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Abstract— This paper addresses a broadcast control problem
for multi-agent coordination. The “broadcast control” means
governing multi-agent systems by sending the same signal to all
the agents indiscriminatingly, under the assumption that there
is no agent-to-agent communication. The problem studied here
is to find both the information to be broadcasted and the local
actions of the agents, to achieve a given motion-coordination
task. We derive a solution which asymptotically achieves the
task almost surely. The solution is demonstrated by a numerical
simulation and an experiment.

I. INTRODUCTION

In recent years, there has been considerable interest in

problems of multi-agent systems. This includes various sub-

jects such as rendezvous, coverage, formation, and synchro-

nization [1]–[4]. The motivation for the study comes from the

great potential for engineering applications, e.g., cooperative

robotics, mobile sensor networks, and grid computing.

So far, the focus of the topic is the agent-to-agent com-

munication for achieving some global behavior. A number

of results have been obtained from this point of view (see,

e.g., [1]–[4] and references therein). On the other hand,

our interest in this paper is somewhat different. Instead of

using the agent-to-agent communication, we want to solve

multi-agent problems with the one-to-all broadcast. More

precisely, our goal is to complete given motion-coordination

tasks just by sending the same signal to all the agents

“indiscriminatingly”, as shown in Fig. 1. This broadcast

control has a different kind of theoretical difficulty from that

of the communication based control. For instance, when a

signal is broadcasted for moving an agent to a point, the

signal also affects the other agents and may result in an

undesirable configuration, which poses a new challenge for

multi-agent control.

In this paper, we establish a broadcast control framework

for multi-agent coordination. The control system considered

here is composed of agents, local controllers, and a global

controller as shown in Fig. 2, where the local controllers

determine the local actions of each agent and the global

controller broadcasts a signal to govern the global behavior.

Our problem is to find local and global controllers achieving

given motion-coordination tasks subject to the indiscriminat-

ing treatment of the agents. For the issue, this paper makes
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Fig. 1. Broadcast control of multi-agent systems.

two contributions from theoretical and experimental sides,

which are summarized as follows.

First, we present a solution to the broadcast control

problem. For giving the solution, we clarify that the local

controllers have to have randomness to attain given motion-

coordination tasks. Based on this, the solution is given as the

combination of

• the local controllers which let the agents alternately

perform random walk and deterministic walk,

• the global controller which broadcasts the achievement

degree of the task.

It is then proven that the solution asymptotically achieves

the task with probability 1.

Second, in addition to a numerical simulation, an experi-

ment has been conducted with seven mobile robots in order

to evaluate the practical performance. This result demon-

strates that the proposed controllers can be implemented even

on a limited hardware device and the gap between theory and

practice is small.

As a final remark of this section, the difference from the

existing results on the broadcast control should be noted. The

concept of the broadcast control has been originally proposed

in [5] and has been applied to the control of biosystems in

[6]. To our best knowledge, there are only the two results

on the broadcast control (except for some variations). The

aim in [5], [6] is to control the group of homogeneous two-

state Markov chains, and so our idea of using the broadcast

control for the multi-agent coordination is new. Moreover,

from a technical point of view, a kind of the role assignment

is often essential for multi-agent coordination, while it is not

for the control of the group of Markov chains. Also in this

respect, the contribution of this paper is distinguished.

Notation: Let R, R+, R0+, and N be the real number field,

the set of positive real numbers, the set of nonnegative real

numbers, and the set of nonnegative integers, respectively.

We denote by 0n×m (or 0) the n × m zero matrix. The

Euclidian norm of the vector x is expressed by ‖x‖. For the
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Fig. 2. Broadcast control system Σ.

vector x = [x1 x2 · · · xn]
⊤ ∈ Rn with nonzero elements,

we use x(−1) to represent the vector composed of the ele-

mentwise inverse, i.e., x(−1) = [x−1
1 x−1

2 · · · x−1
n ]⊤ ∈ Rn.

For example, x(−1) = [1/6 1/3 1/2]⊤ for x = [6 3 2]⊤.

The gradient of the differentiable function J : Rn → R

(scalar-valued) is denoted by ∇J(x). Namely,

∇J(x) :=

[

∂J(x)

∂x1

∂J(x)

∂x2
· · ·

∂J(x)

∂xn

]⊤

∈ Rn.

Finally, the function f(x) is called the stochastic function

if f(x) contains randomness. In other words, the stochastic

function f(x) is expressed as f(x) = g(x,∆) with a function

g and a random variable ∆.

II. PROBLEM FORMULATION

Consider the feedback system Σ in Fig. 2, composed of

N agents, local controllers, and a global controller.

The agent Ai is given by

Ai : xi(t+ 1) = xi(t) + ui(t) (1)

where xi(t) ∈ Rn is the position in the n-dimensional

space, ui(t) ∈ Rn is the control input, and t ∈ N is

the time. The initial state is given as xi(0) = xi0 ∈ Rn.

The group of the agents (A1, A2, . . . , AN ) is the control

object in this paper, and the group position (the collective

position of the agents) is denoted by x ∈ RnN , i.e., x :=
[x⊤1 x⊤2 · · · x⊤N ]⊤. The initial group position is given as

x(0) = x0 := [x⊤10 x⊤20 · · · x⊤N0]
⊤ ∈ RnN .

The local controller Li, which is an add-on to the agent

Ai, is of the form

Li :

{

ξi(t+ 1) = α(ξi(t), v(t)),
ui(t) = β(ξi(t), v(t))

(2)

where ξi(t) ∈ Rν , v(t) ∈ R, and ui(t) ∈ Rn are the state,

the input (called the broadcast signal), and the output, and

α : Rν×R → Rν and β : Rν×R → Rn are functions. The

functions α, β and the initial state ξi(0) are assumed to be

the same in the local controllers Li (i = 1, 2, . . . , N ), which

implies that we deal with the agents indiscriminatingly, i.e.,

that we cannot move a single agent without affecting the

other agents. For simplicity of discussion, we further assume

ξi(0) = 0ν×1. (3)

The global controller G is given by

G : v(t) = γ(x(t)) (4)

where x(t) ∈ RnN and v(t) ∈ R are the input and output,

and γ : RnN → R is a function.

In the feedback system Σ, the group of the agents Ai (i =
1, 2, . . . , N ) is governed by the combination of the global

controller G and the local controllers Li (i = 1, 2, . . . , N )

so as to achieve pre-specified coordination tasks. Here, G
evaluates the degree of the global achievement at each time

and broadcasts the control signal v to Li (i = 1, 2, . . . , N ).

On the other hand, Li determines the local action of the

agent Ai depending upon the broadcast signal v. This control

scheme is called here the broadcast control and the N+1-

tuple (L1, L2, . . . , LN , G) is called the broadcast controller.

Then our problem is formulated as follows.

Problem 1: For the broadcast control system Σ in Fig. 2,

suppose that the objective function J : RnN → R0+,

describing a motion-coordination task, is given. Then find a

broadcast controller (L1, L2, . . . , LN , G) (i.e., find functions

α, β, and γ) satisfying

lim
t→∞

J(x(t)) = min
x∈RnN

J(x) (5)

for every initial group position x0 ∈ RnN .

Two remarks on Problem 1 are given.

First, as easily imagined, if J(x) is nonconvex, it is in gen-

eral hard to solve the minimization problem in the right-hand

side of (5). This implies that, for such a nonconvex J(x), it

is hopeless to obtain a broadcast controller achieving (5) in

the global sense. We thus address Problem 1 assuming that

the right-hand side of (5) means a local minimum of J(x).

Second, various motion-coordination tasks can be de-

scribed by the objective function J . For example, the ren-

dezvous is expressed by

J(x) =

N
∑

i=1

N
∑

j=1

‖xi − xj‖, (6)

and the coverage [7] is represented by

J(x) =

∫

Q

min
i∈{1,2,...,N}

ψ(‖q − xi‖)φ(q)dq (7)

where Q ⊂ Rn is the bounded region, ψ : R0+ → R0+ is

the function describing the utility of placing an agent at a

distance from a given location in Q, and φ : Rn → R0+ is

the weighting function.
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III. BROADCAST CONTROL

A. Characterization of Broadcast Controllers

To derive a solution to Problem 1, we first provide

a necessary condition for the given broadcast controller

(L1, L2, . . . , LN , G) to satisfy (5). To this end, the notions

of deterministic class and stochastic class are introduced to

Li (i = 1, 2, . . . , N ).

Definition 1: Consider the local controller Li in (2). If

neither α nor β is a stochastic function, Li is said to

be deterministic; otherwise, it is said to be stochastic (see

the end of Section I for the definition of the stochastic

functions).

When the controller Li is deterministic, the output

ui(t) is uniquely determined from the past input sequence

(v(0), v(1), . . . , v(t)). While the output of the stochastic Li

is a random variable.

Using the notions, we obtain the following result.

Lemma 1: For the broadcast control system Σ, suppose

that J and (L1, L2, . . . , LN , G) are given. Let X∗(J) ⊆
RnN be the set of the local minimum points of J(x)
and assume that X∗(J) can be represented as the union

of nonempty polyhedra X∗
j (J) of dimension nN − mj

(j = 1, 2, . . . , µ), i.e., X∗(J) =
⋃µ

j=1 X
∗
j (J), where mj ∈

{0, 1, . . . , nN}. If Li (i = 1, 2, . . . , N ) are deterministic and

n < minj∈{1,2,...,µ}mj , then (5) does not hold for almost

all x0 ∈ RnN .

Proof: Due to the limited space, we omit the proof.

As can be imagined, the only thing the broadcast con-

trollers including deterministic Li (i = 1, 2, . . . , N ) can

do is to move the agent group translationally with keeping

their relative positions. Therefore, such broadcast controllers

cannot be a solution to Problem 1 with a general class

of J (the class is specified by n and minj∈{1,2,...,µ}mj).

Lemma 1 captures this idea.

The above result suggests us to consider broadcast con-

trollers including stochastic local controllers.

B. Proposed Broadcast Controllers

Now, we give a solution to Problem 1.

Assume the state ξi(t) of Li to be (n+2)-dimensional,

and let ξi1(t) ∈ Rn, ξi2(t) ∈ R, and ξi3(t) ∈ R denote the

components of ξi(t), i.e.,

ξi(t) =





ξi1(t)
ξi2(t)
ξi3(t)



 ∈ Rn ×R×R. (8)

By considering Lemma 1, our solution is given as follows:

α(ξi(t), v(t)) :=





∆i(t)
v(t)

ξi3(t) + 1



 , (9)

β(ξi(t), v(t)) :=






















c(ξi3(t))∆i(t) if ξi3(t)∈{0, 2, 4, . . .},

−c(ξi3(t))ξi1(t)− a(ξi3(t))
v(t)−ξi2(t)

c(ξi3(t))
ξ
(−1)
i1 (t)

if ξi3(t)∈{1, 3, 5, . . .},

(10)

γ(x(t)) := J(x(t)) (11)

where ∆i(t) ∈ (R \ {0})n is a “random” variable and

a(ξi3(t)) ∈ R+ and c(ξi3(t)) ∈ R+ are the gains of this

controller. Note here that

a(ξi3(t)) = a(t), c(ξi3(t)) = c(t) (12)

hold (which will be proven later around (13)), and so the

gains are time-varying. Note also that the resulting ξi1(t) has

nonzero elements, under which ξ
(−1)
i1 (t) expresses the vector

composed of the elementwise inverse of ξi1(t) as defined in

Section I.

In the proposed controller, the local controllers Li (i =
1, 2, . . . , N ) act letting each agent alternately perform two

steps, (a) the random move and (b) the deterministic move

to a specified point, as shown in Fig. 3, and the global

controller G plays a role to broadcast the value of J(x(t)),
i.e., broadcast the achievement degree of the desired motion-

coordination task.

The role of G is clear from (4) and (11), while that of Li

may not be so clear. For this, the following explanation

will be helpful. From (2), (8), and (9), the state ξi3 evolves

according to the dynamics ξi3(t+ 1) = ξi3(t) + 1. This and

(3) mean that ξi3(t) is equal to the time, i.e.,

ξi3(t) = t. (13)

So the conditions in (10) respectively correspond to t ∈
{0, 2, 4, . . .} and t ∈ {1, 3, 5, . . .}, which implies that the

controller Li periodically applies two kinds of inputs to

the agent Ai. Moreover, by noting that ∆i(t) is a random

variable, (2) and (10) imply that the control input ui(t) is a

random vector at t ∈ {0, 2, 4, . . .} and is a vector composed

of pre-specified parameters at t ∈ {1, 3, 5, . . .}. In this way,

Li steers Ai as shown in Fig. 3.

C. Convergence

Next, we show that the proposed broadcast controller in

(2), (4), (9), (10), and (11) is a solution to Problem 1 under

several conditions.

Theorem 1: For the broadcast control system Σ, suppose

that J is given and assume that J is differentiable and

there exists a vector x∗ ∈ RnN satisfying ∇J(x∗) = 0.

Let (L1, L2, . . . , LN , G) be given by (2), (4), (9), (10), and

(11). Let also ∆ij denote the jth element of ∆i and let

∆ := [∆⊤
1 ∆⊤

2 · · · ∆⊤
N ]⊤. If

(A1) J is twice differentiable (in addition to the differ-

entiability assumed above),
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denotes the j-element of xi, and the circles express Ai).

(A2) x∗ is an asymptotically stable equilibrium of the

gradient system ż(τ) = −∇J(z(τ)), where τ ∈
R0+, z(τ) ∈ RnN , and the stability is in the

Lyapunov sense,

(A3) a(t) = a(t + 1) and c(t) = c(t + 1) for t ∈
{0, 2, 4, . . .}, limt→∞ a(t) = 0,

∑∞
t=0 a(t) = ∞,

limt→∞ c(t) = 0, and
∑∞

t=0(a(t)/c(t))
2 < ∞

(note here that (12) holds),

(A4) ∆ij(t) (i = 1, 2, . . . , N , j = 1, 2, . . . , n, t =
0, 1, . . .) are independent identically distributed (in-

dependent also with x(t) (t=0, 1, . . .)), and sym-

metrically distributed about zero with |∆ij(t)| <
∞, |∆−1

ij (t)| <∞, and |∆−2
ij (t)| <∞ w.p.1,

(A5) E[ J(x(t) + c(t)∆(t))2 ] is bounded for all t ∈ N,

(A6) For a compact set S ⊆ RnN such that ż(τ) =
−∇f(z(τ)) with x(0) ∈ S results in x(∞) =
x∗, x(t) ∈ S occurs infinitely often for almost

all sample points of ∆i(t) (i = 1, 2, . . . , N and

t = 0, 1, . . .),
(A7) supt∈N ‖x(t)‖ <∞ w.p.1,

then

lim
t→∞

x(t) = x∗ w.p.1. (14)

Proof: The following four facts prove the theorem.

(i) For t ∈ {0, 2, 4, . . .}, the relation

x(t+2) = x(t)− a(t)
v(t+ 1)− v(t)

c(t)
∆(−1)(t) (15)

holds.

(ii) For the broadcast signal values at time t ∈ {0, 2, 4, . . .}
and time t+ 1, the relations

v(t) = J(x(t)), (16)

v(t+ 1) = J(x(t) + c(t)∆(t)) (17)

hold.

(iii) The dynamics (15) with (16) and (17) is equivalent to

the stochastic approximation algorithm developed in [8], and

so the sequence x(0), x(2), x(4), . . . converges to x∗ w.p.1

under (A1)–(A7).

(iv) The sequence ‖x(1) − x(0)‖, ‖x(3) − x(2)‖, ‖x(5) −
x(4)‖, . . . converges to 0 w.p.1.

The intuitive interpretation of the proposed controller is

as follows. From (15), (16), and (17), the resulting system

Σ evolves according to

x(t+2) = x(t)− a(t)d(x(t),∆(t), c(t)) (18)

for t ∈ {0, 2, 4, . . .}, where

d(x(t),∆(t), c(t)) :=
J(x(t)+c(t)∆(t))−J(x(t))

c(t)
∆(−1)(t).

(19)

By applying Taylor’s theorem to J(x(t) + c(t)∆(t)) and

taking a similar way as in [8], [9], it can be shown that

E[d(x(t),∆(t), c(t))|x(t)] = ∇J(x(t)) +O(c(t))

(c(t)→0). (20)

Namely, the expected value of d(x(t),∆(t), c(t)) is nearly

equal to the gradient of J(x(t)). Thus (18) means E[x(t +
2)|x(t)] ≃ x(t)− a(t)∇J(x(t)), i.e., a stochastic version of

the so-called gradient-decent method.

The seven conditions in Theorem 1 are fairly standard

in stochastic approximation [8], [10]. Condition (A1) means

that the objective function J is sufficiently smooth and

(A2) is a common requirement for decent-type algorithms.

Condition (A3) is imposed for the gains a and c, and (A4)

is for the random variables ∆i (i = 1, 2, . . . , N ). The

parameters a, c, and the probability distribution for ∆i are

usually designed by the users, so as to satisfy (A3)–(A4).

The last (A5)–(A7) are technical conditions to guarantee the

convergence. These may not be easy to check in an analytical

way, but it is known that they are not restrictive conditions

in practice, as addressed in [8], [10]. This fact has been

demonstrated by a number of examples (a list of results are

provided in [11]). In addition, as explained in [10], these can

be ignored by replacing the method with its the projected

version. Hence, (A1)–(A4) are essential in our problem.

A typical choice of the gains a and c (note (12)) will be

a(t) :=







a0
((t/2) + 1 + av)ap

if t ∈ {0, 2, 4, . . .},

a(t− 1) if t ∈ {1, 3, 5, . . .},
(21)

c(t) :=







c0
((t/2) + 1)cp

if t ∈ {0, 2, 4, . . .},

c(t− 1) if t ∈ {1, 3, 5, . . .}
(22)

where a0, av, ap, c0, cp ∈ R+ are arbitrarily given so as to

satisfy (A3), i.e., ap ≤ 1 and ap − cp > 0.5 [12]. Note

that t/2 is equal to the number of the iterations of the two

steps in Fig. 3. On the other hand, a typical probability

distribution for ∆ij (i.e., for ∆i) is the Bernoulli distribution

with outcome ±1 and equal probabilities.

IV. NUMERICAL SIMULATION

Consider the broadcast control system Σ in Fig. 2, where

N := 7 and n := 2. We consider the uniform coverage as a

motion-coordination task, and thus the objective function J
is given by (7) with Q := [0, 1]2, ψ(‖q−xi‖) := ‖q−xi‖

2,

and φ(x) := 1 (φ(x) ≡ 1). This satisfies condition (A1)
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Fig. 4. Snapshots of the group position (in simulation).

in Theorem 1 [13]. We employ the broadcast controller

(L1, L2, . . . , L7, G) in (2), (4), (9), (10), and (11). The gains

are given by (21) and (22) with a0 := 2.38, av := 15,

ap := 0.7, c0 := 0.026, and cp := 0.16. The probability

distribution for ∆i(t) (t = 0, 1, . . .) is the Bernoulli type as

described at the end of Section III-C. For these parameters,

conditions (A2)–(A4) hold. The other conditions are checked

numerically.

Fig. 4 illustrates the snapshots of the group position x(t)
at t = 0, 50, . . . , 250, where the circles express the agents Ai

(i = 1, 2, . . . , 7) and the solid line represents the boundary

of the Voronoi cells for the agents. Fig. 5, on the other hand,

depicts the time evolution of the objective function J(x(t)).
These show that the coverage by seven agents is achieved

by the proposed broadcast controller.

0 50 100 150 200 250
0.02

0.03

0.04

0.05

0.06

0.07

t

J(
x
(t

))

Fig. 5. Time evolution of the objective function (in simulation).

Fig. 6. Experimental setup.

V. EXPERIMENT

For testing our broadcast control framework, we have

set up the experimental system in Fig. 6, composed of an

environment, seven agents, a motion capture system, and a

desktop computer.

The dimension of the environment is 1 × 1 [m]. As the

agents Ai (i = 1, 2, . . . , 7), we have employed the two-

wheeled mobile robot e-puck [14] of a diameter of 75 [mm]

and a height of 60 [mm]. This is actuated by two stepper

motors. Though the mobility of the agent model in (1) is dif-

ferent from that of the two-wheeled robot, we substitute the

two-wheeled robot for the agent model in (1) by converting

the control input in the Cartesian coordinates to that in the

polar coordinates. The local controllers Li (i = 1, 2, . . . , 7)

are implemented in the micro computers embedded in the e-

puck robots. The translational and rotational positions of the

agents are measured by the motion capture system OptiTrack

[15]. This integrates six cameras with a frame rate of 100
[Hz] and a resolution of 640 × 480 [pixel]. The global

controller G is implemented in the desktop computer and

the broadcast signal is sent to the agents via Bluetooth [16].

For the above experimental system, we consider again

the uniform coverage as a motion-coordination task. The

objective function J and the broadcast controller (L1, L2,
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(a) t = 0. (b) t = 50.

(c) t = 100. (d) t = 150.

(e) t = 200. (f) t = 250.

Fig. 7. Snapshots of the group position (in experiment).

. . . , L7, G) are the same as considered in Section IV.

Fig. 7 illustrates the snapshots of the group position x(t).
We can see that the experimental result agrees with the

simulation result in Figs. 4. Thus the gap between theory

and practice is small and the proposed controller works well

in practical situations.

VI. CONCLUSION

A broadcast control method for multi-agent coordination

has been given. By focusing on the necessity of randomness

in the broadcast control system, we have derived a broadcast

controller, composed of local controllers inducing agents to

take random actions and a global controller broadcasting the

achievement degree of a given motion-coordination task. It

has been proven that the proposed controller achieves the

motion-coordination task with probability 1. Furthermore, a

simulation and experimental evaluation have been performed

to demonstrate that the proposed controller is useful in

practice.
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