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Abstract— Robust control and scheduling for networked
embedded control systems (NECS) with uncertain but interval-
bounded time-varying computation and transmission delay
is addressed in this paper. The NECS is described by a
set of continuous-time plant models and associated quadratic
cost functions. Since the uncertainty of the computation and
transmission delay affects the discretized plant models and
cost functions in a nonlinear manner, a polytopic overapprox-
imation of the uncertainty utilizing a Taylor series expansion
is considered. For the resulting discrete-time switched system
model with polytopic uncertainty, a periodic control and online
scheduling (PCSon) strategy is proposed to guarantee stability
and performance of the resulting controlled system. The design
is based on a periodic parameter-dependent Lyapunov function
and exhaustive search. Furthermore, a method for reducing
the online complexity of the PCSon strategy is presented. The
effectiveness of modeling and design is evaluated for networked
embedded control of a set of inverted pendulums.

I. INTRODUCTION

Networked embedded control systems (NECSs) are con-

trol systems where controllers are realized on embedded

processors and connected with both sensors and actuators

via a shared communication network. NECS occur in a

wide range of domains such as transportation systems, power

systems and industrial automation and bring many benefits,

e.g. reduced installation and maintenance costs and increased

flexibility, reusability and reconfigurability. However, also

new challenges stemming from computation and transmis-

sion delays, packet loss, access constraints and quantization

constraints have to be addressed, refer to [1] for a survey.

Specifically for NECSs with access constraints, not only a

control strategy but also a scheduling strategy is required.

Many approaches have been proposed for designing a con-

troller and schedule jointly. These approaches can be roughly

classified by offline and online scheduling. Under offline

scheduling, the schedule is determined before runtime, where

usually periodic schedules are considered [2], [3]. Under

online scheduling, the schedule is determined at runtime

based on the current plant states [4], [5]. Online scheduling

is thus reactive to disturbances and consequently usually

superior to offline scheduling. All approaches assume con-

stant computation and transmission delays. This assumption

is valid for many real-time computation and communication

systems but not for general-purpose computation and com-

munication systems. Control and scheduling strategies which
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are robust with respect to uncertain time-varying computation

and transmission delays are clearly required.

In this paper a periodic control and online scheduling

(PCSon) strategy for NECSs with uncertain but interval-

bounded time-varying computation and transmission delays

is presented. The NECS is modeled as a discrete-time

switched linear system regarding access constraints and

delays. A quadratic cost function with infinite time horizon is

considered as a performance criterion. Due to the nonlinear

dependency of the discrete-time model and cost function on

the uncertain time-varying delays, a polytopic overapprox-

imation technique based on a Taylor series expansion [6],

[7], [8] is used. Periodicity is imposed as a “trick” to allow

solving the control and scheduling codesign problem for the

infinite time horizon by decomposition into a periodic con-

trol subproblem and an online scheduling subproblem. The

periodic control subproblem is solved based on Lyapunov

theory, particularly based on a periodic parameter-dependent

Lyapunov function [9]. The online scheduling subproblem

is solved based on exhaustive search at every time instant.

Hence, the PCSon strategy relates to an explicit receding-

horizon control and scheduling strategy [10]. It is shown

that the online complexity of the PCSon strategy may grow

exponentially. A method for reducing this complexity is

presented. Finally, the methods are evaluated for networked

embedded control of three inverted pendulums.

II. MODELING

A. Plant Model and Cost Function

Consider a fixed set of plants P = {Pi, i = 1, . . . , N}
controlled over a network each described by a continuous-

time state equation

ẋci(t) = Acixci(t) + Bciui(t − τik), xci(0) = xci0 (1)

where Aci ∈ Rn×n is the system matrix, Bci ∈ Rn×m

is the input matrix, xci(t) ∈ Rn is the state vector and

ui(t − τik) ∈ Rm is the control vector with uncertain time-

varying input delay τik ∈ Ii = [τ i, τ i] with known lower

bound τ i and upper bound τ i. The input delay τik subsumes

the computation and transmission delays. Associated with

each plant Pi ∈ P is a continuous-time quadratic cost

function

Ji =

∫ ∞

0

(
xci(t)

ui(t − τik)

)T(
Qci 0

0 Rci

) (
xci(t)

ui(t − τik)

)

dt

(2)

with the symmetric and positive semidefinite weighting ma-

trix Qci ∈ Rn×n and the symmetric and positive definite

weighting matrix Rci ∈ Rm×m.
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The plants are controlled by a centralized discrete-time

controller minimizing the overall cost J =
∑N

i=1 Ji robustly.

The controller samples the states of all plants at each

time instant tk where a time-varying sampling period hj(k)

with k = 0, 1, . . . is utilized. The time-varying sampling

period hj(k) results from the worst-case computation and

transmission delay of the control task Tj(k) associated to

plant Pj(k), i.e. hj(k) = τ j(k). The task or switching index

j(k) indicates the plant Pj(k) for which the control signal

will be updated and is determined based on the states. Then

the control signal uj(k)(k) is sent over the network to plant

Pj(k) and delivered at tk +τjk . It is assumed that the control

signal is held until a new one is delivered. For notational

convenience, the time dependency indication of the switching

index j(k) is omitted if no ambiguity arises.

B. Discretized Model and Cost Function

In order to discretize the continuous-time state equation (1)

using zero order hold (ZOH), it must be distinguished

whether the control signal is updated or not. If the considered

task Ti is the running task Tj (Ti = Tj), then due to τjk ≤ hj

the control signal is updated, i.e.

ui(t) =

{
ui(tk−1) for tk ≤ t < tk + τik

ui(tk) for tk + τik ≤ t < tk+1
(3)

where hj = tk+1 − tk. If the considered task Ti is not the

running task Tj (Ti 6= Tj), then the control vector is not

updated at all, i.e.

ui(t) = ui(tk−1) for tk ≤ t < tk+1. (4)

In the following the distinction between the two cases

mentioned above is represented by the logical variable

δij =

{
1 if Ti = Tj

0 if Ti 6= Tj .
(5)

Considering this behavior, an augmented discrete-time state

equation corresponding to (1) can be formulated as

xi(k + 1) = Aij(k)xi(k) + Bij(k)ui(k) (6)

with

xi(k) =
(
xT

ci(k) uT
i (k − 1)

)T
∈ R

n+m

Aij(k) =

(

Φi(hj) Γi(hj) − Γi(hj − h̀ij)
0m×n (1 − δij)Im×m

)

Bij(k) =

(

Γi(hj − h̀ij)
δijIm×m

)

∈ R
(n+m)×m

h̀ij = δijτik + (1 − δij)hj

where

Φi(t) = eAcit, Γi(t) =

∫ t

0

Φi(s)dsBci. (7)

This representation is adopted from a representation of time-

delay systems proposed in [11]. Using a block-diagonal

structure, the overall system can be written as a discrete-

time switched linear system

x(k + 1) = Aj(k)x(k) + Bj(k)u(k)

x(0) =
(
xT

1 (0) · · · xT
N (0)

)T (8)

with

x(k) =
(
xT

1 (k) · · · xT
N (k)

)T
∈ R

N(n+m)

u(k) =
(
uT

1 (k) · · · uT
N (k)

)T
∈ R

Nm

Aj(k) = diag (A1j(k), . . . , ANj(k))∈R
[N(n+m)]×[N(n+m)]

Bj(k) = diag (B1j(k), . . . , BNj(k)) ∈ R
[N(n+m)]×(Nm)

where diag(·) denotes a block diagonal matrix.

The discretized cost function associated with plant Pi for

a time-varying sampling period hj and an uncertain time-

varying time delay τik ∈ Ii using ZOH is given by

Ji =

∞∑

k=0





xci(k)
ui(k−1)
ui(k)





T



Q11ij Q12ij Q13ij

∗ Q22ij 0

∗ ∗ Q33ij









xci(k)
ui(k−1)
ui(k)





(9)

with the discretized weighting matrices

Q11ij =

∫ hj

0

Φ
T
i (t)QciΦi(t)dt (10a)

Q12ij =

∫ h̀ij

0

Φ
T
i (t)QciΓi(t)dt (10b)

Q13ij =

∫ hj

h̀ij

Φ
T
i (t)QciΓi(t − h̀ij)dt (10c)

Q22ij =

∫ h̀ij

0

Γ
T
i (t)QciΓi(t) + Rcidt (10d)

Q33ij =

∫ hj

h̀ij

Γ
T
i (t − h̀ij)QciΓi(t − h̀ij) + Rcidt. (10e)

where Φi(t) and Γi(t) are defined according to (7) and a

matrix
(

A B
∗ C

)
represents a symmetric matrix

(
A B

BT C

)
. For

a detailed discussion on the discretization of the cost function

see [11] and [12]. Note that for δij = 1 the uncertain time-

varying time delay τjk ∈ Ij affects the matrices (7) and (10)

in a nonlinear manner.

The overall cost function can be written as the sum of the

individual cost functions

J =

N∑

i=1

Ji =

∞∑

k=0

(
x(k)
u(k)

)T (
Q1j Q12j

∗ Q2j

)

︸ ︷︷ ︸

Qj(τjk)

(
x(k)
u(k)

)

(11)

where the block-diagonal weighting matrices are given by

Q1j = diag
(( Q

111j Q
121j

∗ Q
221j

)
, . . . ,

( Q
11Nj Q

12Nj

∗ Q
22Nj

))

Q12j = diag
((

Q
131j

0

)
, . . . ,

(
Q

13Nj

0

))

Q2j = diag
(
Q331j , . . . , Q33Nj

)
.

Problem 1: For the switched system (8) find a con-

trol sequence u∗(0), . . . , u∗(∞) and a switching sequence

j∗(0), . . . , j∗(∞) such that the cost function (11) is robustly

minimized for all sequences τjk ∈ Ij , i.e.

min
u(0),...,u(∞)
j(0),...,j(∞)

max
τjk∈Ij

J subject to (8). (12)
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Remark 1: Problem 1 is essentially computationally in-

tractable. Three modifications are introduced in the following

sections to obtain a tractable problem: First, the nonlinear

uncertainty is overapproximated by a polytopic uncertainty

to enable the application of robust control design methods.

Second, an upper bound on the cost function is derived to

obtain a tractable problem, cf. Section III-A. Third, periodic

switching sequences are considered to enable a solution for

an infinite time horizon. These modifications allow utilizing

periodic parameter-dependent Lyapunov functions for an

LMI-based control design, but introduce some conservatism

which can be adjusted e.g. by increasing the period and the

approximation order, however, at the cost of complexity.

C. Polytopic Formulation

For the case that δij = 1 the matrix exponentials con-

tained in the matrices (7) and (10) are expanded in Taylor

series. The resulting Taylor series are then partitioned into a

truncation part and a remainder part, yielding

Φi(t) =

∞∑

q=0

A
q
ci

q!
tq =

MΦ∑

q=0

A
q
ci

q!
tq + ∆Φi

= Φ̂i(t, MΦ) + ∆Φi (13a)

Γi(t) =

∫ t

0

∞∑

n=0

An
ci

n!
sndsBci =

MΓ+1∑

q=1

A
q−1
ci

q!
tqBci + ∆Γi

= Γ̂i(t, MΓ) + ∆Γi (13b)

with ∆Φi = ∆Φi(t, t, MΦ), ∆Γi = ∆Γi(t, t, MΓ) and the

general uncertain parameter t ∈
[
t, t

]
.

Partitioning the Taylor series in an approximation of order

MΦ/MΓ and a remainder allows the polytopic formulation

of the approximation part. Furthermore, substituting (13) in

the weighting matrices (10) leads to

Q12ij =

∫ h̀ij

0

Φ̂
T

i (t, Ma12)QciΓ̂i(t, Mb12)dt + ∆Q12ij

= Q̂12ij(h̀ij , Ma12, Mb12) + ∆Q12ij (14a)

Q13ij =

∫ hj

h̀ij

Φ̂
T

i (t, Ma13)QciΓ̂i(t − h̀ij , Mb13)dt +∆Q13ij

= Q̂13ij(h̀ij , Ma13, Mb13) + ∆Q13ij (14b)

Q22ij =

∫ h̀ij

0

Γ̂
T

i (t, Ma22)QciΓ̂i(t, Mb22) +Rcidt +∆Q22ij

= Q̂22ij(h̀ij , Ma22, Mb22) + ∆Q22ij (14c)

Q33ij =

∫ hj

h̀ij

Γ̂
T

i (t − h̀ij , Ma33)QciΓ̂i(t − h̀ij , Mb33)+

+ Rcidt + ∆Q33ij

= Q̂33ij(h̀ij , Ma33, Mb33) + ∆Q33ij (14d)

with the remainder ∆Qpqij = ∆Qpqij(τ i, τ i, Mapq, Mbpq)
and pq ∈ {12, 13, 22, 33}. Note that Φi(hj),Γi(hj) and

Q11ij depend only on the certain time-varying sampling

period hj and can therefore be determined by evaluating

the matrix exponentials numerically. Hence, a Taylor series

expansion is not required. The truncation parts of the above

matrices correspond to matrix polynomials. The orders of

the truncation parts for the matrices (13), (14) are design

parameters and can be chosen differently. However, the

resulting polynomial orders must be identical to allow for a

polytopic formulation. A reasonable choice of the truncation

orders ensuring that each matrix in (13), (14) has at least a

truncation order equal to M is shown in [8, Table 1]. This

leads to the minimum polynomial order M̃ = 2M + 3. The

matrix polynomials can now be enveloped by polytopes as

illustrated in [13, Lemma 1]. Hence, the matrix polynomials

contained in (13) and (14) can be expressed as

Γ̂i(τik, MΓ) =
M̃∑

l=0

µl(τik)Γ̂il (15a)

Q̂pqij(τik, Mapq, Mbpq) =

M̃∑

l=0

µl(τik)Q̂pqijl (15b)

with pq ∈ {12, 13, 22, 33}, µl(τik) ≥ 0,
∑M̃

i=0 µl(τik) = 1.

Γ̂il and Q̂pqijl represent the vertices of the resulting poly-

topes. Substituting (15a) into (13b) and further (13b) into

(7) results after factorizing µl(τik) in a discrete-time plant

model with polytopic and additive norm-bounded uncertainty

xi(k + 1) =





M̃∑

l=0

µl(τik)Aijl + ∆Aij



 xi(k)+





M̃∑

l=0

µl(τik)Bijl + ∆Bij



ui(k) (16)

where

Aijl =

(

Φi(hj) Γi(hj) − Γ̂il

0m×n (1 − δij)Im×m

)

, Bijl =

(

Γ̂il

δijIm×m

)

∆Aij =

(
0n×n −∆Γi

0m×n 0m×m

)

, ∆Bij =

(
∆Γi

0m×m

)

.

Notice that in case δij = 0, there is no need to create

a polytopic and additive norm-bounded uncertainty for the

plant model since there is no dependency on the uncertain

parameter τik . Based on the block-diagonal structure, the

overall discrete-time switched system with polytopic and

additive norm-bounded uncertainty is given by

x(k + 1) =





M̃∑

l=0

µl(τjk)Ajl + ∆Aj



x(k)+





M̃∑

l=0

µl(τjk)Bjl + ∆Bj



u(k). (17)

Furthermore, substituting (15b) into (14) and further (14)

into (10) leads to a discrete-time cost function with polytopic

and additive norm-bounded uncertainty

Ji =
∞∑

k=0

(
xi(k)
ui(k)

)T




M̃∑

l=0

µl(τik)Qijl + ∆Qij





(
xi(k)
ui(k)

)

(18)
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where

Qijl =





Q11ij Q̂12ijl Q̂13ijl

∗ Q̂22ijl 0̂m×m

∗ ∗ Q̂33ijl





∆Qij =





0n×n ∆Q12ij ∆Q13ij

∗ ∆Q22ij ∆0m×m

∗ ∗ ∆Q33ij



 .

Based on the block-diagonal structure, the overall discrete-

time switched cost function with polytopic and additive

norm-bounded uncertainty is given by

J =

∞∑

k=0

(
x(k)
u(k)

)T




M̃∑

l=0

µl(τjk)Qjl + ∆Qj





(
x(k)
u(k)

)

.

(19)

The matrices Ajl, Bjl and Qjl represent vertices of a

polytopic uncertainty, the matrices ∆Aj , ∆Bj and ∆Qj

describe an additive norm-bounded uncertainty since the time

varying time delay τjk is bounded on the interval Ij .

Remark 2: A polytopic overapproximation can also be

determined based on the Cayley-Hamilton Theorem or the

Jordan normal form, see [6], [7]. These approaches are to

our best knowledge not applicable for the cost function since

Qj(τjk) can not be expressed as potentials of a single matrix.

III. PERIODIC CONTROL AND SCHEDULING

Problem 1 can by imposing periodicity be decomposed

into a periodic control subproblem and an online scheduling

subproblem. The periodic control subproblem can be solved

by using periodic parameter-dependent Lyapunov function;

the online scheduling subproblem can be solved by using the

receding-horizon control and scheduling concept [10].

A. Periodic Control Design

For formulating both problem and solution of the periodic

control subproblem, some definitions are in order.

Definition 1: A switching sequence j(k) is called p-

periodic if

j(k) = j(k + p) ∀k ∈ N0. (20)

It is furthermore called admissible if all tasks under consid-

eration are contained.

Definition 2: The set of admissible p-periodic switching

sequences Jp,adm is defined by

Jp,adm = {j(k)|j(k) = j(k + p) ∀k ∈ N0, j(k) admissible} .
(21)

Consider the full state feedback control law

u(k) = Kj(k)x(k) (22)

with the constant p-periodic feedback matrices Kj(k) ∈
R(Nm)×[N(n+m)]. The subindex j indicates the affiliation

to the p-periodic switching sequence j(k). Substituting (22)

into (17) leads to the discrete-time periodic closed-loop

system

x(k + 1) =





M̃∑

l=0

µl(τjk)Ãjl + ∆Ãj



x(k) (23)

with Ãjl = Ajl + BjlKj and ∆Ãj = ∆Aj + ∆BjKj .

Substituting further (22) into (19) yields the discrete-time

cost function

J =
∞∑

k=0

xT (k)





M̃∑

l=0

µl(τjk)Q̃jl + ∆Q̃j



x(k) (24)

with Q̃jl =
(

I
Kj

)T
Qjl

(
I

Kj

)
and ∆Q̃j =

(
I

Kj

)T
∆Qj

(
I

Kj

)
.

The matrices Ãjl, Q̃jl again represent vertices of a switched

polytopic uncertainty while the matrices ∆Ãj , ∆Q̃j describe

a switched additive norm-bounded uncertainty. The norm

bounds of these additive uncertainties are specified by

‖∆Ãj‖
2
2 ≤ αj , αj = sup

τjk∈Ij

σ2(∆Ãj) (25a)

‖∆Q̃j‖
2
2 ≤ βj , βj = sup

τjk∈Ij

σ2(∆Q̃j) (25b)

where σ(·) represents the maximum singular value. The

upper bounds αj and βj depend on the feedback matrix Kj .

Many approaches to handle the additive norm-bounded

uncertainty have been proposed in literature, refer to [8, Re-

mark 5]. For brevity of presentation, the additive uncertainty

will not be considered in the following. The periodic control

subproblem can now be defined as

Problem 2: For the admissible schedule j(k) ∈ Jp,adm

find a p-periodic feedback matrix Kj for the closed-loop

system (23) with ∆Ãj = 0 such that the cost function (24)

with ∆Q̃j = 0 is robustly minimized for all τjk ∈ Ij , i.e.

min
Kj

max
τjk∈Ij

J subject to (23). (26)

Problem 2 is computationally intractable as pointed out in

[14, Sec. 3.1]. Therefore, an upper bound on the objective

function is derived in the following to obtain a computation-

ally tractable minimization problem.

Consider the p-periodic parameter-dependent quadratic

Lyapunov function

V (x(k), k) = xT (k)Pj(k)x(k) (27)

where

Pj(k) =

M̃∑

l=0

µl(τjk)P jl (28)

with P jl symmetric and positive definite. The subindex j
again indicates the affiliation to the p-periodic switching

sequence j(k). Suppose that the difference ∆V (x(k), k) =
V (x(k + 1), k + 1) − V (x(k), k) along trajectories of the

closed-loop system (23) satisfies

∆V (x(k), k) < −xT (k)

M̃∑

l=0

µl(τjk)Q̃jlx(k) (29)

for all τjk ∈ Ij and x(k) 6= 0. Furthermore, suppose that

the cost function (24) is finite, then limk→∞ x(k) = 0 and

therefore limk→∞ V (x(k), k) = 0 holds. Summing (29) over

k = 0, . . . ,∞ yields

max
τjk∈Ij

J < xT (0)Pj(0)x(0), (30)
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giving an upper bound on the cost function (24).

The upper bound depends on the initial state x(0) which

is often unknown. Therefore, the worst-case cost value

Jw.c. = max
‖x(0)‖=1

xT (0)Pj(0)x(0) ≤ λmax(Pj(0)) (31)

can be considered instead where λmax(·) denotes the max-

imum eigenvalue. Alternatively, the expected cost value or

the maximum cost degradation can be utilized as proposed

in [8]. In the following the worst-case cost value will be

considered. Problem 2 can then be redefined to the following

computationally tractable minimization problem

Problem 3: For the admissible schedule j(k) ∈ Jp,adm

find a p-periodic feedback matrix Kj for the closed-loop

system (23) with ∆Ãj = 0 such that the cost function (24)

with ∆Q̃j = 0 is robustly minimized for all τjk ∈ Ij , i.e.

min
Kj

λmax (Pj(0)) subject to (29). (32)

Theorem 1: Problem 3 is solved for a given j(k) ∈ Jp,adm

by the LMI optimization problem

min
Kj(k)

−λ subject to

Zjl(0) − λI ≥ 0






Gj(k)T + Gj(k) − Zjl(k) ∗ ∗

Q
1/2
j(k)l

(
Gj(k)
W j(k)

)

I ∗

Aj(k)lGj(k) + Bj(k)lW j(k) 0 Zjm(k + 1)







> 0

∀l, m = 0, . . . , M̃ and k = 0, . . . , p − 1 with Gj(k) ∈
R[N(n+m)]×[N(n+m)] and Wj(k)∈R(Nm)×[N(n+m)] regular,

Zjl(k) = P−1
jl (k) ∈ R[N(n+m)]×[N(n+m)] symmetric and

positive definite and λ ∈ R. The optimal p-periodic feedback

matrix results from Kj(k) = W j(k)G−1
j (k).

Proof: The proof follows from the proof of Theorem 8

in [8] by reformulation for the worst-case cost value as

an objective function and using a p-periodic parameter-

dependent Lyapunov function instead of only a parameter-

dependent Lyapunov function.

Solving problem 3 for each admissible p-periodic switch-

ing sequence j(k) ∈ Jp,adm results in a set of p-periodic

stabilizing feedback matrices. These admissible feedback

matrices are then stored in a lookup table with their first

step Lyapunov matrix

P j(0) = arg max
P jl(0),l∈{0,...,M̃}

λmax(P jl(0)). (33)

So far we have solved the periodic control subproblem. The

online scheduling subproblem is addressed in the following

subsection.

B. Online Scheduling

The main idea is to consider at every time instant tk the

measured state x(k) as the initial state of the system and

to solve Problem 1 based on the receding horizon concept.

The imposed periodicity is thus suspended and an additional

degree of freedom for the optimization is obtained. The

procedure is summarized in the following

Theorem 2: The solution to Problem 1 is given by the

state feedback control law

u∗(k) = Kj∗(k)x(k) (34)

where x(k) represents the current state of the switched

system (8) at the time instant tk and

j∗(k) = arg min
j(k)∈Jp,adm

xT (k)P j(0)x(k). (35)

Proof: The upper bound on the cost function is given

in (30). Hence, the minimum cost J∗ among all admissible

schedules can also be upper bounded as follows

J∗ < min
j(k)∈Jp,adm

x(0)T P j(0)x(0). (36)

Hence, the optimal p-periodic switching sequence is given

by

j∗(k) = arg min
j(k)∈Jp,adm

x(0)T P j(0)x(0) . (37)

and P j(0) is defined according to (33). Under online

scheduling, the current state x(k) at time instant tk repre-

sents a shifted initial time instant. Hence, the upper bound

on the cost at time instant tk follows immediately from (30)

as

max
τjk∈Ij

J < xT (k)Pj(0)x(k). (38)

Therefore, the optimal switching index for the current state

x(k) is given by (35).

Remark 3: Theorem 2 actually provides the solution of

Problem 1 w.r.t. the modifications introduced in Remark 1.

An algorithm for solving Problem 1 divides into an offline

part given in Algorithm 1 and an online part given in

Algorithm 2.

Algorithm 1 Periodic Control Design (Offline Part)

Input: Ajl, Bjl, Qjl, p
Output: P j(0), Kj(0) for each j(k) ∈ Jp,adm

1. Determine set of all admissible periodic schedules Jp,adm

2. Determine Kj(0), P j(0) from Theorem (1) for each

j(k)∈Jp,adm

3. Store P j(0) and Kj(0) for each j(k) ∈ Jp,adm

Algorithm 2 Online Scheduling (Online Part)

Input: P j(0), Kj(0), x(k) for each j(k) ∈ Jp,adm

Output: Switching index j∗(k) and control vector u∗(k)

for each time instant tk do

Determine the optimal switching index j∗(k) from (35)

Determine the control vector u∗(k) = Kj∗(k)x(k)
Apply j∗(k) and u∗(k) to the switched system (8)

end for

The period p ≥ N can be considered as a design parameter.

With increasing period, the overall cost decreases but the

computational complexity of Algortihms (1) and (2) which

is characterized by |Jp,adm| ≤ Np with |·| denoting the cardi-

nality increases. Global asymptotic stability of the switched

system (8) under the PCSon strategy (34) is guaranteed
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inherently due to the infinite horizon cost monotonicity. The

computational complexity of Algorithm (2) may, however,

be critical.

IV. COMPLEXITY REDUCTION

An approach for reducing the online complexity is pro-

posed in [4]. The idea is to determine the optimal admissible

p-periodic switching sequence j∗(k) from (37). Then, the

first step Lyapunov matrices associated to j∗(k) and its cyclic

shifts Sks(j∗) for all ks ∈ {0, . . . , p−1} are determined. Till

now every thing is completely done offline. The online part

is to reoptimize for the current state x(k) over all cyclic

shifts, i.e.

j∗(k) = arg min
ks∈{0,...,p−1}

xT (k)P Sks (j∗)(0)x(k). (39)

The online complexity is consequently determined by the

period p. This procedure is called Optimal Pointer Place-

ment (OPP) where ks is denoted as pointer. The switched

system (8) under the OPP strategy is globally asymptotically

stable. A proof of this property is given in [4, Theorem 2].

V. EXAMPLE

Consider simultaneous stabilization of three inverted pen-

dulums as shown in [3]. The linearized dynamic model

of each undisturbed inverted pendulum under networked

embedded control is given by
(

φ̇i(t)

φ̈i(t)

)

=

(
0 1

(mi+Mi)g
Mili

0

) (
φi(t)

φ̇i(t)

)

+

(
0
−1

Mili

)

Fi(t − τi)

where φi is the pendulum angle, Fi is the force acting on the

cart and i = 1, 2, 3. The inverted pendulums have the same

pendulum mass mi = 0.3 kg and cart mass Mi = 0.1 kg, but

different pendulum length l1/2/3 = 0.136/0.242/0.545 m,

yielding different natural frequencies w1/2/3 = 12/9/6 s−1.

The input delay τi is bounded on the interval Ii = [1 , 3 ] ms

∀i. Notation g represents the gravitational acceleration.

Further, consider the quadratic cost function (2) with the

weighting matrices Qci =
(

1000 0
0 10

)
, Rci = 1. Applying

more than 3000 different initial values to the system and

computing the mean cost J strategy for each strategy with p = 4
leads to the results summarized in Table I. From Table I we

can notice that the PCSoff strategy, a special case of PCSon

strategy where the optimal sequence is determined once from

(37) and followed till the end, leads to the largest mean cost

while the online complexity is negligible since a predefined

p-periodic switching sequence must be followed forever. The

PCSon strategy yields the smallest mean cost. However, the

online complexity is considerable. The OPP strategy enables

a compromise between complexity and performance and

guarantees that the resulting mean cost is smaller or equal

to the resulting cost under PCSoff strategy, cf. [4, Thm. 2].

VI. CONCLUSIONS AND FUTURE WORK

In this paper robust control and scheduling codesign of

NECSs based on the PCSon strategy is addressed. Using a

polytopic overapproximation, the discrete-time NECS model

TABLE I

COMPARISON OF THE PCSON , OPP AND PCSOFF STRATEGY

Strategy Online Complexity J strategy

PCSon |Ĵp,adm| = 36 340.1648

OPP p = 4 340.4934

PCSoff negligible 350.9192

is expressed as a switched system with polytopic and addi-

tive norm-bounded uncertainty. The control and scheduling

codesign problem is decomposed into a periodic control sub-

problem and an online scheduling subproblem. The online

complexity can be reduced considerably by the OPP strategy.

The effectiveness of the proposed strategies is shown by

a practical example. Future work will focus on alternative

methods for reducing the online complexity.
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