
modelling errors under some mild assumptions, including
one-step (or local) consistency and forgetting properties.
Moreover, we show how relative entropy concepts can be
exploited to establish the required local consistency condi-
tions without reference to specific property of the filtering
equations. The results of this paper are established using
the local consistency techniques that have previously been
used to establish semi-global practical stability results for
discretisation of nonlinear controllers [16].

This paper is structured as follows: In Section II, we intro-
duce our nominal dynamics, our information state concepts,
our modelling approximations, and the concepts of relative
entropy rate. In Section III, we establish some important
consistency results and the main practical stability results
of this paper are established in Section IV. In Section V,
we illustrate our results in the case of HMM approximation.
Some conclusions are presented in Section VI.

II. PROMBLEM FORMULATION

A. Dynamics

For the time step k > 0, we will consider the following
state process xk ∈ Rn and measurement process yk ∈ Rm,

xk = f(xk−1) + vk

yk = c(xk) + wk (1)

where x0 has a priori distribution σ0, f(·) : Rn → Rn,
and c(·) : Rn → Rm. Here, vk ∈ Rn and wk ∈ Rm are
sequences of independent and identically distributed i.i.d.
random variables with densities φv(·) and φw(·), respec-
tively. The random variables vk, wk, and x0 are assumed
to be mutually independent for all k. We will use the
shorthand x[`,m] to denote the state sequences {x`, . . . , xm}.
We likewise define y[`,m].

Throughout the rest of this paper, we will con-
sider all processes to be defined on a probability space
(Ω,F , P ) where Ω consists of all infinite sequences
{x0, . . . , xk, . . . ; y1, . . . , yk, . . .} (with elements ω ∈ Ω), F
is a σ-algebra generated by these sequences, and P is a
probability measure given by Kolmogorov extension theorem
applied to these sequences [18]. Finally, Y[1,k] denotes the
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complete filtration generated by the sequence y[1,k], see [11,
p. 18].

In filtering, we are often interested in the conditional mean
estimate of xk given the measurements y[1,k] and the a priori
distribution σ0, which can be defined, when it exists, as:

x̂ek|[1,k],σ0
, E

[
xk
∣∣Y[1,k], σ0

]
(2)

for all k > 0, where E [·] denotes the expectation operation
corresponding to P . Similarly, x̂ek|[`,m],σ`−1

will denote the
conditional mean estimate at time k, given the measurement
sequences y[`,m] and the distribution σ`−1 of x`−1 at time
`− 1.

Unfortunately, in many situations, it may not be possible
to implement a filter that produces x̂ek|[1,k],σ0

(for example,
such a filter may be computationally intractable). In this
paper, we are interested in the performance of sub-optimal
or approximate filters that provide approximate estimates for
our system state, xk.

B. Normalised Information State

We now introduce some information state concepts that de-
scribe our estimation operations. Consider the space L∞(Rn)
which includes L1(Rn); see [19] for an introduction into
vector space concepts. We will introduce the 〈·, ·〉 notation to
denote the operation of ξ(·) ∈ L1(Rn) and γ(·) ∈ L∞(Rn)
as 〈ξ, γ〉 ,

∫
Rn ξ(x)γ(x)dx. We will also introduce the L1

norm on information state [19]:

||ξ(·)||1 ,
∫
x∈Rn

|ξ(x)|dx. (3)

Let L̄1(Rn) ⊂ L1(Rn) denote functions in L1(Rn)
that have L1 norm equal to 1 in that L̄1(Rn) ,{
ξ(·) : ξ(·) ∈ L1(Rn) and ||ξ(·)||1 = 1

}
. We can now de-

fine a normalised information state process σek(·) ∈ L̄1(Rn) :
Rn → R, based on the true model, by

〈σek, γ〉 = E
[
γ(xk)

∣∣Y[1,k], σ0

]
(4)

for all k > 0, and all test functions γ(·) ∈ L∞(Rn), where
σ0 ∈ L̄1(Rn) is the a priori distribution of x0. This definition
highlights that the normalised information state σek(·) can be
interpreted as a conditional probability density function of xk
given measurement sequences y[1,k] and a priori distribution
σ0. In particular, when it exists, we can write our conditional
mean estimate as

x̂ek|[1,k],σ0
=

∫
x∈Rn

σek(x)xdx. (5)

We also consider an unnormalised information state
σ
e|u
k (·) ∈ L1(Rn) which provides a method of calculating
σek(·). For all k > 0, the unnormalised information state is
given by [11, Ch.5]

σ
e|u
k (x) =

φw(yk − c(x))

φw(yk)

∫
Rn

φv(x− f(z))σek−1(z)dz

(6)
for x ∈ Rn, where σe0 ∈ L1(Rn) = σ0. The normalised
information state σek(·) ∈ L̄1(Rn) can then be written as

σek(·) = N−1
k σ

e|u
k (·) (7)

where Nk =
∣∣∣∣σe|u(·)

∣∣∣∣
1

is a normalisation factor. We
highlight that (6) and (7) together evolve σek−1(·) ∈ L̄1(Rn)
to produce σek(·) ∈ L̄1(Rn). Here, when required to highlight
the initial condition, we will write σek|[1,k],σ0

(·) to denote
the normalised information state σek(·) after evolution by
measurements y[1,k] from initial distribution σ0 at time k =
0 (and sometimes further shortened to σek(σ0), especially
when used in sub-scripts of other quantities). Similarly,
σek|[`+1,k],σe

`
(·) will denote σek(·) after evolution by mea-

surements y[`+1,k] from distribution σe` (·) at time k = `.
Importantly, the distributive nature of the information state
recursions means that σek|[`+1,k],σe

` (σ0)(·) = σek|[1,k],σ0
(·).

We also define σe0|[1,0],σ0
, σ0 for all σ0 ∈ L̄1(Rn).

We highlight that, although not explicitly shown in our
notation, all these information state quantities are also Y[1,k]-
measurable random variables.

C. Parameterised Class of Approximating Models

Let h > 0 parameterises a class of approximating models
(for example, h might be a spatial discretisation size). For
each h, let us consider the following approximating model
of xk and yk (for time step k > 0):

xk = fh(xk−1) + vhk

yk = ch(xk) + whk (8)

where x0 has a priori distribution σh0 , fh(·) : Rn → Rn,
and ch(·) : Rn → Rm. Here, vhk ∈ Rn and whk ∈ Rm
are i.i.d. random variables with densities φhv (·) and φhw(·),
respectively, and vhk , whk , and x0 are assumed to be mutually
independent. Corresponding to each approximating model,
we introduce a new probability measure Ph which allows
us to relate the true model and these approximating models
on the common measure space (Ω,F); such a measure can
be defined through the Kolmogorov extension theorem [18].

For a given h > 0, we can also define the conditional
mean estimate associated with the approximate model as:

x̂hk|[1,k],σh
0
, Eh

[
xk
∣∣Y[1,k], σ

h
0

]
, (9)

where Eh [·] denotes the expectation operation defined by
measure Ph.

Similar to the true model, we also define a normalised
information state process σhk (·) ∈ L̄1(Rn) : Rn → R, for
our h-class of models, as

〈σhk , γ〉 = Eh
[
γ(xk)

∣∣Y[1,k], σ
h
0

]
(10)

for all k > 0, all h > 0 and all test functions γ(·) ∈ L∞(Rn)
where σh0 ∈ L̄1(Rn) is the a priori distribution of x0.
Furthermore, we can define a recursion for the unnormalised
information state process σh|uk (·) ∈ L1(Rn) as σh|uk (x) =
φh
w(yk−ch(x))
φh
w(yk)

∫
Rn φ

h
v (x− fh(z))σhk−1(z)dz so that a nor-

malised information state σhk (·) ∈ L̄1(Rn) can be written as
σhk (·) = N̄−1

k σ
h|u
k (·) where N̄−1

k =
∣∣∣∣∣∣σh|uk (·)

∣∣∣∣∣∣
1
. Again, we

highlight that σhk−1(·) ∈ L̄1(Rn) evolves to σhk (·) ∈ L̄1(Rn).
As above, we also write σh

k|[`+1,k],σh
` (σh

0 )
(·) = σh

k|[1,k],σh
0
(·),

and we define σh0|[1,0],σ0
, σ0 for all σ0 ∈ L̄1(Rn).

7889



We are interested in the situations where the quality of
the approximation improves as h → 0 (the meaning of this
asymptotic behaviour will be discussed in more detail later).
Before this discussion, we introduce some relative entropy
concepts.

D. The Relative Entropy between Models

Consider two probability measures µ and ν on the measur-
able space (Ω,F). The relative entropy D (µ‖ν) of µ with
respect to ν is defined as [20]

D (µ‖ν) ,


∫

Ω

(
log dµ

dν

)
dµ, if µ� ν and∣∣∣log

(
dµ
dν

)∣∣∣ is integrable
+∞, otherwise,

(11)
where (dµ/dν) is the Radon-Nikodym derivative of µ with
respect to ν. Here, we use µ � ν to indicate that µ is
absolutely continuous with respect to ν, in the sense that
µ = 0 whenever ν = 0. The relative entropy D (µ‖ν)
provides a pseudo-distance measure between µ and ν (not
a true distance because it is non-symmetric and does not
satisfy the triangle inequality).

In the following, we will consider the relative entropy
between densities or information states (and this will be un-
derstood to mean the relative entropy between the measures
corresponding to the densities, when such measures exist).

We now introduce some assumptions about our approxi-
mating models.

III. APPROXIMATING FILTER ASSUMPTIONS

A function ψ(·) is of class-K if it is continuous, strictly
increasing and ψ(0) = 0. Moreover, function β(·, ·) is of
class-K L if β(·, t) is of class-K for each t ≥ 0 and β(s, ·)
is decreasing to zero for each s > 0, (see [23, Ch. 4] for
descriptions of system stablity involving such functions).

We now introduce some assumptions that will be used to
establish the important multi-step consistency of filters and
our main practical stability result.
A1) Let N ⊂ R+ be a bounded set containing the ori-

gin. The class of approximating filters σhk|[1,k],σ0
(·) is

asymptotically stable with respect to initial conditions
in N if, there exists a H > 0 and a β(·, ·) ∈ K L
such that, for all h ∈ (0, H], all ||σ0− σ̄0|| ∈ N (with
σ0, σ̄0 ∈ L̄1(Rn)), and all k ≥ 0, we have that∣∣∣∣∣∣σhk|[1,k],σ0

(·)− σhk|[1,k],σ̄0
(·)
∣∣∣∣∣∣

1

≤ β (||σ0 − σ̄0||1 , k) P -a.s.. (12)

A2) The class of approximating filters σhk|[k],σk−1
(·) is

Lipschitz continuous with respect to prior information
if there exists a H > 0 such that, for all h ∈ (0, H],
all prior information σk−1, σ̄k−1 ∈ L̄1(Rn), and all
k > 0, we have that∣∣∣∣∣∣σhk|[k],σk−1

(·)− σhk|[k],σ̄k−1
(·)
∣∣∣∣∣∣

1

≤ K ||σk−1(·)− σ̄k−1(·)||1 P -a.s.

where K > 0 is a finite constant.
Remark 1: Assumption A1 is an abstract version of the

asymptotic stability property with respect to initial conditions
(or exponential forgeting of initial conditions) that is often
encountered in discussion of filter behaviour (for example,
see [4], [5], [22]). As an example, if σhk|[1,k],σ0

(·) corresponds
to a class of Kalman filters, then under controllability, ob-
servability and other mild conditions, exponential forgetting
of covariance matrix and conditional mean estimate, with
respect to initial conditions, can be shown [4], [5]. Hence,
using the definition of the L1 norm, and various algebraic
manipulations, it can be shown that∣∣∣∣∣∣σhk|[1,k],σ0

(·)− σhk|[1,k],σ̄0
(·)
∣∣∣∣∣∣

1
≤β (||σ0 − σ̄0||1, k)Ph-a.s.

where β (||σ0 − σ̄0||1, k) = α1||σ0 − σ̄0||1e−α2k for some
α1 > 0 and α2 > 0.

Remark 2: We highlight that asymptotic stability proper-
ties with respect to initial conditions (such as those that could
be shown when using Kalman filter approximations) would
generally be established Ph-a.s. (not P -a.s. as expressed in
Assumption A1). However, the mild additional condition that
Ph � P can be used on results that hold Ph-a.s. to imply
that they also hold P -a.s.. Note that Ph � P seems to be a
natural prerequisite for approximation.

Remark 3: In many situations, the bounded set N ap-
peared in A1 includes all σ0, σ̄0 ∈ L̄1(Rn) and hence, A1
will imply A2.

We will now introduce some important definitions.
Definition 3.1: The class of approximating filters

σhk|[k],σk−1
(·) is said to be one-step or locally consistent

with respect to the true filter σek|[k],σk−1
(·) if, for each finite

ρ > 0, there exists a H > 0 such that, for all h ∈ (0, H], all
initial conditions σk−1 ∈ L̄1(Rn), and all k > 0, we have
that∣∣∣∣∣∣σek|[k],σk−1

(·)− σhk|[k],σk−1
(·)
∣∣∣∣∣∣

1
≤ ρ P -a.s.. (13)

Lemma 3.1: Consider a state process x[0,k] and a mea-
surement process y[1,k] generated by the true system (1). The
L1 norm of the error between the true filter σek|[k],σk−1

(·) and
the class of approximating filters σhk|[k],σk−1

(·) is bounded
by the relative entropy of conditional probability density
functions in the sense that∣∣∣∣∣∣σek|[k],σk−1

(·)− σhk|[k],σk−1
(·)
∣∣∣∣∣∣

1

≤ B
√
D
(
σek|[k],σk−1

(·)
∣∣∣∣∣∣σhk|[k],σk−1

(·))
)

P -a.s. (14)

for all initial conditions σk−1 ∈ L̄1(Rn) and all k > 0,
where B > 0 is a finite constant.

Proof: From [20, Lemma 11.6.1], we obtain(∣∣∣∣∣∣σek|[k],σk−1
(·)− σhk|[k],σk−1

(·)
∣∣∣∣∣∣

1

)2

≤ B̄D
(
σek|[k],σk−1

(·)
∣∣∣∣∣∣σhk|[k],σk−1

(·)
)

P -a.s. (15)

for some positive finite constant B̄ (which is independent of
h). The lemma statement then follows under the square root
operation.
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Lemma 3.1 establishes that relative entropy provides a
method for establishing one-step consistency for a class of
estimators (as long as D

(
σek|[k],σk−1

(·)‖σhk|[k],σk−1
(·)
)
→ 0

as h → 0). We now introduce the concept of multi-step
consistency.

Definition 3.2: The class of approximating filters
σhk|[1,k],σ0

(·) is said to be multi-step consistent with the
respect to the true filter σek|[1,k],σ0

(·) if, for each finite L ≥ 2
and each finite η(L) > 0, there exists a H > 0 such that,
for all h ∈ (0, H], all initial conditions σ0 ∈ L̄1(Rn) and
all k ∈ [1, L] we have that

∣∣∣∣∣∣σek|[1,k],σ0
(·)− σhk|[1,k],σ0

(·)
∣∣∣∣∣∣

1
≤ η(L) P -a.s.. (16)

We now establish conditions under which this multi-step
consistency condition holds.

Lemma 3.2: Consider a state process x[0,k] and a mea-
surement process y[1,k] generated by the true system (1).
Consider a class of approximating filters σhk|[1,k],σ0

(·). As-
sume that A2 and the one-step consistency condition hold,
then the class of approximating filters is multi-step consistent
with respect to the true filter σek|[1,k],σ0

(·).

Proof: From our definition of one-step consistency, we
have that for each ρ > 0, there is a H > 0 such that, at time
k = 1,

∣∣∣∣∣∣σe1|[1],σ0
(·)− σh1|[1],σ0

(·)
∣∣∣∣∣∣

1
≤ ρ P -a.s. (17)

for all h ∈ (0, H] and all initial conditions σ0 ∈ L̄1(Rn).

At time k = 2, we have that

∣∣∣∣∣∣σe2|[1,2],σ0
(·)− σh2|[1,2],σ0

(·)
∣∣∣∣∣∣

1

=
∣∣∣∣∣∣σe2|[2],σe

1(σ0)(·)− σ
h
2|[2],σh

1 (σ0)(·)
∣∣∣∣∣∣

1

≤
∣∣∣∣∣∣σe2|[2],σe

1(σ0)(·)− σ
h
2|[2],σe

1(σ0)(·)
∣∣∣∣∣∣

1

+
∣∣∣∣∣∣σh2|[2],σe

1(σ0)(·)− σ
h
2|[2],σh

1 (σ0)(·)
∣∣∣∣∣∣

1

≤ ρ+K
∣∣∣∣σe1(σ0)− σh1 (σ0)

∣∣∣∣
1

P -a.s.

= ρ+K
∣∣∣∣∣∣σe1|[1],σ0

(·)− σh1|[1],σ0
(·)
∣∣∣∣∣∣

1
P -a.s.

≤ (1 +K)ρ P -a.s.. (18)

The 2nd step comes from Minkowski’s
inequality [18, p. 242]. In the 3rd step, we
have applied one-step consistency assumption that∣∣∣∣∣∣σe2|[2],σe

1(σ0)(·)− σ
h
2|[2],σe

1(σ0)(·)
∣∣∣∣∣∣

1
≤ ρ and using Assump-

tion A2, we have that
∣∣∣∣∣∣σh2|[2],σe

1(σ0)(·)− σ
h
2|[2],σh

1 (σ0)
(·)
∣∣∣∣∣∣

1
≤

K
∣∣∣∣σe1(σ0)− σh1 (σ0)

∣∣∣∣
1
. In the 4th step, we have used that

σe1(σ0) is shorthand for σe1|[1],σ0
(·), etc.

Now at time k = 3, we have that∣∣∣∣∣∣σe3|[1,3],σ0
(·)− σh3|[1,3],σ0

(·)
∣∣∣∣∣∣

1

≤
∣∣∣∣∣∣σe3|[3],σe

2(σ0)(·)− σ
h
3|[3],σe

2(σ0)(·)
∣∣∣∣∣∣

1

+
∣∣∣∣∣∣σh3|[3],σe

2(σ0)(·)− σ
h
3|[3],σh

2 (σ0)(·)
∣∣∣∣∣∣

1

≤ ρ+K
∣∣∣∣σe2(σ0)(·)− σh2 (σ0)(·)

∣∣∣∣
1

P -a.s.

= ρ+K
∣∣∣∣∣∣σe2|[1,2],σ0

(·)− σh2|[1,2],σ0
(·)
∣∣∣∣∣∣

1
P -a.s.

≤ ρ+K(1 +K)ρ P -a.s.

= (1 +K +K2)ρ P -a.s.. (19)

By induction, for each L ≥ 2 and each η(L) > 0, from
our one-step consistency, we can select a ρ > 0, such that,
for all h ∈ (0, H] and all initial conditions σ0 ∈ L̄1(Rn),
we have that∣∣∣∣∣∣σek|[1,k],σ0

(·)− σhk|[1,k],σ0
(·)
∣∣∣∣∣∣

1
≤ ρ

L−1∑
i=0

Ki P -a.s.

≤ η(L) P -a.s.. (20)

This establishes the lemma statement.

IV. PRACTICAL STABILITY OF APPROXIMATING
FILTERS

We now establish the main result of this paper.
Theorem 4.1: (Practical asymptotic stability with respect

to modelling errors) Consider a state process x[0,k] and a
measurement process y[1,k] generated by the true system (1).
Assume that A1 holds and that the class of approximating
filters σhk|[1,k],σ0

(·) is multi-step consistent with respect to
the true filter σek|[1,k],σ0

(·). Then, for any selected R > 0,
there exists a H > 0 such that, for all h ∈ (0, H], all initial
conditions

∣∣∣∣σ0 − σh0
∣∣∣∣

1
∈ N (with σ0, σ

h
0 ∈ L̄1(Rn)), and

all k ≥ 0, the class of approximating filters is practically
stable in the presence of modelling errors in the sense that∣∣∣∣∣∣σek|[1,k],σ0

(·)− σhk|[1,k],σh
0
(·)
∣∣∣∣∣∣

1

≤ β
(∣∣∣∣σ0 − σh0

∣∣∣∣
1
, k
)

+R P -a.s.. (21)
Proof: For the selected R and the bounded set N

appearing in Assumption A1, let L > 0 and η(L) be such
that

1) 2η(L) ∈ N ,
2) R > 3

2β(2η(L), 0), and
3) β(M,L) ≤ η(L) where M = supξ∈N |ξ|.

Then note that, from Assumption A1 with k = 0, β(s, 0) ≥
s. Hence, R > 3

2β(2η(L), 0) ensures that η(L) ≤ 1
3R.

Now for the selected L and η(L), there is a finite H > 0
such that for all h ∈ (0, H], all

∣∣∣∣σ0 − σh0
∣∣∣∣

1
∈ N and all

k ∈ [1, L], we have that∣∣∣∣∣∣σek|[1,k],σ0
(·)− σhk|[1,k],σ0

(·)
∣∣∣∣∣∣

1
≤ η(L) P -a.s.. (22)
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Thus, from Assumption A1 and (22), we have for such(
h, k,

∣∣∣∣σ0 − σh0
∣∣∣∣

1

)
that∣∣∣∣∣∣σek|[1,k],σ0
(·)− σhk|[1,k],σh

0
(·)
∣∣∣∣∣∣

1

≤
∣∣∣∣∣∣σek|[1,k],σ0

(·)− σhk|[1,k],σ0
(·)
∣∣∣∣∣∣

1

+
∣∣∣∣∣∣σhk|[1,k],σ0

(·)− σhk|[1,k],σh
0
(·)
∣∣∣∣∣∣

1

≤ η(L) + β
(∣∣∣∣σ0 − σh0

∣∣∣∣
1
, k
)

P -a.s.. (23)

Since η(L) < 1
3R, we have that (21) holds for all h ∈

(0, H], all
∣∣∣∣σ0 − σh0

∣∣∣∣
1
∈ N , and all k ∈ [1, L]. It remains

to establish that this holds for larger k.
We highlight that from our choice of L and η(L), (23),

and noting that N ⊂M , we have at time k = L that∣∣∣∣∣∣σeL|[1,L],σ0
(·)− σhL|[1,L],σ0

(·)
∣∣∣∣∣∣

1
≤ 2η(L) P -a.s..

(24)
Now consider the time interval k ∈ [L + 1, 2L] and let
k̄ = k − L. From Assumption A1, time-invariance of the
true system (1) and the approximating model (8), the bounds
previously established in (22) and (24), and that 2η(L) ∈ N ,
we have for all k ∈ [L+ 1, 2L] that∣∣∣∣∣∣σek|[1,k],σ0

(·)− σhk|[1,k],σh
0
(·)
∣∣∣∣∣∣

1

=
∣∣∣∣∣∣σek̄|[L+1,k],σe

L(σ0)(·)− σ
h
k̄|[L+1,k],σh

L(σh
0 )(·)

∣∣∣∣∣∣
1

≤
∣∣∣∣∣∣σek̄|[L+1,k],σe

L(σ0)(·)− σ
h
k̄|[L+1,k],σe

L(σ0)(·)
∣∣∣∣∣∣

1

+
∣∣∣∣∣∣σhk̄|[L+1,k],σe

L(σ0)(·)− σ
h
k̄|[L+1,k],σh

L(σh
0 )(·)

∣∣∣∣∣∣
1

≤ η(L) + β
(∣∣∣∣σeL(σe0)− σhL(σh0 )

∣∣∣∣
1
, k̄
)

P -a.s.

≤ η(L) + β
(
2η(L), k̄

)
P -a.s.. (25)

Here, Assumption A1 is used in the 2nd step. In the 3rd step,
we have used that σeL(σe0) is shorthand for σeL|[1,L],σ0

(·), etc.
The 4th step follows from (24).

Now we highlight that, for all k ∈ [L+ 1, 2L],∣∣∣∣∣∣σek|[1,k],σ0
(·)−σhk|[1,k],σh

0
(·)
∣∣∣∣∣∣

1
≤η(L) + β (2η(L), 0)P -a.s.

≤ R

3
+

2R

3
P -a.s.

= R P -a.s. (26)

We also note that at the end of the interval [L+ 1, 2L], we
have that ∣∣∣∣∣∣σe2L|[1,2L],σ0

(·)− σh2L|[1,2L],σh
0
(·)
∣∣∣∣∣∣

1

≤ η(L) + β (2η(L), L) P -a.s.
≤ 2η(L) P -a.s.. (27)

The result then follows by induction.
The importance of Theorem 4.1 is that if the approxi-

mating filter is asymptotically stable with respect to initial
conditions and locally consistent with respect to the true fil-
ter, then the error between the true and approximating filters
is asymptotically small. This means that approximations can
be designed that, asymptotically, have any desired level of

relative performance. We stress that we only require the error
between the approximating filter and differently initialised
versions of the approximating filter itself is bounded by
β(·, ·). This assumption, combined with multi-step consis-
tency property, is used to establish the practical stability
result.

Remark 4: The role of relative entropy in the presented
practical asymptotic stability result is limited to establishing
the useful one-step consistency property and we acknowledge
that it may be possible to establish the required one-step
consistency using other techniques. However, we highlight
that relative entropy concepts allow the important one-step
consistency property to be established without appealing to
the specific nature of the filtering recursions (in comparison,
we note that previous stability results of this type have
only been established by appealing to specific features of
the recursions involved, for example the stability results for
particle filters established in [6]–[8]).

A. Models with Sufficiently Informative Observations

Let us now introduce an assumption under which our true
and approximation models will be said to have sufficiently
informative observations.

C1) The difference between distributions ∆σhk (·) =
σek|[1,k],σ0

(·)−σh
k|[1,k],σh

0
(·) has light tails if there exists

a H > 0 such that, for all h ∈ (0, H], all initial
conditions σ0, σ

h
0 ∈ L̄1(Rn), and all k ≥ 0, we have

that ∣∣∣∣∆σhk (x)
∣∣∣∣

1
≥ B

∣∣∣∣∆σhk (x)x
∣∣∣∣

1
P -a.s.

for some finite constant B (which is independent of
h).

Remark 5: Assumption C1 implies that observations
should be sufficiently informative so that the information
states corresponding to the true and approximating models
sufficiently match outside some compact set. As simple
example, C1 automatically holds if wk has compact support.
Moreover, this condition also holds when wk has Gaussian
density (which tends to “localise” the state values enough
for C1 to hold). Although we admit this condition seems
difficult to establish without examination of the specific
filters involved, we highlight that Assumption C1 seems no
more restrictive than the usual type of observation model
assumptions that appears in establishment of the asymptotic
stability with respect to initial conditions, see [12], [13].

We can now establish a result related to the conditional
mean estimates produced by the approximate filters.

Theorem 4.2: Consider a state process x[0,k] and a mea-
surement process y[1,k] generated by the true system (1).
Assume A1, C1, and that the class of approximating filters
σhk|[1,k],σ0

(·) is multi-step consistent with respect to the true
filter σek|[1,k],σ0

(·). Then, for any selected R > 0, there is a
H > 0 such that, for all h ∈ (0, H], all initial conditions∣∣∣∣σ0 − σh0

∣∣∣∣
1
∈ N (with σ0, σ

h
0 ∈ L̄1(Rn)), and all k ≥ 0,

the class of approximating filters is practically stable in the
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presence of modelling errors in the sense that∣∣∣x̂ek|[1,k],σ0
− x̂hk|[1,k],σh

0

∣∣∣ ≤ β (∣∣∣∣σ0 − σh0
∣∣∣∣

1
, k
)

+R P -a.s..
(28)

Proof: We first note that

x̂ek|[1,k],σ0
− x̂hk|[1,k],σh

0

=

∫
x∈Rn

(
σek|[1,k],σ0

(·)− σhk|[1,k],σh
0
(·)
)
xdx. (29)

By taking the magnitude, we obtain∣∣∣x̂ek|[1,k],σ0
− x̂hk|[1,k],σh

0

∣∣∣
=

∣∣∣∣∫
x∈Rn

(
σek|[1,k],σ0

(·)− σhk|[1,k],σh
0
(·)
)
xdx

∣∣∣∣
≤
∣∣∣∣∣∣(σek|[1,k],σ0

(·)− σhk|[1,k],σh
0
(·)
)
x
∣∣∣∣∣∣

1

≤ B̄
∣∣∣∣∣∣(σek|[1,k],σ0

(·)− σhk|[1,k],σh
0
(·)
)∣∣∣∣∣∣

1
(30)

for some finite positive constant B̄ (which is independent of
h).

In the 2nd step, we have used the definition of
|| · ||1 operation and the integral property that ||ξ(·)x||1 ≥∣∣∫
x∈Rn ξ(·)xdx

∣∣. The 3rd step follows from Assumption
C1. The theorem statement then follows from the result of
Theorem 4.1.

V. CASE STUDY
This paper’s stability results provide the first theoretical

justification to the widespread application of HMMs in
various approximation problems [1]–[3]. We now illustrate
these results in the approximation of a scalar continuous-
valued nonlinear system by a hidden Markov model (HMM).
For this purpose, we will create a special interpretation of
the HMM’s underlying discrete-state process via a spatial
“blurred” version of the state process.

For presentation purposes, we limit our example to a scalar
example (but this approach can be generalised). Consider
a scalar true model with dynamics xk ∈ R described by
(1), where f(x) = mod(ax + b, 2b) − b for some a ∈ N̄
and b > 0, c(x) = x, φw(·) is a zero-mean unit-variance
Gaussian density, and φv(·) is some density function with
support only in the interval[−1, 1] (here mod(·, ·) is the
modulus operation). Under these assumptions xk ∈ Sx =
[−(b+ 1), b+ 1) for all k.

The restriction of dynamics to a finite region of state-space
is somewhat limiting but is also understandable considering
the nature of HMMs (also, admittedly, the restriction to
bounded region immediately implies that filtering errors are
finite, but our results establish the tighter error bound).

We will now introduce a HMM process which approxi-
mates the true system described above (repeating the con-
struction of [3]). Let ei = [0, . . . , 0, 1, 0, . . . , 0]′ ∈ RN̄
denote an indicator vector with 1 in the ith position and
zero elsewhere, and let N̄ denotes the number of HMM
states (to simplify later construction, we will assume N̄
is even). At time k, we will let Xk ∈ {e1, e2, . . . , eN̄}
denote the state of the HMM process. This HMM state

process is described by a transition probabilities matrix A
with ijth element, Aij = p(Xk+1 = ei|Xk = ej), where
p(·) is the probability law describing our HMM state process.
The HMM state process is also assumed to have an initial
probabilities vector π with ith element, πi = p(X0 = ei).
The measurement process yk associated with the HMM state
process is described by an output probability matrix B(yk)
given by B(yk) = diag([p(yk|Xk = e1), . . . , p(yk|Xk =
eN̄ )]), where diag(x) is the diagonal matrix with x on its
diagonal.

The HMM state process is assumed to exist on the
following spatial discretisation of Sx. Let G be the spatial
grid (with N̄ grid points) that approximates Sx such that
G = {x : x = ±mh} where m = 1, . . . , (N̄/2), and
h = 2(b + 1)/N̄ is spacing parameter. This allows us to
relate each grid point with a HMM state value. We will use
G(ei) to denote the specific location on G corresponding to
state value ei.

We will now introduce a blurred approximating process
associated with this HMM state process. Let C(ei) denote a
h-sized cell containing grid location G(ei). The cell C(ei)
is used to describe the region of Sx represented by the state
value ei. The cells are assumed designed to completely cover
Sx in the sense that for all x ∈ Sx, x ∈ C(ei) for some ei.
Conversely, let e(x) be the indicator vector denoting the cell
containing the value x (ie. the inverse association), that is
x ∈ C(e(x)) for all possible values of x ∈ Sx. We will
also assume that the boundaries between adjacent cells are
not shared. For approximation purposes, we define xak to
be a blurred version of Xk, with the properties that, for all
k ≥ 0, xak ∈ C(Xk), Xk = e(xak) and xak has uniform
distribution over the cell C(Xk). Further, we assume that
p (yk|xak) = p(yk|Xk = e(xak)) for all possible values of
yk and xak. We also assume that the grid points G(ei) are
centred in their corresponding cells C(ei) so that E[xak|Xk =
e(xak)] = Gh(e(xak)) for all possible values of xak. At time
k, the information state associated with this blurred process,
given the measurements y[1,k] and an blurred initial condition
corresponding π, can be written as:

σa,hk|[1,k],σ0
(x) =

1

h
e(x)′X̂k|[1,k],π

where X̂k|[1,k],π denotes the HMM filter estimate at time
k given the measurements y[1,k] and the initial condition π

(see [11]). Note that the inner product e(x)′X̂k|[1,k],π simply
extracts the element of X̂k|[1,k],π corresponding to the filtered
probability of being in cell C(x).

We now consider the application of Theorem 4.1 and
Theorem 4.2 to the approximate filter σa,hk|[1,k],σ0

(x) by in-
troducing some assumptions about the approximation model.
Let x+

k+1 = E[xk+1 − xk|xk]. Let us choose an irreducible
and aperiodic A such that

Aij =
1

2
max

[
0,min

(
G(ei) +

h

2
, f (G(ej)) + 1

)
− max

(
G(ei)−

h

2
, f (G(ej))− 1

)]
,
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so that the state dynamics are matched in means and vari-
ances (that is, locally consistent as suggested in [21]) in the
sense that

1) E[G(Xk+1)−G(Xk)|Xk = e(xk)] = x+
k+1 +α1h for

some α1 > 0 and for all xk,
2) E[(G(Xk+1) − G(Xk) − x+

k+1)2|Xk = e(xk)] =
E[(xk+1 − xk − x+

k+1)2|xk] + α2h for some α2 > 0
and for all xk.

Assume the observation model p(yk|Xk) = φw(yk −
G(Xk)). Under these assumptions on HMM parameters
(specifically, irreducible and aperiodic A and positive obser-
vation density p(yk|Xk)), Theorem 2.2 of [22] shows that
corresponding HMM filter is exponential forgetting in the
sense that∣∣∣∣∣∣X̂k|[1,k],π − X̂k|[1,k],π0

∣∣∣∣∣∣
1
≤βHMM (||π − π0||1 , k)P -a.s.,

where π, π0 are two different initial conditions. Here,
βHMM (s, k) = αε̄k||s||1 where ε̄ < 1 and α is a finite
constant. Under our definition of xak, the same exponential
stability with respect to initial conditions also holds for
the blurred process xak, P -a.s.. Also, Assumption A2 holds
because HMM conditional mean estimates are linear in
previous estimate, see [11].

Now we note that the bounded nature of Sx implies that
the information states σek(·) and σhk (·) have compact support
(which is independent of h) and hence, Assumption C1 holds
because

‖∆σhk (xk)xk‖1 =

∫ ∣∣∆σhkxk∣∣ dxk
≤ |xmax|

∫ ∣∣∆σhk ∣∣ dxk
= B‖∆σhk‖1

where xmax is the largest absolute value of x in the support
of ∆σh. Hence, if we select our HMM design so that
D
(
σek|[k],σk−1(·)

∥∥∥σhk|[k],σk−1(·)

)
→ 0 as h → 0, then

Assumptions A2 can be used to give that the approximating
HMM model is multi-step consistent with the true model.
Consequently, Assumptions A1, A2, C1 and the multi-step
consistency property allow us to apply Theorem 4.1 (and
Theorem 4.2) to establish practical stability of the approxi-
mating filters with respect to modelling errors.

VI. CONCLUSION

In this paper, we present practical stability with respect to
modelling errors results for a range of approximate filtering
problems. The results are established using some important
filter local consistency and relative entropy concepts. We
illustrated the application of our practical stability results
in the case of hidden Markov model based approximations.
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