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Abstract— This paper considers the problem of auxiliary
input design for subspace-based fault detection methods. In
several real applications, particularly in the damage detection of
mechanical structures and vibrating systems, environment noise
is the only input to the system. In some applications, white noise
produces low quality output data for the subspace-based fault
detection method. In those methods, a residual is calculated
to detect the fault based on the output information. However,
some modes of the system may not influence the outputs and
the residual appropriately if the input is not exciting enough
for those modes. In this paper, “rotated inputs” method is
implemented to excite the system modes. In addition to produce
a residual more sensitive to the weak modes, it is possible
to detect system order changes due to the fault using the
rotated inputs. Simulation results demonstrate the efficiency of
injecting these auxiliary inputs to improve the subspace-based
fault detection methodology.

I. INTRODUCTION

Over the last decades subspace-based identification have
been an active domain of research. These methods are based
on geometric concepts including the calculation of certain
matrices, geometric manipulation of the row spaces and
computation of projections of data on certain subspaces.
A comprehensive survey of subspace-based identification
approaches can be found in [1], [2]. The identification
problem consists of obtaining the state-space representation
of the system from input-output data using linear algebra
tools, up to a similarity transformation.

Fault detection problem is one of the related topics to
system identification and has been studied using several
methods [3], [4]. In some fault detection and health monitor-
ing problems, detecting the changes of system eigenstructure
is the main subject of interest. On the other hand, subspace
identification is well suited to estimate the system eigen-
structure. Based on the subspace identification methods, a
fault detection methodology is developed in [5] to detect the
eigenstructure changes.

Subspace-based fault detection method has already been
used in several practical applications [6], [7], [8], [9], [10],
[11], [12], [13]. In these applications, the natural unknown
and unmeasured environment noise, considered as white
noise, is the only input to the system. This input excites
the system modes and produces output data for identifica-
tion. A residual signal is calculated based on the observed
outputs of the system. The residual is around zero for the
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nominal system and a fault alarm is raised if the mean
value of the residual reaches a threshold. However, in some
applications, this input cannot stimulate some of the system
modes enough, and consequently the corresponding singular
values would be very small and would be considered as
noise effects. Therefore these weak modes will not have
considerable effects on the residual and their changes will
be overlooked. In some dynamic multi-input multi-output
systems the direction of the input is important to produce
output data for detection and identification purposes and for
some input directions the outputs are much larger than the
others [14].

As the subspace-based fault detection method is derived
from the subspace-based eigenstructure identification, it in-
herits the merits and also difficulties of those approaches.
One important issue in application of the subspace identifi-
cation method is to know or estimate the system order, in
order to obtain precise results. Every subspace-base method
includes a common step of performing singular value decom-
position (SVD) on a data matrix. The order of the system is
usually determined by the number of “large” singular values.
Small singular values are considered as the effect of noise
on data. This may affect the system order estimation if the
real order is not given. In subspace-based fault detection, it
prevent us from the detection of system order changes.

The problem of ill-conditioning and the error analysis of
subspace identification algorithms in such a case is discussed
in details in [15]. In these systems, some of the singular
values are very small when white noise is the only input
to the system. Hence, it is very hard to select the real
nonzero singular values corresponding to the system modes
in this case. In order to overcome this issue, “rotated input”
approach is proposed in literature. In this approach, rotated
inputs are considered, the best angles between the inputs
are calculated and applied to the system [16], [17], [14].
Application of this pre-designed test input helps to increase
the ratio between real singular values and the rest of singular
values due to the noise. Consequently, the weak modes may
not be negligible anymore and the order of the system should
be better estimated. While the application of the rotated input
in system identification may lead to a better system order
recovery, it will not increase the accuracy of the identifica-
tion. On the other hand, an important problem with using the
rotated inputs for identification purposes is that a preliminary
model of the system is required in order to calculate the
rotation angle, while it is not available in most applications.
Therefore, the rotation angle is calculated by trial and error
in [14]. Also, the effectiveness of using rotated inputs is
strongly dependent on the subspace algorithm implemented
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[17].
Traditionally most fault detection approaches, including

the subspace-based method in [5], are passive in that system
inputs and outputs are monitored and decisions made. Re-
cently, there has been more interest in designing inputs to
improve fault detection methods [18], [19], [20], [21], [22],
[23], [24].

While the application of the rotated input method in
subspace identification is limited to system order recovery of
ill-conditioned systems, the idea is implemented to improve
the subspace-based fault detection technique in this paper.
The sensitivity of the residual to the changes of the system
modes is amplified using the input. Injecting the rotated
input to the system, the impact of the weak modes on the
residual will be increased. In addition, the application of
this input provides useful information to detect the system
order change due to a fault. Unlike the identification case,
there exist a nominal model for fault detection tests and it
is possible to calculate the test input precisely. Simulation
results demonstrate the surprising advantages of this method
to improve the quality of subspace-based fault detection.

The paper is organized as follows: in section 2, problem
formulation and preliminary material are provided. Section
3 presents subspace-based fault detection. In sections 4,
input design for subspace-based fault detection is discussed.
In sections 5 simulation results are presented to show the
efficiency of the method and concluding remarks follow in
section 6.

II. PROBLEM FORMULATION AND PRELIMINARIES

Consider the discrete-time model in state space form:

x(k + 1) = Ax(k) + w(k), (1)
y(k) = Cx(k), (2)

where x(k) ∈ <n, y(k) ∈ <r, A ∈ <n×n and C ∈ <r×n are
the state vector, the output vector, the state transient matrix,
and the output matrix, respectively. The state noise w(k) ∈
<n is unmeasured and Gaussian, zero mean with covariance
Σw. It is assumed that the measurement noise is zero to
simplify calculations. However, the results can be extended
for systems with measurement noise. The fault detection
problem considered in this paper consists of monitoring the
eigenstructure of system (1)–(2), and detect its changes. The
eigenstructure of a system is the set of eigenvalues of the sys-
tem and the corresponding eigenvectors. The eigenvalues and
eigenvectors are represented by λi and vi for i = 1, · · · , n,
respectively. A pair of an eigenvalue and the corresponding
eigenvector is called a mode. The set of all n modes of the
system makes system parameter θ

θ =

(
Λ

vecΦ

)
, (3)

where Λ is the vector whose elements are λi’s and Φ is
the matrix whose columns are vi’s. Let p and q are chosen
parameters with n ≤ (p + 1)r ≤ qr. From the output data
y(k), k = 1, · · ·N + p + q a matrix Hp+1,q ∈ <(p+1)r×qr

is built according to a chosen subspace identification (de-
tection) algorithm (see [2] for an overview of several al-
gorithms). The matrix Hp+1,q is called “subspace matrix”.
There exist different subspace-based algorithms in literature
and each algorithm uses a particular subspace matrix (more
information can be found in [1]). In this paper the following
Hankel matrix is implemented for simulations (see [25])

Hp+1,q = Y+Y− T (Y−Y− T )−1Y−, (4)

where

Y+ =

 y(k)
...

y(k + p)

 , Y− =

y(k − l − 1)
...

y(k − l − q)

 . (5)

Apart from the selection of the matrix Hp+1,q , it always has
the following factorization property asymptotically

Hp+1,q = Op+1Zq, (6)

where Op+1 is the observability matrix,

Op+1 =
(
CT (CA)T · · · (CAp)T

)T
, (7)

and Zp depends on the selected subspace identification algo-
rithm. The observability matrix Op+1 is obtained from the
Singular Value Decomposition (SVD) of the matrix Hp+1,q .
Considering the SVD of Hp+1,q

Hp+1,q = U∆V T ,

=
(
U1 U2

)(∆1 0
0 ∆2

)(
V T1
V T2

)
, (8)

where ∆2 contains the singular values corresponding to the
weak modes which are almost zero. Assume that ∆2 ≈ 0.
Using this assumption

Hp+1,q = U1∆1V
T
1 , (9)

and one can obtain

Op+1 = U1∆
1
2
1 . (10)

Reducing the dimension of the matrix Hp+1,q and going
from (8) to (9) needs some attention that we discuss later
in Section IV-D. For the sake of simplicity, let p and q be
given. Hence, the subscripts p and q of Hp+1,q , Op+1 and
Zp are dropped and H, O and Z are substituted respectively
in the following.

III. SUBSPACE-BASED FAULT DETECTION

In [5] a statistical fault detection method is proposed based
on subspace algorithms satisfying factorization property (6).
This method consists of comparing characteristics of the
nominal system with a subspace matrix Ĥ computed on a
new data sample y(k), k = 1, . . . , N + p+ q, corresponding
to an unknown, possibly damaged state, assuming that Ĥ is
a consistent estimate of H.

To compare the new data with nominal characteristics,
the left null space matrix S of the observability matrix
corresponding to the nominal system is computed, which
is also the left null space of the subspace matrix for the
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nominal system because of factorization property (6). The
characteristic property of a system in the nominal state is
ST Ĥ = 0 and the residual vector

ζ
def
=
√
Nvec(ST Ĥ), (11)

demonstrates the difference between the nominal system and
the current situation of the system.

Let θ be a vector containing a canonical parametrization
of the system under monitoring (see [5] for details) and
θ0 the parametrization of the nominal system. The fault
detection problem is that whether or not the subspace matrix
Ĥ from the monitored system (corresponding to θ) is still
well described by the characteristics of the nominal system
(corresponding to θ0). This is done by hypothesis test

H0 : θ = θ0 (reference system),
H1 : θ = θ0 + δθ/

√
N (faulty system), (12)

where δθ is unknown but fixed. This is called the local
approach, and the following theorem is used to decide a
hypothesis.

Theorem 3.1 ([5]): The residual ζ is asymptotically Gaus-
sian for large N , and the hypotheses test between H0 and
H1 is performed using the χ2-test

χ2 = ζTΣ−1J (J TΣ−1J )−1J TΣ−1ζ, (13)

which is compared with a threshold, where J and Σ are
consistent estimates of the mean residual sensitivity and
residual covariance, respectively. J and Σ are defined as
follows

J= lim
n→∞

− 1√
n

∂

∂θ
Eθ0ζ(θ)|θ=θ0 ,

Σ= lim
n→∞

Eθ0(ζζT ). (14)

Here, Eθ(.) represents the expected value of (.) when the
current system parameter is θ.

The computation of the Jacobian J needs a parametriza-
tion of the system, where the eigenvalues and mode shapes
of the nominal system must be known, and is explained in
detail in [5].

IV. INPUT DESIGN FOR SUBSPACE-BASED FAULT
DETECTION

In this section, the necessity of designing auxiliary inputs
to better detect the faults in some dynamic systems is ex-
plained. The method of input design is explained thereafter.

A. Fault Detection using Natural Excitations

In this section, the difficulties with the traditional
subspace-based fault detection method are explained briefly.
The method in [5] gives excellent results when it is used
in practice [6], [7], [9], [10], [12], [13]. This method uses
white noise as input to excite the system. In practice, the
environment noise is the only input that excites the system
and produces the data for fault monitoring. The environment
noise usually can be considered as white noise. However,
practical experiences show that some particular damages

are not well reflected in the residual. Hence, their changes
cannot be easily monitored. To illustrate the reason, Z-
transformation is used and the frequency representation of
the system is obtained. Consider a system that has big
condition number, particularly in steady state case. Suppose
that the transfer function of the system is G(z), and u(z) and
y(z) are the input and output signals in frequency domain

y(z) = G(z)u(z), (15)

and the SVD of G(z) is

G(z) = Υ(z)Σ(z)ΩT (z). (16)

Consequently,

y(z) =

υ11 · · · υ1t

...
. . .

...
υr1 · · · υrt



σ1 0 · · · 0
0 σ2 · · · 0
...

...
. . .

...
0 0 · · · σt


×

ω11 · · · ω1m

...
. . .

...
ωt1 · · · υtm


u1

...
um

 , (17)

where t = min(m, r). In (17), the dependence on z is
dropped for simplicity. Assuming

ξi = σi

m∑
j=1

ωijuj , (18)

one obtains

y(z) = ξ1

υ11

...
υr1

+ · · ·+ ξt

υ11

...
υrt

 . (19)

The system G(z) is ill-conditioned if the biggest singular
value σ(z) is much larger than the smallest singular value
σ(z). In this case, some of the singular values are negligible
considering that Υ(z) is a unitary matrix. The important
consequence of (19) is that there is a linear dependency
between the outputs, and they are in the range of the first
columns of Υ(z), corresponding to the biggest singular
values. Particularly, in the case that one singular value is
much bigger than the others yi ≈ υi1

υ11
y1, for i = 2, · · · , r.

This output is used to compute the Hankel matrix H. This
justifies the failure of white inputs to reflect the effects of
all the system modes in the residual. A second difficulty, as
it is shown in [14], is to distinguish the smallest system
singular value of H from the other small nonzero noise
singular values. It leads to the incorrect estimation of the
system order, if it is not given.

B. Subspace-Based Fault Detection using Rotated Input

It is desired to design an input such that the residual is
more sensitive to the fault. In order to improve the quality of
fault detection and increase the sensitivity of the residual to
the changes of the weak modes, the effect of all the singular
values in (17) on the residual should be equal. Rotated inputs
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will be designed and injected into the system to satisfy this
condition.

The detection method in Section III is based on calculating
S, the left kernel of the observability matrix. The selection
of S depends on the SVD of Ĥ. Only the n first columns
are taken to make the residual and n is the number of large
singular values of Ĥ. If the number of large singular values,
the values which are considerably larger than the others, was
exactly equal to the order of the system, it would be possible
to detect system order changes when the number of large
singular values changes.

An input is desired to be injected into the system which
can improve the fault detection method in two directions:

1) to strengthen the effect of weak modes on the residual.
2) to detect the change of the system order due to a fault.

This paper focus more on the first point, which is crucial to
detect some minor damages.

C. Rotated Input Design

The method of rotated input design is implemented in
this section to achieve the detection objectives explained in
Section IV-B. The method is already used for identification
experiment design [16] and later for order determination to-
gether with subspace identification method [14], [17]. In this
section, another representation of the method is provided for
the systems with two inputs and two outputs to demonstrate
the idea and explain why it is called rotated input method.
However, it can be easily extended to the general case using
any method that equalizes the effect of the modes. The 2×2
orthogonal matrices Υ(z) and Ω(z) in (16) can be written
as

Υ(z) =

(
cosϕ(z) −sinϕ(z)
sinϕ(z) cosϕ(z)

)
, (20)

ΩT (z) =

(
cosθ(z) −sinθ(z)
sinθ(z) cosθ(z)

)
. (21)

Considering the singular value decomposition of the system
G(z) introduced in (16), one may obtain

y(z) = G(z)u(z) =

Υ(z)

(
σ1(z)cosθ(z)u1(z)− σ1(z)sinθ(z)u2(z)
σ2(z)sinθ(z)u1(z) + σ2(z)cosθ(z)u2(z)

)
. (22)

To avoid collinearity problems, the outputs should be as
independent as possible. To satisfy this condition, the inputs
will be designed. The key point is that no terms in (22)
should be negligible. Hence, it is necessary to make each
term of the summation contribute in the value of y equally.
From (19), considering the energy of each term contributes
in yi and the fact that Ψi(z) is a unitary matrix, the criterion
becomes ∫ 2Π

0

∣∣ξi(ejω)
∣∣2 dω = constant, (23)

for i = 1, 2. This occurs if

ξi(e
jω) = constant. (24)

To satisfy (24) it is enough to have

σ1(z)cosθ(z)u1(z)− σ1(z)sinθ(z)u2(z)

= σ2(z)sinθ(z)u1(z) + σ2(z)cosθ(z)u2(z), (25)

or equivalently

u2(z) =
σ1(z)cosθ(z)− σ2(z)sinθ(z)

σ2(z)cosθ(z) + σ1(z)sinθ(z)
u1(z). (26)

A drawback of using the method for identification purposes
is that the angle between the inputs cannot be obtained
directly as the model is unknown and it should be calculated
experimentally by trial and error. In fault detection, the
nominal model of the system is given, and the rotated
input can be calculated without approximation using (26)
and the inverse Laplace transform. However, an approximate
is enough for the most of the practical applications. Now
assume that σ1

σ2
= κ. It follows that

u2(z)|κ→∞ = cotθ(z)u1(z). (27)

From (27), it can be understood why the method is called
rotated input. To approximate the solution one can calculate
the solution in the steady state (frequency zero) assuming
that Ω(z) ≈ Ω where Ω = Ω(0). Hence,

u2(k) ≈ cotθ u1(k), (28)

where θ = θ(0). To calculate u2(k), θ is computed first from
the nominal model. The input u1(k) is chosen as a zero mean
white noise and u2(k) is obtained from (28).

D. Detection of Model Order Change

One of the advantages of the new subspace-based fault
detection method excited by the rotated input is to detect
system order changes, while it is not possible in most of
the fault detection methods in literature. In some practical
applications, system may lose some part of its dynamic and
therefore the system order may change. Consider again (8)
and (9) and the fact that the selection of ∆2 is not easy using
the traditional subspace-based method when the system is
subjected to noise. It is difficult to distinguish between the
singular values due to the system and noise. Small singular
values should be related to noise, however in some systems
the some singular values of the system are very small if
white noise is the only input to the system. Using the rotated
input, these modes are pushed up and consequently, they
will be distinguishable from the effects of noise. Therefore
the system order change can be detected if the number of
large singular values of H changes. Note that this is the
second advantage of using rotated inputs and the method
still improves the detection as we described in Section IV-C
even if the system order is not changed.

V. NUMERICAL EXAMPLES

In order to verify the efficiency of the proposed method,
several simulations are performed. In this section, the results
are summarized. To show the efficiency of the proposed
method, the χ2 values of Theorem 3.1, generated by the
traditional method and the new approach are plotted. Note
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that each point of the residual plot represents the χ2 value
calculated from the output data in 200 sample-times. It is
called an “experience” in this paper. In each simulation, 1000
experiences are performed and the system changes after 500
experiences. The aim is to detect this change.

To perform the simulations, an ill-conditioned system is
selected which has been studied in several papers e.g. [14]
and [17]. This system is a high-purity distillation column
in LV control configuration. The transfer matrix of the
continuous-time system is(

y1(s)
y2(s)

)
=

( 87.8
1+194s − 87.8

1+194s + 1.4
1+15s

108.2
1+194s − 108.2

1+194s −
1.4

1+15s

)(
u1(s)
u2(s)

)
.

In order to use the method proposed in this paper, the
continuous-time model should be transformed to discrete-
time. Two different simulations are performed to study the
effect of using the rotated input on residual and system order
estimation. To produce the rotated input in each test, the first
input channel u1 is excited by white noise with covariance
one and u2 is the same as u1 but rotated by angle θ and
distorted slightly using a weak white noise. The angle is
calculated using the SVD according to Section IV-C.

In the first experiment, the advantage of using the new
method is studied to improve the detection of faults that are
hard to be detected or remain hidden using the traditional
method. Assume that the fault occurs at 500-th experiences.
The faulty system model is(

y1(s)
y2(s)

)
=

( 87.8
1+100s − 87.8

1+100s + 1.4
1+15s

108.2
1+100s − 108.2

1+100s −
1.4

1+15s

)(
u1(s)
u2(s)

)
.

The traditional subspace-base detection method and the new
approach are both used to detect this change. The χ2 values
of both methods are plotted in Figure 1. The green line is
the χ2 value when the system is excited by white noise input
and the blue line shows the χ2 value when the rotated input
is implemented. Figure 1 shows that white noise can hardly
reveal this fault, but the residual changes significantly using
the rotated input when the fault happens.

Fig. 1. χ2 value using rotated input (blue) and white noise (green) in the
case of a minor fault.

The probability density function (PDF) of the χ2 value
for the first 500 experience steps (blue bars) vs the second
500 steps (white bars), in the case of using the rotated input
and white noise are demonstrated in Figure 2 and Figure 3,
respectively. It can be concluded that the rotated input can

separate PDF’s of the nominal and faulty systems, while the
natural excitation cannot.

Fig. 2. Probability density function, rotated input is used.

Fig. 3. Probability density function, white noise is used.

The new method can even be more helpful to detect minor
changes to which the traditional approach is not sensitive and
does not detect anything. An example is the fault which leads
to the following system(

y1(s)
y2(s)

)
=

( 87.8
1+180s − 87.8

1+180s + 1.4
1+15s

108.2
1+180s − 108.2

1+180s −
1.4

1+15s

)(
u1(s)
u2(s)

)
.

Figure 4 depicts the χ2 value corresponding to this experi-
ment. It can be clearly seen that the mean of the χ2 value
changes in the faulty case using the new method.

Fig. 4. χ2 value using rotated input (blue) and white noise (green) in the
case of a major fault.

The corresponding PDF plots are shown in Figure 5
and Figure 6 where the rotated input and white noise are
implemented, respectively.
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Fig. 5. Probability density function, rotated input is used.

Fig. 6. Probability density function, white noise is used.

VI. CONCLUSIONS

Improving the subspace-based fault detection method,
detecting the system order changes and strengthening the
effect of weak modes on the residual are considered in this
paper. It has been shown that for a group of systems, some
fault cannot be detected using random inputs. The rotated
inputs are implemented to better excite weak modes of the
system and finally to get better detection results. Using the
new method, the sensitivity of the residual to the fault is
increased. Unlike the identification case where usually there
is no model of the system and the rotation angle should
be found by trial and error, a nominal model exists for
fault detection tests and the test input can be calculated
precisely. Simulation results show the advantages of using
the rotated input approach. In addition, the singular values
corresponding to the weak modes are pushed up using the
rotated inputs, the modes that are considered as the effect of
noise and are neglected if random input is used. Therefore, it
is possible to detect the system order changes, when a sever
damage happens to the system and it loses part of dynamics.
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