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Abstract— Adaptive feedforward broadband vibration (or
noise) compensation is currently used when a measurement
correlated with the disturbance is available. However, in most
of the systems there is a ”positive” feedback coupling between
the compensator system and the disturbance correlated mea-
surement. This may lead to the instability of the system. The
paper proposes a new Youla-Kucera (YK) parametrization of
the compensator. The central compensator assures the stability
of the system and its performances are enhanced in real time by
the adaptation of the parameters of an IIR Youla-Kucera filter.
An analysis of the resulting system is provided. The results of
this paper on one hand generalize previous results obtained for
FIR Youla-Kucera adaptive filters and on the other hand lead
to a significant reduction of the number of parameter to be
adapted for the same level of performance. The algorithm has
been applied to an Active Vibration Control (AVC) system and
real time results are presented.

Index Terms— active vibration control, adaptive feedforward
compensation, adaptive control, Youla-Kucera parametrization,
parameter estimation.

I. INTRODUCTION

Adaptive feedforward broadband vibration (or noise) com-
pensation is currently used in ANC (Active Noise Control)
and AVC when an image of the disturbance (i.e. a correlated
measurement) is available ([3], [4], [7], [16]). However,
in many systems there is a ”positive” feedback coupling
between the compensator system and the measurement of the
image of the disturbance (vibration or noise) ([6], [7], [16]).
The positive feedback may destabilize the system because
the system is no more a pure feedforward compensator.

Different solutions have been proposed to overcome this
problem (see for example [8]). In [7], [10] algorithms for
adapting the IIR feedforward filter in real time taking into
account the presence of the positive feedback have been pro-
posed, analyzed and evaluated. In [15] the FULMS algorithm
is analyzed in the context of this internal positive feedback.
An experimental evaluation of these various approaches can
be found in [10].

In [16], the idea of using an YK parametrization of the
feedforward compensator is illustrated in the context of
ANC. Based on the identification of the system, a stabilizing
YK controller using an orthonormal basis filter is designed.
The YK parameters weighting the orthonormal basis filters
are then updated by using a two time scale indirect proce-
dure: (1) estimation of the Q-filter’s parameters over a certain
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horizon, (2) updating of the controller. No stability proof for
the tuning procedure is provided.

In [9] an algorithm for adapting the Q parameters of
an FIR Youla-Kucera (also called QFIR) parameterized
feedforward compensator has been proposed, analyzed and
tested experimentally on an AVC system. While the central
stabilizing compensator has a IIR structure, the YK filter has
an FIR structure.

The main contributions of this paper with respect to [9],
[16] are:
• the development of a new real time recursive adaptation

algorithm for the Q-parameters of a QIIR filter and the
analysis of the stability of the resulting system;

• experimental and simulation comparison with adaptive
feedforward compensators using a QFIR filter;

• reduction of the number of parameters to be adapted for
the same level of performance.

While the paper is developed in the context of AVC, the
results are certainly applicable to ANC systems.

The paper is organized as follows. In Section II the
AVC system which will be used as a test bench will be
presented. The system representation and feedforward filter
structure are given in section III. The algorithm for adaptive
feedforward compensation will be developed in section IV
and analyzed in section V. Section VI will present simulated
and experimental results obtained on the AVC system.

II. AN AVC SYSTEM USING AN INERTIAL ACTUATOR

Fig. 1. An AVC system using a feedforward compensation - photo

Figures 1 and 2 represent an AVC system using a measure-
ment of the image of the disturbance and an inertial actuator
for reducing the residual acceleration. It consists of five metal
plates connected by springs, out of which the first and last
being fixed form the support. The second and fourth plates
are equipped with an inertial actuator: the first will excite the
structure (disturbances) and the second will create vibrational
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Fig. 2. An AVC system using a feedforward compensation - scheme

forces which can counteract the effect of these vibrational
disturbances. The image of the disturbance and the residual
acceleration are measured by accelerometers.

The path between the disturbance and the residual accel-
eration is called the global primary path, the path between
the measure of the image of the disturbance and the residual
acceleration (in open loop) is called the primary path and
the path between the inertial actuator and the residual ac-
celeration is called the secondary path. d(t) is the image of
the disturbance measured effectively when the compensator
system is not used. When the compensator system is active,
the actuator acts upon the residual acceleration, but also
upon the measurement of the image of the disturbance. The
measured quantity will be the sum of the disturbance d(t)
and of the effect of the actuator. The problem of ”positive”
feedback coupling is clearly illustrated in figures 1 and 2.
([7], [16]).

W D
s(t)

d(t)

d(t) x(t)

Global primary path

   Measurement of the

image of the disturbance

    Residual

 acceleration

measurement

Primary path

χ (t)

(a)

(b)

Fig. 3. Feedforward AVC: in open loop (a) and with adaptive feedforward
compensator (b)

The input to the inertial actuators being a position, the
global primary path, the secondary path and the positive

feedback path have a double differentiator behavior. The
corresponding block diagrams in open loop operation and
with the compensator system are shown in Figures 3(a) and
3(b). û(t) denotes the effective output provided by the mea-
surement device and which will serve as input to the adaptive
feedforward filter N̂. The output of this filter denoted by
ŷ(t) is applied to the actuator through an amplifier. The
transfer function G (the secondary path) characterizes the
dynamics from the output of the filter N̂ to the residual
acceleration measurement (amplifier + actuator + dynamics
of the mechanical system). The transfer function D between
d(t) and the measurement of the residual acceleration (in
open loop operation) characterizes the primary path.

The ”positive” coupling between the output of the filter
and the measurement û(t) through the compensator actuator
is denoted by M.

At this stage it is important to mention that in the
absence of the feedforward filter very reliable models for the
secondary path, the ”positive” feedback path and the primary
path can be identified by applying appropriate excitation on
the actuator.

III. BASIC EQUATIONS AND NOTATIONS

The different blocks of the AVC system will be described
in this section. The primary (D), secondary (G) and reverse
(positive coupling) (M) paths represented in (3(b)) are char-
acterized by the asymptotically stable transfer operators1:

D(q−1) =
BD(q−1)

AD(q−1)
=

bD
1 q−1 + ...+bD

nBD
q−nBD

1+aD
1 q−1 + ...+aD

nAD
q−nAD

, (1)

G(q−1) =
BG(q−1)

AG(q−1)
=

bG
1 q−1 + ...+bG

nBG
q−nBG

1+aG
1 q−1 + ...+aG

nAG
q−nAG

, (2)

M(q−1) =
BM(q−1)

AM(q−1)
=

bM
1 q−1 + ...+bM

nBM
q−nBM

1+aM
1 q−1 + ...+aM

nAM
q−nAM

. (3)

The optimal feedforward filter (unknown) is defined by

N(q−1) =
R(q−1)

S(q−1)
=

r0 + r1q−1 + ...+ rnR q−nR

1+ s1q−1 + ...+ snS q−nS
(4)

For the purpose of this paper, an Youla-Kucera
parametrization of the optimal filter is considered ([2]). In
this case, the filter polynomials R(q−1) and S(q−1) become:

R(q−1) = AQ(q−1)R0(q−1)−BQ(q−1)AM(q−1), (5)
S(q−1) = AQ(q−1)S0(q−1)−BQ(q−1)BM(q−1) (6)

where S0(q−1) and R0(q−1) denote respectively the denomi-
nator and numerator of the central (stabilizing) controller and
AQ(q−1) and BQ(q−1) are the denominator and the numerator
of the optimal Q filter

Q(q−1) =
BQ(q−1)

AQ(q−1)
=

bQ
0 +bQ

1 q−1 + . . .+bQ
nBQ

q−nBQ

1+aQ
1 q−1 + . . .+aQ

nAQ
q−nAQ

. (7)

The estimated filter is denoted by N̂(q−1). The estimated
Q filter is denoted by Q̂(q−1) or Q̂(θ̂ ,q−1) when it is a linear

1The parenthesis (q−1) will be omitted in some of the following equations
to make them more compact.
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filter with constant coefficients or Q̂(t,q−1) during estimation
(adaptation). Similarly the estimated polynomials R and S
will be denoted R̂(t,q−1) and Ŝ(t,q−1).

The input-output relationships for the estimated feedfor-
ward filter for the case of time varying parameter estimates
are given by the ”a priori” output

ŷ0(t +1) =−Ŝ∗(t,q−1)ŷ(t)+ R̂(t,q−1)û(t +1) (8)
where Ŝ∗(t,q−1) and R̂(t,q−1) satisfy equations (5) and (6)
in which Q is replaced by Q̂(t,q−1) and ŷ(t), ŷ(t−1), . . . are
the ”a posteriori” outputs of the feedforward filter generated
by

ŷ(t +1) =−Ŝ∗(t +1,q−1)ŷ(t)+ R̂(t +1,q−1)û(t +1). (9)

The measured input to the feedforward filter satisfies the
following equation (in adaptive operation)

û(t) = d(t)+
BM(q−1)

AM(q−1)
ŷ(t) (10)

Note that in the case of constant parameters one has ŷ(t) = ŷ.
The ”a posteriori” unmeasurable value of the output of the

secondary path is denoted by ẑ(t) while its input is ŷ(t). The
”a priori” output of the secondary path will be denoted ẑ0(t).
One has:

ẑ(t) = G(q−1)ŷ(t); ẑ0(t) = G(q−1)ŷ0(t) (11)
The measured residual acceleration (or force) satisfies the
following equation

χ
0(t) = x(t)+ ẑ0(t) (12)

The ”a priori” adaptation error is given by:
ν

0(t) =−χ
0(t) (13)

The ”a posteriori” unmeasurable (but computable) adaptation
error is given by:

ν(t) =−x(t)− ẑ(t) (14)

For compensators with constant parameters ν0(t) = ν(t).

IV. ALGORITHM DEVELOPMENT

The algorithm for adaptive feedforward compensation will
be developed under the following hypotheses:

1) The signal d(t) is bounded (which is equivalently to
say that s(t) is bounded and W (q−1) in figure 3 is
asymptotically stable).

2) It exists a central feedforward compensator N0(R0,S0)
which stabilizes the inner positive feedback loop
formed by N0 and M and the characteristic polynomial
of the closed loop:

P0(z−1) = AM(z−1)S0(z−1)−BM(z−1)R0(z−1) (15)
is a Hurwitz polynomial.

3) (Perfect matching condition) It exists a value of the Q
parameters such that

G ·AM(R0AQ−AMBQ)

AQ(AMS0−BMR0)
=−D. (16)

4) The effect of the measurement noise upon the mea-
surement of the residual acceleration is neglected (de-
terministic context).

Once the algorithm will be developed under these hypothe-
ses, hypotheses 3 and 4 will be removed and the algorithm
will be analyzed in this modified context.

A first step in the development of the algorithms is to es-
tablish for a fixed estimated compensator a relation between
the error on the Q-parameters (with respect to the optimal
values) and the adaptation error ν . This is summarized in
the following lemma:

Lemma 4.1: Under the hypothesis 1 through 4 for the
system described in figure 3 using a Q-parameterized feed-
forward compensator with constant parameters one has:

ν(t +1) =
AM(q−1)G(q−1)

AQ(q−1)P0(q−1)
[θ − θ̂ ]T φ(t), (17)

where

θ
T = [bQ

0 , . . . ,b
Q
nBQ

,aQ
1 , . . . ,a

Q
nAQ

] = [θ T
BQ
,θ T

AQ
] (18)

is the vector of parameters of the optimal Q filter assuring
perfect matching,

θ̂
T = [b̂Q

0 , . . . , b̂
Q
nBQ

, âQ
1 , . . . , â

Q
nAQ

] = [θ̂ T
BQ
, θ̂ T

AQ
] (19)

is the vector of parameters for the estimated Q̂ filter

Q̂(q−1) =
B̂Q(q−1)

ÂQ(q−1)
=

b̂Q
0 + b̂Q

1 q−1 + . . .+ b̂Q
nBQ

q−nBQ

1+ âQ
1 q−1 + . . .+ âQ

nAQ
q−nAQ

(20)

and α(t +1), β (t) and φ are given respectively by:

α(t +1) =B∗M ŷ(t)−AM û(t +1) (21a)
β (t) =R0û(t)−S0ŷ(t) (21b)

φ
T (t) =[α(t +1),α(t), . . . ,α(t−nBQ +1),

β (t),β (t−1), . . . ,β (t−nAQ)]. (21c)

Proof: See appendix I.
Remark: This result can be particularized for the case of

a FIR Youla Kucera filter by taking AQ = 1 and ÂQ = 1.
Filtering the vector φ by an asymptotically stable filter

L(q−1), eq. (17) becomes:

ν(t +1) =
AM(q−1)G(q−1)

AQP0(q−1)L(q−1)
[θ − θ̂ ]T φ f (t) (22)

with

φ f (t)=L(q−1)φ(t)= [α f (t+1),α f (t), . . . ,α( f t−nBQ +1),

β f (t),β f (t−1), . . . ,β f (t−nAQ)] (23)
where

α f (t +1) = L(q−1)α(t +1),

β f (t) = L(q−1)β (t).
(24)

Eq. (22) will be used to develop the adaptation algorithms.
For the case in which the parameters of Q̂ evolve over

time, and neglecting the non-commutativity of the time
varying operators, equation (22) transforms into the equation
of the a posteriori adaption error2

ν(t +1) =
AM(q−1)G(q−1)

AQ(q−1)P0(q−1)L(q−1)
[θ − θ̂(t +1)]T φ f (t).

(25)

2However exact algorithms can be developed taking into account the non-
commutativity of the time varying operators - see [13].
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Equation (25) has the standard form for an ”a posteriori
adaption error equation ([13]), which immediately suggests
to use the following parameter adaptation algorithm:

θ̂(t +1) = θ̂(t)+F(t)Φ(t)ν(t +1) (26a)

ν(t +1) =
ν0(t +1)

1+ΦT (t)F(t)Φ(t)
(26b)

F(t +1) =
1

λ1(t)

F(t)− F(t)Φ(t)ΦT (t)F(t)
λ1(t)
λ2(t)

+ΦT (t)F(t)Φ(t)

 (26c)

1≥ λ1(t)> 0;0≤ λ2(t)< 2;F(0)> 0 (26d)
Φ(t) = φ f (t) (26e)

where λ1(t) and λ2(t) allow to obtain various profiles for the
matrix adaptation gain F(t) (see [13]). By taking λ2(t)≡ 0
one gets a constant adaptation gain matrix (and choosing F =
γI, γ > 0 one gets a scalar adaptation gain). The measured
a priori adaptation error is given by (13).

Three choices for the filter L will be considered, leading
to three different algorithms:

Algorithm I: L = G.
Algorithm II: L = Ĝ.
Algorithm III: L = ÂM

P̂
Ĝ,

where P̂ = ÂQ(ÂM Ŝ0− B̂MR̂0) = ÂQP̂0.

V. ANALYSIS OF THE ALGORITHMS

A. The deterministic case - perfect matching

Equation (25) for the a posteriori adaptation error has the
form:

ν(t +1) = H(q−1)[θ − θ̂(t +1)]T Φ(t) (27)

where

H(q−1) =
AM(q−1)G(q−1)

AQ(q−1)P0(q−1)L(q−1)
,Φ = φ f (28)

One has the following result:
Lemma 5.1: Assuming that eq. (27) represents the evolu-

tion of the a posteriori adaption error and that the parameter
adaption algorithm (26a) through (26e) is used one has:

lim
t→∞

ν(t +1) = 0 (29)

lim
t→∞

[ν0(t +1)2]

1+Φ(t)T F(t)Φ(t)
= 0 (30)

||Φ(t)|| is bounded (31)

lim
t→∞

ν
0(t +1) = 0 (32)

for any initial conditions θ̂(0), ν(0) provided that:

H ′(z−1) = H(z−1)− λ2

2
,max

t
[λ2(t)]≤ λ2 < 2 (33)

is a strictly positive real transfer function.
Remark: This result can be particularized for the case of

FIR Youla Kucera adaptive filters by taking AQ = 1 and ÂQ =
1. The adaptation algorithm given by (26a) through (26e) is
used with β (t− i) = 0, i = 0,1, .... and âQ

i = 0, i = 1,2, ....
Proof: To prove (29) and (30), one can straightforwardly

use theorem 3.3.2 from [13] (pages 97-103).
However in order to show that ν0(t +1) goes to zero one

has to show first that the components of the regressor vector

are bounded. The result (30) suggests to use the Goodwin’s
”bounded growth” lemma ([5] and lemma 11.2.1 in [13] pg.
375). Provided that:

|ΦT (t)F(t)Φ(t)|
1
2 ≤C1 +C2.max |ν0(k)| (34)

0 <C1 < ∞ 0 <C2 < ∞ 0≤ k ≤ t +1, F(t)> 0

||Φ(t)|| will be bounded. So it will be shown that (34) holds.
This will be proved for algorithm I (for algorithms II and

III, the proof is similar). From (14) one has:
−ẑ(t) = ν(t)+ x(t) (35)

Since x(t) is bounded (output of an asymptotically stable
system with bounded input), one has:
|ŷ f (t)|= |Gŷ(t)|= |ẑ(t)| ≤C3 +C4 · max

0≤k≤t+1
|ν(k)|

≤C′3 +C′4 · max
0≤k≤t+1

|ν0(k)|
(36)

since |ν(t)| ≤ |ν0(t)| for all t. From (10) by multiplying both
sides by G(q−1) one gets in the adaptive case:

û f (t) = G(q−1)d(t)+
BM(q−1)

AM(q−1)
ŷ f (t) (37)

Since AG and AM are Hurwitz polynomials and that d(t)
is bounded, it results that:

|û f (t)| ≤C5 +C6 · max
0≤k≤t+1

|ν0(k)| (38)

Using equations (21a), (21b), (24), (36) and (38) one can
conclude that

|α f (t)| ≤C7 +C8 · max
0≤k≤t+1

|ν0(k)| (39)

and
|β f (t)| ≤C9 +C10 · max

0≤k≤t+1
|ν0(k)| (40)

Therefore (34) holds, which implies that Φ(t) is bounded
and one can conclude that (32) also holds. End of the proof.

For Algorithm I one has:

H(q−1) =
AM(q−1)

AQ(q−1)P0(q−1)
(41)

for Algorithm II, one has:

H(q−1) =
AM(q−1)

AQ(q−1)P0(q−1)
· G(q−1)

Ĝ(q−1)
(42)

and for Algorithm III one has:

H(q−1) =
AM

ÂM
· ÂQ

AQ
· P̂0

P0
· G

Ĝ
(43)

It is interesting to remark that for Algorithm III, the
stability condition is that the transfer function:

AM

ÂM
· ÂQ

AQ
· P̂0

P0
· G

Ĝ
− λ2

2
(44)

should be strictly positive real. However this condition can
be re-written for λ2 = 1 as ([14]):∣∣∣∣∣

(
AM

ÂM
· ÂQ

AQ
· P̂0

P0
· G

Ĝ

)−1

−1

∣∣∣∣∣< 1 (45)

for all ω . This roughly means that it always holds provided
that the estimates of AM , AQ, P0, and G are close to the true
values (i.e. H(e jω) in this case is close to a unit transfer
function).
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B. The stochastic case - perfect matching

Following the methodology given in [13] and [10], it can
be shown that under the same ”positive real” conditions as in
the deterministic case the parameter estimations will be un-
biased (provided that the measurement noise is independent
of d(t)).

C. The case of non-perfect matching

If N̂(t,q−1) does not have the appropriate dimension
there is no chance to satisfy the perfect matching condition.
The results from [11], [12] can be used to analyze the
boundedness of the residual error. It can be shown that all the
signals are norm bounded under the passivity condition (33),
where P is computed now with the reduced order estimated
filter.

VI. EXPERIMENTAL RESULTS

The AVC system has been described in section II.

A. System identification
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Fig. 4. Frequency characteristics of the primary, secondary and reverse
paths

The structure of the linear discrete time models for the
different paths have been given in section III. These models
can be identified using the same methodology as in [12].
The excitation signal used to identify the different paths of
the system was a PRBS (pseudo-random binary sequence).
More details can be found in [10].

The estimated orders of the secondary and reverse paths
are: nBG = 17,nAG = 15,nBM = 16,nAM = 16. The estimated
orders of the model for the primary path are nBD = 26, nAD =
26. The frequency characteristics of the various paths are
shown in figure 4. Note that the primary path features a
strong resonance at 108 Hz, exactly where the secondary
path has a pair of low damped complex zeros. Therefore
one can not expect good attenuation around this frequency.
A sampling frequency of 800 Hz has been used.

B. The central controllers

Two central controllers have been considered. The first
(PP) has been designed using a pole placement method. Its
objective is to stabilize the internal positive feedback loop.
The orders of the controller are: nR0 = 15 and nS0 = 17. The

second (H∞) is a reduced order3 H∞ controller with nR0 = 19
and nS0 = 20 from [1].

C. Comparative evaluation of QFIR and QIIR adaptive
compensators

For comparison purposes the Algorithm III with decreas-
ing adaptation gain applied for the case of a stationary dis-
turbance with unknown characteristics has been considered.
As disturbance, s(t), a PRBS signal has been used. The im-
plementation of the Algorithm III requires an estimation of
ÂQ which is in generally not available at the beginning. The
algorithm is started with ÂQ = 1 and after an initialization
horizon, one uses in the filter the current value of ÂQ (for the
presented experiments the initialization horizon was 150s).

No. of adap. parameters 8 16 32
QFIR/H∞ 13.69 dB 15.26 dB 15.90 dB
QFIR/PP 14.41 dB 15.81 dB 17.68 dB
QIIR/H∞ 17.51 dB 18.00 dB 19.46 dB
QIIR/PP 19.70 dB 20.63 dB 22.38 dB

TABLE I
DEPENDENCE OF THE GLOBAL ATTENUATION ON THE ORDER OF THE

Q-POLYNOMIAL(SIMULATION)

The influence of the number of the adapted parameters
on the global attenuation in simulation is illustrated in Table
I. The major observation is that using QIIR the number of
adapted parameters can be reduced drastically with respect
to QFIR for the same level of attenuation.
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Fig. 5. Power spectral density estimates obtained using the PP controller
(experimental)

The significantly better efficiency of the QIIR adaptive
filter with respect to QFIR adaptive filters have been con-
firmed also by experimentations. Power spectral densities
using the PP central controller are shown in fig. 5. One can
observe that the QIIR algorithm with 8 (4/4) parameters gives
a slightly better attenuation (15.53 dB) than the QFIR with
32 parameters (15.16 dB). Similar results are also obtained
using the H∞ central controller. The results can be viewed
in fig. 6. The QIIR algorithm with 8 (4/4) parameters gives
16.53 dB while the QFIR algorithm gives 16.52 dB.

3The orders of the initial H∞ controller were: nRH∞
= 70 and nSH∞

= 70.
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Fig. 6. Power spectral density estimates obtained using the H∞ controller
(experimental)

VII. CONCLUSIONS

The paper has presented an adaptive IIR Youla Kucera
parametrized feedforward compensator built around a sta-
bilizing filter for the internal ”positive” feedback loop oc-
curring in AVC and ANC systems. Experimental results on
an Active Vibration Control system featuring an internal
”positive” feedback have illustrated the potential of the
approach. It has been shown that the use of the IIR Youla
Kucera filters allows to reduce significantly the number of
parameters to be adapted with respect to the FIR Youla
Kucera [9] for the same level of performance.

APPENDIX I
PROOF OF LEMMA 4.1

We start by considering hypothesis 3, which suggests
considering an equivalent closed loop system representation
of the primary path. Considering a Q(q−1) filter as in eq. (7),
the polynomial S(q−1) can be rewritten as

S(q−1) = 1+q−1S∗ = 1+q−1((AQS0)
∗−BQB∗M). (46)

Under hypothesis 3 (perfect matching condition) the out-
put of the primary path can be expressed as

x(t) =−z(t) =−G(q−1)y(t) (47)
and the input to the Youla-Kucera schema as

u(t +1) = d(t +1)+
BM

AM
y(t +1) (48)

where y(t) is a dummy variable given by
y(t +1) =−S∗y(t)+Ru(t +1)

=−((AQS0)
∗−BQB∗M)y(t)+(AQR0−BQAM)u(t +1)

=−(AQS0)
∗y(t)+AQR0u(t +1)+BQ (B∗My(t)−AMu(t +1)) .

(49)

Similarly, the output of the adaptive feedforward filter (for
a fixed Q̂) is given by

ŷ(t+1) =−(ÂQS0)
∗ŷ(t)+ ÂQR0û(t+1)+ B̂Q (B∗M ŷ(t)−AM û(t +1)) . (50)

The output of the secondary path is
ẑ(t) = G(q−1)ŷ(t). (51)

Define the dummy error (for a fixed estimated set of
parameters)

ε(t) =−y(t)+ ŷ(t) (52)

and the residual error
ν(t) =−χ(t) =−(−z(t)+ ẑ(t)) =−G(q−1)ε(t)). (53)

Equation (49) can be rewritten as
y(t +1) =−(AQS0)

∗ŷ(t)+AQR0û(t +1)+BQ(B∗M ŷ(t)−AM û(t +1))
− (AQS0)

∗(y(t)− ŷ(t))+AQR0(u(t +1)− û(t +1))
+BQ[B∗M(y(t)− ŷ(t))−AM(u(t +1)− û(t +1))].

(54)

Taking into consideration eqs. (10), (48)
BQ[B∗M(y(t)− ŷ(t))−AM(u(t +1)− û(t +1))] =

= BQ

[
B∗Mε(t)−AM

B∗M
AM

ε(t)
]
= 0

(55)

and dividing equations (50), (54) one obtains
ε(t +1) =− ((−AQ + ÂQ)S0)

∗ŷ(t)+(−AQ + ÂQ)R0û(t +1)

+(−BQ + B̂Q)[B∗M ŷ(t)−AM û(t +1)]

− (AQS0)
∗
ε(t)+AQR0

B∗M
AM

ε(t).

(56)

Passing the terms in ε(t) on the left hand side[
1+q−1

(
AM(AQS0)

∗−AQR0B∗M
AM

)]
ε(t +1) =

AQP0

AM
ε(t +1)

=−(−A∗Q + Â∗Q)[S0ŷ(t)+R0û(t)]

+(−BQ + B̂Q)[BM ŷ(t +1)−AM û(t +1)]

(57)

Using eqs. (53) and (21)one gets eq. (17) and this ends
the proof.
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