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Abstract— The realization of nonlinear input-output equa-
tions in the classical state-space form can be studied by the
polynomial approach in which the system is described by two
polynomials from the non-commutative ring of skew polynomi-
als. The aim of the present paper is to apply the polynomial
methods to the realization problem. This allows to simplify the
step-by-step algorithm based on certain sequences of subspaces
of differential one-forms. The presented new formula allows
to compute the differentials of the state coordinates directly
from the polynomial description of the nonlinear system. This
method is more clear, straight-forward and therefore better
suited for implementation in different computer packages such
as Mathematica or Maple. The developed theory and algorithm
are illustrated by means of several examples.

Index Terms— nonlinear control system, continuous-time
system, input-output model, polynomial method, state-space
realization.

I. INTRODUCTION

To describe the behavior of the real-life processes one
frequently uses input-output (i/o) models. This allows to
represent the object of practical interest in a compact and
convenient form by means of differential equations. How-
ever, despite the simplicity of this approach, state-space
description usually becomes the basis for analysis and control
of nonlinear systems. Thus, the problem one encounters and
the main goal of this paper is to bridge the gap between two
modeling approaches and to present the algorithm allowing
one to construct a minimal state-space model from an arbi-
trary set of nonlinear higher order i/o differential equations,
whenever possible.

The state-space realization problem of nonlinear i/o mod-
els has a relatively long history. Some of the results on this
subject may be found in [1], [2], [3], [4], [5] for continuous-
time systems and in [6], [7], [8], [9], [10] for discrete-time
systems, respectively. A great number of existing results have
been obtained for single-input single-output (SISO) systems.
However, multi-input multi-output (MIMO) case has not
been left aside, what may be confirmed, for instance, by [5],
[11], [12], [13], [14]. The comparison of different methods
and the explicit relations between them have been reported
in [3] and [12] for SISO and MIMO cases, respectively.
One of the popular approaches is based on the algebraic
formalism using the theory of differential one-forms [1]. The

J. Belikov is with Institute of Cybernetics, Tallinn University
of Technology, Akadeemia tee 21, 12618, Tallinn, Estonia
jbelikov@cc.ioc.ee
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coordinate-free necessary and sufficient realizability condi-
tions were formulated in terms of integrability of certain
subspaces of one-forms. The algorithm for calculating the
subspaces and the state coordinates was given as well. On
the other hand, there exists a polynomial approach for the
study of this problem in which the system is described by two
polynomials from the non-commutative ring of skew poly-
nomials [4], [15]. This technique represents the objects in a
more compact form and allows to simplify and reduce the
number of steps during calculations. Polynomial approach
has been used so far to study the reduction of nonlinear i/o
equations [16], the linear i/o [17] and transfer equivalence
[18], controllability [19] and used also in introducing the
concept of transfer function into the nonlinear domain [20],
[21]. Thus, it has been already proved itself as a practical
and reliable mathematical tool.

The aim of this paper is to use the straight-forward
polynomial method in order to extend the realization algo-
rithm presented in [4] to the MIMO case. The proposed
algorithm combines well with the existing results for the
reduction problem [16]. Both the results of [16] and this
paper rely on system description in terms of two polynomial
matrices. Moreover, it is known that if the system under
consideration is not in the irreducible form, then the state-
space realization is not minimal, i.e. accessible. Our result
can be also understood as a generalization of the polyno-
mial realization algorithm obtained in [22] for linear time-
invariant systems. Apart from the fact that in [22] the kernel
representation, without the inputs and outputs specified, is
used as a starting point, the main difference comes from
the fact that [22] deals with discrete-time systems. Thus,
when adapting its results to the continuous-time case we
had to replace the cut-and-shift operator, used to compute
the state coordinates, by computation of the left quotients of
two non-commutative polynomials. Finally, note that method
may be easily implemented in any computer algebra system,
for instance, in Mathematica or Maple.

The paper is organized as follows. Section II recalls the
basic notions from the algebraic framework [1] and defines
the realization problem studied in this paper. In the next
section a polynomial system description is given. In Section
IV the main result is presented, followed by the examples.
Section V concludes the paper.

II. PROBLEM STATEMENT AND ALGEBRAIC
FRAMEWORK

Consider a continuous-time MIMO nonlinear system, de-
scribed by a set of higher order i/o differential equations,
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relating the inputs uυ , υ = 1, . . . ,m, the outputs yν , ν =
1, . . . , p and a finite number of their time derivatives

y
(ni)
i = φi(yν , ẏν , . . . , y

(niν)
ν , ν = 1, . . . , p,

uυ, u̇υ, . . . , u
(riυ)
υ , υ = 1, . . . ,m) (1)

for i = 1, . . . , p. In (1) u = [u1, . . . , um]T ∈ Rm,
y = [y1, . . . , yp]

T ∈ Rp and φi are real analytic functions.
Notations n := n1 + · · · + np and r := max{riυ, i =
1, . . . , p, υ = 1, . . . ,m} are used below for system (1).
Moreover, we assume that the following assumptions hold
for system (1).

Assumption 1: System (1) is strictly proper, i.e. riυ < ni.
Assumption 2: System (1) is in the canonical form, which

means that niν < min{ni, nν}.
Note that if the system under consideration is not in form

(1), then it can be transformed into (1) using the approach
proposed in [23], at least locally.

The realization problem is defined as follows. Given a
nonlinear system, described by the set of the i/o equations of
the form (1), find, if possible, the state coordinates x ∈ X ⊆
Rn, x = ψ(yν , ẏν , . . . , y

(ni−1)
ν , uυ, u̇υ, . . . , u

(riυ)
υ ) such that

in these coordinates the system takes the classical state-space
form

ẋ = f(x, u)
y = h(x)

(2)

such that x(t) ∈ X ⊂ Rn, and the sequences {u(t), y(t), t ≥
0}, generated by (2) (for different initial states), coincide
with those, satisfying equation (1). Then (2) will be called
a realization of (1). A system (1) is said to be realizable if
there exists a realization of the form (2) for it.

Next, we recall only the basic aspects of the algebraic
formalism for nonlinear control systems, described in [1].
Let K denote the field of meromorphic functions in a finite
number of the independent system variables

C = {yi, ẏi, . . . , y(ni−1)i , i = 1, . . . , p,

u(lυ)υ , υ = 1, . . . ,m, lυ ≥ 0}.

Let s : K→K denote the time derivative operator d
dt .

Then the pair (K, s) is differential field [24]. Over the
field K one can define a differential vector space, E :=
spanK {dϕ | ϕ ∈ K} spanned by the differentials of the
elements of K. Consider a one-form ω ∈ E such that
ω =

∑
i αidϕi, αi, ϕi ∈ K. Its derivative ω̇ is defined by

ω̇ =
∑
i(α̇idϕi + αidϕ̇i).

A sequence of subspaces {Hk}∞k=1 of E is defined by

H1 = spanK{dyi,dẏi, . . . ,dy
(ni−1)
i , i = 1, . . . , p,

duυ,du̇υ, . . . ,du
(r)
υ , υ = 1, . . . ,m},

Hk+1 = {ω ∈ Hk | ω̇ ∈ Hk}, k ≥ 1.
(3)

Note that there exists an integer k∗ such that H1 ⊃ H2 ⊃
· · · ⊃ Hk∗ ⊃ Hk∗+1 = Hk∗+2 = · · · =: H∞. Now,
we assume that the i/o differential equation (1) is in the
irreducible form. The latter means that H∞ is trivial, i.e.
H∞ = {0}. An nth order realization of equation (1) is
accessible if and only if system (1) is irreducible, see [1].

System (2) is said to be single-experiment observable if
the observability matrix has generically full rank

rankK
∂(h(x), sh(x), . . . , sn−1h(x))

∂x
= n.

We say that ω ∈ E is an exact one-form, if there exists
ξ ∈ K such that dξ = ω. A one-form ω for which dω =
0 is said to be closed. A subspace is integrable or closed,
if it has a basis which consists only of closed one-forms.
Integrability of the subspace of one-forms can be checked
by the Frobenius theorem.

Theorem 1 ([25]): Let V = spanK{ω1, . . . , ωκ} be a
subspace of E . V is closed if and only if

dωi ∧ ω1 ∧ · · · ∧ ωκ = 0 (4)

for all i = 1, . . . , κ.
Theorem 2 ([1]): The nonlinear system, described by the

set of irreducible i/o differential equation (1), has an ob-
servable and accessible state-space realization iff for 1 ≤
k ≤ r + 2 the subspaces Hk defined by (3) are completely
integrable. Moreover, the state coordinates can be obtained
by integrating the basis vectors of Hr+2.

III. POLYNOMIAL SYSTEM DESCRIPTION

Polynomial framework is built upon the linear algebraic
framework. The differential field (K, s) induces a ring of the
left differential polynomials K[∂; s]. The elements of K[∂; s]
can be uniquely written in the form a(∂) =

∑n
i=0 ai∂

n−i,
ai ∈ K, where ∂ is a formal variable and a(∂) 6= 0 if
and only if at least one of the functions ai, i = 0, . . . , n
is nonzero. If a0 6≡ 0, then the positive integer n is called
the degree of the left polynomial a(∂) and may be denoted
by deg a(∂). The addition of the left polynomials is defined
in the standard way. However, for a ∈ K the multiplication
is defined by

∂ · a := a · ∂ + s(a).

Lemma 1 ([18]): Let a ∈ K. Then ∂n · a ∈ K[∂; s], for
n ≥ 0, and ∂n · a =

∑n
i=0

(
n
i

)
sn−i(a)∂i.

Lemma 2 ([1]): Let F ∈ K. Then s(dF ) = d(sF ) = dḞ .
A ring is called an integral domain, if it does not contain

any zero divisors. This means that for any two elements a
and b of the ring, ab = 0 implies either a = 0 or b = 0.

Proposition 1 ([26]): The ring K[∂; s] is an integral do-
main.

Let us define ∂kdyν := d(skyν) = dy
(k)
ν and ∂lduυ :=

d(sluυ) = du
(l)
υ , k, ν = 1, . . . , p, υ = 1, . . . ,m and l ≥ 0

in the vector space E . Since every one-form ω ∈ E has the
form

ω =

p∑
ν=1

n−1∑
i=0

aνidy
(i)
ν +

m∑
υ=1

k∑
j=0

bυjdu
(j)
υ ,

where aνi, bυj ∈ K, so ω can be expressed in terms of the
left differential polynomials in the following way

ω =

p∑
ν=1

(
n−1∑
i=0

aνi∂
i

)
dyν +

m∑
υ=1

 k∑
j=0

bυj∂
j

 duυ.
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A left differential polynomial can be considered as an
operator acting on vectors y = [y1, . . . , yp]

T and u =

[u1, . . . , um]T from E as (
∑k
i=0 ai∂

i)(αdζ) :=
∑k
i=0 ai(∂

i ·
α)dζ with ai, α ∈ K and dζ ∈ {dy,du}, where by Lemma
1, ∂i · α =

∑i
k=0

(
i
k

)
si−k(α)∂k. It is easy to note that

∂(ω) = s(ω), for ω ∈ E .
The nonlinear system (1) can be represented in terms of

two polynomial matrices. By differentiating (1) we obtain

dy
(ni)
i −

p∑
ν=1

niν∑
α=0

∂φi

∂y
(α)
ν

dy(α)ν −

−
m∑
υ=1

riυ∑
β=0

∂φi

∂u
(β)
υ

du(β)υ = 0 (5)

for i = 1, . . . , p. Next, using relations ∂αdyν := dy
(α)
ν ,

∂βduυ := du
(β)
υ , we can rewrite (5) as

P (∂)dy +Q(∂)du = 0, (6)

where P (∂) and Q(∂) are p×p and p×m-dimensional ma-
trices respectively, whose elements piν(∂), qiυ(∂) ∈ K[∂; s]
and

piν(∂) =


∂ni −

niν∑
α=0

piν,α∂
α, if i = ν,

−
niν∑
α=0

piν,α∂
α, if i 6= ν,

qiυ(∂) = −
riυ∑
β=0

qiυ,β∂
β ,

whereas piν,α = ∂φi

∂y
(α)
ν

∈ K, qiυ,β = ∂φi

∂u
(β)
υ

∈ K. Equation
(6) describes the behavior of system (1) in terms of two
polynomial matrices P (∂), Q(∂) in derivative operator ∂ :=
s over the differential field K. Further, the notations pi·(∂) :=
[pi1(∂), . . . , pip(∂)] and qi·(∂) := [qi1(∂), . . . , qim(∂)] are
used for row vectors of P (∂) and Q(∂), respectively.

Since K[∂; s] is an Ore ring, one can construct the division
ring of fractions. If p(∂) = p1(∂)p2(∂) and deg(p1(∂)) > 0,
then p1(∂) is called a left divisor of p(∂).

To find the left divisor one can use the left Euclidean
division algorithm, see [27]. Note that, in order to perform
the left Euclidean division algorithm, it is sufficient that s
be an automorphism. The main idea behind this algorithm
is that for given two polynomials p1(∂) and p2(∂) with
deg(p1(∂)) > deg(p2(∂)), there exists a unique polynomial
γ(∂) and a unique left remainder polynomial ρ(∂) such that
p1(∂) = p2(∂)γ(∂) + ρ(∂) and deg(ρ(∂)) < deg(p2(∂)).

IV. REALIZATION

Now, we introduce the certain one-forms in terms of which
our main result will be formulated. Let

ωi,l =
[
pi·,l(∂) qi·,l(∂)

] [dy
du

]
(7)

for i = 1, . . . , p, l = 1, . . . , ni, where pi·,l(∂) and qi·,l(∂) are
Ore polynomials, which can be recursively calculated from

the equalities

pi·,l−1(∂) = ∂ · pi·,l(∂) + ξi·,l, deg ξi·,l = 0,
qi·,l−1(∂) = ∂ · qi·,l(∂) + γi·,l, deg γi·,l = 0

(8)

with the initial polynomials pi·,0(∂) := pi·(∂) and
qi·,0(∂) := qi·(∂).

Theorem 3: For the input-output model (1), the subspaces
Hk for k = 1, . . . , r + 2 can be calculated as

Hk = spanK{ωi,l, i = 1, . . . , p, l = 1, . . . , ni,

duυ, . . . ,du
(r−k+1)
υ , υ = 1, . . . ,m}. (9)

Proof: The proof is by mathematical induction.
Throughout the proof we assume that i, ν = 1, . . . , p and
υ = 1, . . . ,m.

First, we show that formula (9) holds for k = 1. Taking
k = 1 in (9), yields

H1 = spanK{ωi,l, l = 1, . . . , ni,duυ, . . . ,du
(r)
υ }.

In order to simplify the following discussion note that (8)
can be rewritten as

pi·,0(∂) = ∂l · pi·,l(∂) + Ξi·,l(∂), deg Ξi·,l(∂) < l,

qi·,0(∂) = ∂l · qi·,l(∂) + Γi·,l(∂), deg Γi·,l(∂) < l.
(10)

Suppose l = ni. According to (7), ωi,ni = pi·,ni(∂)dy +
qi·,ni(∂)du. Due to the structure of the i/o equations,
deg(pii(∂)) = ni and pii(∂) is monic. It follows from
(10) that pii,ni(∂) is a left quotient of pii(∂) and ∂ni , thus
pii,ni(∂) = 1. Degrees of all other polynomials {piν(∂), i 6=
ν, qi·(∂)} are strictly less than ni, which means that quotient
of any polynomial {piν(∂), i 6= ν, qi·(∂)} and ∂ni is zero.
Consequently, ωi,ni = dyi. Next, we take l = ni − 1 and
compute ωi,ni−1. Since deg(pii(∂)) = ni and pii(∂) is
monic it follows from (10) that pii,ni−1(∂) is the first degree
polynomial in the form ∂ + α, α ∈ K. At the same time
the left quotients {piν,ni−1(∂), i 6= ν, qi·,ni−1(∂)} are just
functions from K. Thus,

ωi,ni−1 = dẏi+αdyi+

n∑
ν=1,
ν 6=i

piν,ni−1dyν +

m∑
υ=1

qiυ,ni−1duυ.

Since we have represented ωi,ni−1 as a linear combination
of dẏi, dyν ,duυ ∈ H1, we can replace ωi,ni−1 by dẏi.
Continuing in this fashion it is possible to show that H1

agrees with (3).
Assume next that formula (9) holds for k and we prove it

to be valid for k+ 1. The proof is based on the definition of
the subspaces Hk. We have to prove that

Hk+1 = spanK{ωi,l,du, . . . ,du(r−k)}, (11)

calculated according to formula (9), satisfies condition (3).
First, we will show that the one-forms ωi,l,du, . . .,

du(r−k) are in Hk. It is obvious, since we have assumed
formula (9) to hold for k.

Second, we have to prove that the derivatives of the basis
one-forms of (11) belong to Hk. By (7), we have

ω̇i,l =
[
∂ · pi·,l(∂) ∂ · qi·,l(∂)

] [dy
du

]
.
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Using relations (8) yields

ω̇i,l =
[
pi·,l−1(∂)− ξi·,l qi·,l−1(∂)− γi·,l

] [dy
du

]
. (12)

After reordering terms in (12) we get

ω̇i,l =
[
pi·,l−1(∂) qi·,l−1(∂)

] [dy
du

]
−

−
[
ξi·,l γi·,l

] [dy
du

]
. (13)

The one-form ω̇i,l is now represented as a sum of two
terms. To deal with the first term, we consider two separate
cases. In case l = 1 the first term yields pi·,0(∂)dy +
qi·,0(∂)du = pi·(∂)dy + qi·(∂)du = 0 due to polynomial
system description (6). In case l = 2, . . . , ni, the first
term of (13) equals to ωi,l−1 by (7), thus it is in Hk. As
for the second term of (13), it is a linear combination of
dyi,duυ ∈ Hk, since the elements of ξi·,l and γi·,l are
functions from K. Therefore, ω̇i,l ∈ Hk for l = 1, . . . , ni.
Finally, we observe that the derivatives of the rest of the basis
one-forms in (11) are du̇υ, . . . ,du

(r−k+1)
υ , which are also in

Hk. Thus, we have proved that Hk+1, computed according
to (9), agrees with definition (3).

Remark 1: The differentials of the state coordinates can
be found from the subspace Hr+2, see Theorem 2. Though
in case of the realizable i/o equation, Hr+2, defined by (9),
is completely integrable, the one-forms ωi,l for i = 1, . . . , p,
l = 1, . . . , ni, are not necessarily always exact. Therefore,
one has to find for Hr+2 a new integrable basis, using the
linear transformations.

Example 1: Consider the system

ÿ1 = u2ẏ1 + u̇1y2

y
(3)
2 = −u1ẏ1 + y1ẏ2 − ü2

(14)

that can be described by two polynomial matrices in the
following way

P (∂) =

(
∂2 − u2∂ −u̇1
u1∂ − ẏ2 ∂3 − y1∂

)
and

Q(∂) =

(
−y2∂ −ẏ1
ẏ1 ∂2

)
.

From (14) one can get that n1 = 2, n2 = 3, n11 =
1, n12 = 0, n21 = 1, n22 = 1 and r11 = 1, r12 = 0, r21 =
0, r22 = 2. Thus, for system (14), n = n1 + n2 = 5 and
r = max{r11, r12, r21, r22} = 2. Next compute, according
to (8), the left quotients of the elements in matrices P (∂)
and Q(∂) as[
p1·,0(∂) q1·,0(∂)

]
=
[
∂2 − u2∂ −u̇1 −y2∂ −ẏ1

]
,[

p1·,1(∂) q1·,1(∂)
]

=
[
∂ − u2 0 −y2 0

]
,[

p1·,2(∂) q1·,2(∂)
]

=
[
1 0 0 0

]

and[
p2·,0(∂) q2·,0(∂)

]
=
[
u1∂ − ẏ2 ∂3 − y1∂ ẏ1 ∂2

]
,[

p2·,1(∂) q2·,1(∂)
]

=
[
u1 ∂2 − y1 0 ∂

]
,[

p2·,2(∂) q2·,2(∂)
]

=
[
0 ∂ 0 1

]
,[

p2·,3(∂) q2·,3(∂)
]

=
[
0 1 0 0

]
.

Further, recall that dy = [dy1,dy2]T , du = [du1,du2]T .
Since r = 2, according to Remark 1 and using (7), the last
subspace of the one-forms Hr+2 = H4 = spanK{ωi,j} for
i = 1, 2, j = 1, . . . , ni can be represented in the following
form

ω1,1 =
[
∂ − u2 0 −y2 0

] [dy
du

]
= dẏ1 − u2dy1−

− y2du1,

ω1,2 =
[
1 0 0 0

] [dy
du

]
= dy1,

ω2,1 =
[
u1 ∂2 − y1 0 ∂

] [dy
du

]
=

= u1dy1 + dÿ2 − y1dy2 + du̇2,

ω2,2 =
[
0 ∂ 0 1

] [dy
du

]
= dẏ2 + du2,

ω2,3 =
[
0 1 0 0

] [dy
du

]
= dy2.

Though the subspace H4 is completely integrable, ω1,1

and ω2,1 are not exact and we have to replace them by
integrable linear combinations of one-forms from H4 to
obtain the differentials of the state coordinates

dx1 = ω1,2 = dy1
dx2 = ω2,3 = dy2
dx3 = ω1,1 + u2ω1,2 − u1ω2,3 = d(ẏ1 − u1y2)
dx4 = ω2,2 = d(ẏ2 + u2)
dx5 = ω2,1 − u1ω1,2 + y1ω2,3 = d(ÿ2 + u̇2)

In these coordinates the system has the classical state-
space form

ẋ1 = u1x2 + x3
ẋ2 = x4 − u2
ẋ3 = u2x3 + u1(u2(x2 + 1)− x4)
ẋ4 = x5
ẋ5 = x1(x4 − u2)− u1(u1x2 + x3)
y1 = x1,
y2 = x2

Example 2: Consider a hopping robot, consisting of a body
and a single leg, that can be described by the i/o equations
as [1]

ÿ1 = u2

m + y1ẏ
2
3

ẏ2 = −mJ y
2
1 ẏ3

ÿ3 = −u1+2my1ẏ1ẏ3
my21

(15)

where m is the mass of the leg, J the inertia momentum of
the body, y1 denotes the length of the leg, y2 the angular
position of the body, and y3 the angular position of the leg.
Moreover, u1 and u2 control the orientation of the body with
respect to the leg and the length of the leg, respectively.
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Like in the previous example, (15) can be described by
two polynomial matrices as follows

P (∂) =

 ∂2 − ẏ23 0 −2y1ẏ3∂
2my1ẏ3

J ∂
my21
J ∂

2ẏ3
y1
∂ − 2(u1+my1ẏ1ẏ3)

my31
0 ∂2 + 2ẏ1

y1
∂


and

Q(∂) =

 0 1
m

0 0
− 1
my21

0

 .

From (15), n = 5 and r = 0. Next, compute, according to
(8), the left quotients of the elements in matrices P (∂) and
Q(∂) as[

p1·,1(∂) q1·,1(∂)
]

=
[
∂ 0 −2y1ẏ3 0 0

][
p1·,2(∂) q1·,2(∂)

]
=
[
1 0 0 0 0

]
,[

p2·,1(∂) q2·,1(∂)
]

=
[
0 1

my21
J 0 0

]
,[

p3·,1(∂) q3·,1(∂)
]

=
[
2ẏ3
y1

0 ∂ + 2ẏ1
y1

0 0
]
,[

p3·,2(∂) q3·,2(∂)
]

=
[
0 0 1 0 0

]
.

Further, recall that dy = [dy1,dy2,dy3]T , du =
[du1,du2]T . By (7), we get the following basis one-forms
of the last subspace H2

ω1,1 =
[
∂ 0 −2y1ẏ3 0 0

] [dy
du

]
=

= dẏ1 − 2y1ẏ3dy3,

ω1,2 =
[
1 0 0 0 0

] [dy
du

]
= dy1,

ω2,1 =
[
0 1

my21
J 0 0

] [
dy
du

]
=

= dy2 +
my21
J

dy3,

ω3,1 =
[
2ẏ3
y1

0 ∂ + 2ẏ1
y1

0 0
] [dy

du

]
=

=
2ẏ3
y1

dy1 + dẏ3 +
2ẏ1
y1

dy3.

ω3,2 =
[
0 0 1 0 0

] [dy
du

]
= dy3.

Finally, we get H2 = spanK{dẏ1 − 2y1ẏ3dy3,dy1,dy2 +
my21
J dy3,

2ẏ3
y1

dy1 + dẏ3 + 2ẏ1
y1

dy3,dy3}. Simplifying the ba-
sis one-forms, the subspace can be rewritten as H2 =
spanK{dy1,dẏ1,dy2,dy3,dẏ3}, which is closed. Therefore,
the state equations are

ẋ1 = x2
ẋ2 = u2

m + x1x
2
5

ẋ3 = −mJ x
2
1x5

ẋ4 = x5
ẋ5 = −u1+2mx1x2x5

mx2
1

y1 = x1
y2 = x3
y3 = x4

It should be mentioned that since equations (15) do not
include derivatives of the control variables u1, u2, we need to
integrate the elements of the subspace H2, which according
to (3) is always in this form, see [1] for details. In fact, we
can skip intermediate computations and directly write out
the state space realization of i/o equations (15); however,
we decided to show them to illustrate the theory presented
above.

Example 3: Consider the ”ball and beam” system [28],
whose input is the angle and whose output is the ball
position. The input-output equation of the system is

ÿ =
mR2(yu̇2 − g sin(u))

J +mR2
, (16)

where the constant parameters J,R,m represent, respec-
tively, the inertia, radius and mass of the ball, and g is the
gravitational constant.

Equation (16) can be described by two polynomials
p(∂) = ∂2 − mR2u̇2

J+mR2 and q(∂) = − 2mR2yu̇
J+mR2 ∂ + gmR2 cos(u)

J+mR2 .
From (16), n = 2 and r = 1. Note that due to the fact that
(16) is a single-input single-output system with p = m = 1,
one can simplify notation as p11,0 = p0, q11,0 = q0, etc.
Next compute, according to (8), the left quotients of the
polynomials p(∂) and q(∂) as

p1(∂) = ∂, q1(∂) = − 2mR2yu̇
J+mR2 ,

p2(∂) = 1, q2(∂) = 0.

Since r = 1, according to Remark 1 and using (7), the
elements of the last subspace H3 can be represented in the
following form

ω1 = p1(∂)dy + q1(∂)du = dẏ − 2mR2yu̇

J +mR2
du,

ω2 = p2(∂)dy + q2(∂)du = dy.

Finally, we get H3 = spanK{dy,dẏ −
2mR2yu̇
J+mR2 du}. By

Frobenius condition (4) the subspace H3 is not closed, and
therefore, the i/o equations (16) do not admit the classical
state-space realization.

V. CONCLUSIONS AND FUTURE WORKS

In this paper the minimal (accessible and observable) re-
alization problem of nonlinear MIMO systems described by
the set of i/o differential equations is addressed. The explicit
formulas for deriving the differentials of the state coordinates
were proposed, based on the polynomial representation of
the system. Note that from the computational point of view
the approach of this paper if compared to the earlier results
has a number of advantages. First, it is straight-forward,
meaning that there is no need to compute step-by-step all
the Hk subspaces in order to find Hr+2 as was proposed
in [1], or the sequence of distributions Sk as in [14], or
iterative Lie brackets of the vector fields as in [11]. In other
words, using the polynomial representation of the system,
one can immediately find the last subspace Hr+2 with one-
forms defining the differentials of the state coordinates. In
addition, we have implemented the algorithm from [1] and
the one presented in this paper in Mathematica package
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NLControl [29], [30], and conclude that the program code
of the introduced algorithm is shorter and more compact
compared to the previous methods. The method suggested in
this paper can be easily implemented within any symbolic
programming language.

The possible direction for the future extension of this
work is to construct the polynomial realization method
for i/o equations defined on time scale, i.e. unifying the
study of differential and difference equations, as well as
for nonlinear system where the system variables are not
partitioned into inputs and outputs, i.e. for the model used
in the so-called behavioral approach, see, for example, [31]
and [22]. Moreover, comparison of our results with those
in the recent paper [5] needs detailed study at least by
five reasons. First, the different mathematical tools are used.
Second, whereas we are looking for generic solution valid
everywhere except perhaps on a manifold of zero measure,
the paper [5] is searching the solution around a specific
(fixed) equilibrium (working) point. Third, in our paper
like in the linear case, the minimality of the realization is
defined as being accessible and observable whereas in [5]
it is defined by minimality of the state dimension. Fourth,
the starting point of the realization in the MIMO case is
a canonical form of the set of i/o equations. This paper
and [5] consider different canonical forms, respectively the
extensions of Popov and Hermite canonical forms. Finally,
this paper does not consider the case when the system is
represented by the implicit set of differential equations, since
the problem of transforming this set into the Popov form was
studied in [14].
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