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Abstract— This paper considers the problem of
stabilizing a single-input single-output linear time
varying system using a low order controller and an
equalizer filter. The closed loop is a linear singularly
perturbed system with uniform asymptotic stability
behavior. Following the results of Kokotović’s book,
we show how to design a control scheme, control law
plus state observer, such that the system dynamics
is assigned by a Hurwitz polynomial with constant
coefficients. We calculate bounds, ε ∈ (0, ε∗), for
guaranteeing the uniform asymptotic stability of the
singularly perturbed closed loop system.

Notation

• χi
k
∈ Rk stands for the vector which the i-th entry

is equal to 1 and the other ones are equal to 0.
Ik ∈ Rk×k stands for the identity matrix of size
k. Tu{vT } stands for the upper triangular Toeplitz
matrix, which first row is vT . T`{v} stands for the
lower triangular Toeplitz matrix, which first column
is v. 0µ, ν ∈ Rµ×ν stands for the zero matrix, or
simply 0µ when µ = ν. And 0ν ∈ Rν stands for
the zero vector. BDM{H1, H2, . . . ,Hn} denotes a
block diagonal matrix whose diagonal blocks are
{H1, H2, . . . ,Hn}.

• Given a vector function f(·) ∈ Rn, ‖f(·)‖ = ‖f(·)‖2
and for a function matrix A(·) ∈ Rn×n, ‖A(·)‖ =
‖A(·)‖2, see [2]. A vector function f(ε, t) ∈ Rn is
said to be O(ε) over an interval [t1, t2] if there exist
positive constants K and ε∗ such that ‖f(ε, t)‖ ≤
Kε, ∀ε ∈ [0, ε∗], ∀t ∈ [t1, t2], see [4].

I. INTRODUCTION

This paper is a continuation of [14], where we have
proposed a control law for SISO time varying systems,
dζ/dt = A(t)ζ+B(t)u, based on the singular perturbations
approach [8], where the knowledge of the time varying
parameters is not required, but only some bounds. The
aim of such a control law is to approximately match the
closed loop system to a given time-invariant linear state
space system represented by dxs/dt = A0xs + B1r. We
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2580 CP 07340 MÉXICO D.F, spuga@ipn.mx.

M. Bonilla, CINVESTAV-IPN, CONTROL AUTOMÁTICO,
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are now incorporating the observation problem to the
control law proposed in [14], following also the singularly
perturbed framework.

The synthesis of observers based on the singularly
perturbed systems approach is not new, see for example
[13], [5], [6]. With respect to the case of linear time
varying systems two important papers are [7] and [11].

In [11] the synthesis of the state observer is realized
by separating a classical full order Luenberger observer
into the slow and fast subsystems, one observer is for
the slow subsystem and the other observer is for the
fast subsystem. For the stability analysis of the closed
loop system, the knowledge of the parameters system is
required.

In [7], the observer is only synthesized for the slow
subsystem. For the stability analysis of the closed loop
system, the knowledge of the parameters system is again
required.

In this paper, we propose a high gain observer, for
SISO time varying systems, based on the singular per-
turbations approach, where the knowledge of the pa-
rameters is not required. We only need the knowledge
of some bounds on the parameters system. Based on
these bounds, we give an upper bound, ε∗ > 0, for the
singularly perturber parameter, ε, such that for a positive
ε smaller than ε∗, the closed loop stability is guaranteed.

The paper is organized as follows. The problem is first
stated in section II. Next, in Section III we recall the
singularly perturbed linear control law, proposed in [14],
which aim is to lead the closed loop into the Kokotović’s
singularly perturbed system model. In Section IV we
propose a high gain observer, by a proper approximation.
In Section V we study the stability of the system and
the observer together. Finally, in Section VI we give
an academic example. All the proofs are sent to the
Appendix.

II. System Definition and Representation Form

Let us consider a Linear Time Varying System (LTVS),
which dynamics is represented by:

dn

dtn
y+an(t)

dn−1

dtn−1
y+· · ·+a2(t)

d

dt
y+a1(t)y = b(t)u (1)

defined for t ≥ t0 ≥ 0, with initial conditions: y(t0),
dy(t0)/dt, . . ., dn−1y(t0)/dtn−1, where y ∈ R is the
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dependent variable, u ∈ R is the input, at time t ∈ J =
[0,∞). The coefficients, ai(t) and b(t), are unknown and
such that:1

H1 ai(·) ∈ C∞(J, R), ‖ai(t)‖ ≤ L0,a and
‖ d

dtai(t)‖ ≤ L1,a, ∀ i ∈ {1, . . . , n}, ∀ t ∈ J .
H2 b(·) ∈ C∞(J, R), 0 < b1 ≤ b(t) ≤ b2 and

‖ d
dtb(t)‖ ≤ c, ∀ t ∈ J .

A simple device can be used to recast this differential
equation into the form of a linear state equation with
input u and output y. Defining the state variables as
ζT =

[
y dy/dt . . . dn−1y/dtn−1

]
, we then get time

varying linear state equation:

dζ/dt = A(t)ζ +B(t)u
A(t) =

(
Tu{(χ2

n
)T } − χn

n
(an(t))T

)
B(t) = b(t)χn

n
y(t) = Cζ, C = (χ1

n
)T ,

(2)

where: ak(t) =
[
a1(t) · · · ak(t)

]T , k ∈
{1, . . . , n}; the initial state condition is:
ζ(t0) =

[
y(t0) dy(t0)/dt · · · dn−1y(t0)/dtn−1

]T .

III. Singularly Implicit Control Law

For the state space representation (2) we have pro-
posed in [14] the following control law, composed by a
singularly perturbed control law and an equalizer filter,

Singularly perturbed control law

εu = −(χn
n
)T (ζ + h) + (χ1

2
)T
[

xn
xn+1

]
(3)

Equalizer filter[ dxn

dt
dxn+1

dt

]
=

[
−(ān)T + (1 + `)(χn

n
)T

−(β − 1)(χn
n
)T

]
(ζ + h)

+
[
−(1 + `) −`
(β − 1) −β

] [
xn
xn+1

]
+ χ1

2
r

(4)

where: ` = 1/τ − β and āk =
[
ā1 · · · āk

]T , with:
k ∈ {1, . . . , n}; β, τ and ε are positive parameters; and
ā1, . . ., ān are the coefficients of the Hurwitz polynomial
p(λ) = λn+ānλn−1+· · ·+ā2λ+ā1. r is a signal reference
and h is a perturbation, such that:

H3 r ∈ L∞ ∩ C∞(J, R).
H4 h is bounded continuous real function, which

norm is of order ε.
The aim of the equalizer filter is:
1) To assign the closed loop dynamics at a time invari-

ant linear system with the Hurwitz characteristic
polynomial p(λ).

2) To assign a rate of exponential convergence to the
desired dynamics.

The aim of the singularly perturbed control law is:

1For simplicity, in this paper we only consider functions of class
C∞(J, R). But it could be considered functions of class Ck, where
k is a sufficiently positive large integer such that the derivability
conditions were fulfilled. See also Corollary 2.4.12 of [12].

1) To change the base representation system for ob-
taining a singularly perturbed model.

2) To close the desired dynamics by an ε order.
The perturbation signal h is considered, in order to take
into account the effects of the high gain observer, which is
considered in Section IV. The closed loop system is repre-
sented by the following singularly perturbed description:[

dx/dt
εdz/dt

]
=

[
A11 A12

A21(ε, t) A22(ε, t)

] [
x
z

]
+

[
A13

A23(t)

]
h+

[
B1

0

]
r

(5)

where x =
[
ζ1 · · · ζn−1 xn xn+1

]T , z = ζn and:

A11 =

 Tu{(χ2

(n−1)
)T } 0(n−1) 0(n−1)

−(ān−1)T −(1 + `) `

(0(n−1))
T (β − 1) −β


A12 =

 χ(n−1)

(n−1)

−ān + (1 + `)
−(β − 1)

 , B1 =

[
0(n−1)

χ1

2

]
,

A21(ε, t) =
[
−ε(a(n−1)(t))

T b(t) 0
]

A22(ε, t) = [−εan(t)− b(t)] ,

A13 =

 0(n−1) 0(n−1)

−(ā(n−1))
T −ān + (1 + `)

(0(n−1))
T −(β − 1)


A23(t) =

[
(0(n−1))

T b(t)
]

Note that the matrix A22(0, t) satisfies for all t ∈ J :

‖A22(0, t)‖2 ≤ b2
‖ d

dtA22(0, t)‖2 ≤ c and
−b2 ≤ <e λ(A22(0, t)) ≤ −b1

(6)

In [14], we have obtained the following particularization
of Theorem 4.1, Lemma 4.1 and Theorem 6.1 in [8] for
our case study:

Theorem 1: Given the matrix A22(ε, t), the properties
(6) and ‖h‖ = O(ε). If:

ān + β > 1
τ < 1/(ān + β − 1) and
ε∗1 = βb1

βM̄2+KM̄1M̄3
,

(7)

where:

M̄1 =
√

1 + (ā1 − 1
τ )2 + 2(1− β)2,

M̄2 =
∣∣ā1 + β − 1

τ − 1
∣∣

M̄3 =
√∑n

i=1 ā
2
i + (β − 1

τ )2

are satisfied, then the singularly perturbed description
(5) is uniformly asymptotically stable for ε ∈ (0, ε∗1).
Moreover, for all ε ∈ (0, ε∗1) the following expressions
hold uniformly on t ∈ [t0, tf ]:

x(t) = xs(t) +O(ε)
and
z(t) = −A−1

22 (t)A21(t)xs(t) + zf ((t− t0)/ε) +O(ε)
(8)

where xs is solution of the slow system, dx(t)/dt =
A11x + A12z and εdz/dt = A21(ε, t)x + A22(ε, t)z,
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and zf is solution of the fast system, dzf (τ)/dτ =
A22(0, t0)zf (τ) + A23(t0 + ετ)h(t0 + ετ), with the
initial conditions: xs(t0) = x0 and zf (0) =
A−1

22 (0, t0)A21(t0)x0 + z0.

IV. Singularly Perturbed Observer

In this section we are going to assume that the state
is no longer available, so we have to observe it. Since
the signals, ai(t), i ∈ {1, . . . , n}, are unknown (see
Hypothesis H1), we have to use a high gain observer. We
use in fact, the proper approximation of a non proper
system proposed by [9]. Indeed, let us consider the ideal
observer (c.f. (2)):

Ndw/dt = w(t)− Γy ; ȳ = (χ(n̄+1)
(n̄+1))

Tw (9)

where for our case: N = T`{χ2
(n̄+1)

} and Γ = χ1
(n̄+1)

.
y, ȳ and w are the input, the output and the descriptor
variables, respectively, and n̄ = n− 1.

In [9], the authors proposed the following singularly
perturbed proper approximation:

[
dxf

dt

εdz̄
dt

]
=

[
−βf −εn̄+1(χ1

n̄
)T

χn̄

n̄
− (Mn̄ − Un̄)

][
xf

z̄

]
+

[
εn̄q(1,2)

−Q0χ
1

(n̄+1)

]
y

yf = (χ1

n̄
)T z̄ − 1

ε
q(1,2)y

(10)

where xf ∈ R1, z̄ ∈ Rn̄, and yf ∈ R1. βf and ε are two
positive real numbers. Un̄ and Mn̄ are the Butterworth
filter’s matrices [1], namely:

Un̄ = Tu{(χ2
n̄
)T },

Mn̄ =
{
BDM{M1, ...,Mn̄/2} , for n̄ even
BDM{M1, ...,M(n̄−1)/2, 1} , for n̄ odd ,

(11)
Mj = (sin θj)I2 + T`{(cos2 θj)χ2

2
} , θ1 = π/(2n̄),

θj+1 = θj + ∆θ , ∆θ = π/n̄ , j ∈ {1, . . . , n̄− 1}.
(12)

det(λIn̄ + (Mn̄ − Un̄)) =
n̄/2∏
i=1

(
(λ+ sin θi)2 + cos2 θi

)
, for n̄ even

(λ+ 1)
(n̄−1)/2∏
i=1

(
(λ+ sin θi)2 + cos2 θi

)
, for n̄ odd

(13)
The matrix Q0 ∈ Rn̄×(n̄+1) is obtained by solving the
following algebraic system equations:2

Q0

(
1

ε
N
)

+ (Mn̄ − Un̄)−1Q0 = −(Mn̄ − Un̄)−1χn̄

n̄
(χn̄+1

n̄+1
)T

(14)

R0 = −1
ε
Q0N (15)

2Let us recall that the eigenvalues of the Butterworth filter are all
different, and placed over the semi-circle of radius 1/ε, on the left-
half complex plane; thus Spectrum(N) ∩ Spectrum(Mn̄ − Un̄)−1

= ∅, hence there exists a unique solution for these equations [3].

And the number q(1,2) corresponds to entry (1, 2) of
matrix Q0.

In [9] is proved the following Theorem (c.f. Theorem
5.1 in [8]):

Theorem 2 ([9]): Let us consider the following Butter-
worth Filter:[

dxf

dt

ε
dzf

dt

]
=

[
−βf −εn̄+1(χ1

n̄
)T

χn̄

n̄
−(Mn̄ − Un̄)

][
xf

zf

]
+

[
0
χn̄

n̄

]
ȳ

yf = (χ1

n̄
)T zf

(16)

with the initial conditions: xf (0) ∈ R1 and zf (0) ∈ Rn̄.
Then there exists ε∗ ∈ (0, 1), such that for any ε ∈ (0, ε∗):

1) The cascade formed by (9) and (16) is externally
equivalent to (10) 3.

2) The output, yf , of system (10), satisfies:

yf (t) = dn−1

dtn−1
y(t) + e−(β+εn)txf (0) +O(

√
ε)

= ζn(t) + e−(β+εn)txf (0) +O(
√
ε) ∀ t ≥ t∗

(17)
where t∗ = O( ε

sin θ1−
√

2εn
ln(1/

√
ε)).

In the Appendix -A we show the key points of the proof
of this Theorem, which enable us to built the matrices
Q0 and R0.

Corollary 1: There exist matrices, D1 and D2,

D1 = −Q̂−1
0 (Mn̄ − Un̄) and D2 = −Q̂−1

0 q
1
, (18)

where: Q̂0 = [ q
2

q
3
· · · q

n̄+1
], and the q

i
are the

column vectors of matrix Q0 for i ∈ {1, . . . , n̄+ 1}, such
that:

ζf (t) = ζ(t) + h(t) = D1z̄(t) +D2y(t)
h(t) = O(ε), ∀ t ≥ t”. (19)

Furthermore: lim
ε→0

ζf (t) = ζ(t).

V. Closed Loop System

Applying the control scheme composed by: the singu-
larly perturbed control law (3), the equalizer filter (4),
and the singularly perturbed observer, (10) and (19), we
get the closed loop system described by (5).

Now, in view of Corollary 1, Theorems 1 and 2 we
conclude the stability of the closed loop system (5).

In order to show how to synthesize the results of this
paper, we consider the following illustrative example.

VI. Illustrative Example

Let us consider a LTVS represented by (1) with n = 3
and with parameters:

a1(t) =
5∑
j=1

1
2j−1 sin ((2j − 1)t)

a2(t) =
5∑
j=1

(−1)j−1

j sin
(
jt
2

)
a3(t) =

5∑
j=1

j
(2j−1)(2j+1) sin (4jt)

b(t) = 1 + 0.568 (sin(t) + sin(2t))

(20)

3That is to say, the representation, (9), (11), (12) and (16), and
the representation, (10), (11), (12), (14) and (15), have the same
input-output trajectories (see for example [12]).
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Note that b1 = 0.5. The state representation is given by
(2) with:

a3(t) =
[
a1(t) a2(t) a3(t)

]T (21)

The parameters ā1, ā2 and ā3, of the equalizer filter (4),
are the coefficients of the following Hurwitz polynomial
p(λ) = λ3 + 0.92λ2 + 0.25λ+ 0.02, namely:

(ā1, ā2, ā3) = (0.02, 0.25, 0.92) (22)

Since ā3 = 0.92, then the selection, β = 10 and τ = 0.1,
satisfies inequalities (7). From (7), we get: ε∗1 = 0.18,
then ε ∈ (0, 0.18); let us take ε = 0.09, namely:

(ε, β, τ) = (0.09, 10, 0.1) (23)

Since n̄ = n − 1 = 2, then θ1 = π/4 (see (12)). And
the other matrix Q0 of the observer (10) is (see (29)):

Q0 =

[ √
2/ε2 −1/ε 0
0 1/(

√
2ε) −1

]
. Then: q

1
=

[ √
2/ε2

0

]
,

q(1,2) = −1/ε, Q̂0 =

[
−1/ε 0

1/(
√

2ε) −1

]
and Q̂−1

0 =[
−ε 0
−1/
√

2 −1

]
. Based on the proof of Corollary 1, we

get:4 βf = 10. Thus the singularly perturbed observer
(10) takes the following form:

dxf/dt = −10xf − (0.09)3[ 1 0 ]z̄ − (0.09)y

dz̄/dt = 1
0.09

[
0
1

]
xf − 1

0.09

[
1/
√

2 −1
1/2 1/

√
2

]
z̄

− 1
0.09

[ √
2/(0.09)2

0

]
y

yf = [ 1 0 ]z̄ + (1/(0.09)2)y
(24)

From (18) and (19) in Corollary 1, we can compute ζf ,

ζf =
[
ε/
√

2 −ε
1 0

]
z̄ +

[ √
2/ε

1/ε2

]
y (25)

The ideal model to match is:

d3y∗/dt3 + 0.92d2y∗/dt2 + 0.25dy∗/dt+ 0.02y∗ = r.

In order to satisfy H3, r ∈ C∞(J, R), the reference r has
been chosen as follows:

r(t) =
10

2.75

∫ t

0

ϕ(σ)dσ, t ∈ [0, 100]

where:5 ϕ(t) = e−
1

1−(t′)2 , with t′ = (12/75)t− 1.
A

e
MATLABR numerical simulation was performed

with the solver settings: “Start time” = 0.0, “Stop time”
= 100, “Type” = “Fixed–Step”, “Solver” = “ode45 Runge–
Kutta”, “Fixed–step size” = 0.04, “Periodic sample time
constraint” = “Unconstrained”, “Tasking mode for peri-
odic sample times” = “auto”. In Fig. 1, we show the
behavior of system, (2), (20) and (21), controlled by (3),
(4), (22) and (23), with the state observer (24) and (25).
Comparison can be done with the simulations given in
[14].

4From (40), we have: A0 = −β − ε3, then from (41) we get:
βf = β.

5The function ϕ is taken from Definition 2.4.5 in [12].

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i)

Fig. 1. Control variables: (a) output y , (b) matching model error
|y − y∗|, (c)–(d) observation error ‖ζ − ζf‖, (e)–(f) control law u,
(g)–(h) equalizer filter signal x4, and (i) equalizer filter signal x3.

VII. Conclusion

In this paper, we have proposed a singular implicit
control scheme for LTVS SISO systems. The control
scheme is composed by the singularly perturbed control
law (3) and the equalizer filter (4).

The aim of the equalizer filter is to assign the closed
loop dynamics, and to assign a rate of exponential con-
vergence. The aim of the singularly perturbed control law
is to bring the system into a singularly perturbed model,
and to get a desired dynamics by an ε order.

The parameters, β and τ , enable us to compute a
sufficiently small ε such that the uniform asymptotic
stability of the singularly perturbed model is guaranteed.

We have considered the perturbation signal h in order
to take into account the effects of high gain observer.
We have proposed a singularly perturbed observer which
aim is to obtain the observed state ζf = ζ+h, where the
vector function h is O(ε).

Appendix

A. Key points of the proof of Theorem 2

Putting the ideal non proper filter, (9), together with
the Butterworth filter, (16), we get the global singularly
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perturbed system:[
N 0 0
0 1 0
0 0 εIn̄

]
︸ ︷︷ ︸

E

 dw
dt

dxf

dt

ε
dzf

dt



=

 In̄+1 0 0
0 −βf −εn̄+1(χ1

n̄
)T

χn̄

n̄
(χn̄+1

n̄+1
)T χn̄

n̄
−(Mn̄ − Un̄)


︸ ︷︷ ︸

A

[
w
xf

zf

]

+

 −χ1

(n̄+1)

0
0


︸ ︷︷ ︸

B

y

yf (t) =
[

0 0 (χ1

n̄
)T
]︸ ︷︷ ︸

C

[
wT xf zT

f

]T

(26)

In order to prove the external equivalence between (26)
and (10), in [9], the authors have followed the procedure
shown hereafter:

1) Let us first define two invertible matrices: Q =[
In̄+1 0 0

0 1 0
Q0 0 In̄

]
and R =

[
In̄+1 0 0

0 1 0
R0 0 In̄

]
, where

Q0 satisfy (14) and (15).
2) Let us next note that: Spectrum(N) ∩

Spectrum(Mn̄ − Un̄)−1 = ∅, then (14) has a
unique solution (see for example Chapter 8 in [3]).

3) Let us now apply matrices Q and R to

the matrices of (26): QER =

[
N 0 0
0 1 0
0 0 εIn̄

]
,

QAR =

 In̄+1 0 0
−εn̄+1(χ1

n̄
)TR0 −βf −εn̄+1(χ1

n̄
)T

0 χn̄

n̄
−(Mn̄ − Un̄)

,

QB = −

 χ1

(n̄+1)

0
Q0χ

1

(n̄+1)

, CR =

 RT
0 χ

1

n̄
0
χ1

n̄

T

.

4) Let us finally do the change of variable:

z̄(t) = zf (t)−R0w(t) (27)

Adding its third row with the pre-multiplication of
its first row by Q0, we get the externally equivalent
proper system (10).

One way for obtaining the matrices Q0 and R0 is the
following (see also [10]):

1) Let us denote by ri and q
i

the column vectors of
matrices R0 and Q0, respectively. Thus from (15),
we get:[
r1 · · · rn̄+1

]
=

− 1
ε

[
q

1
· · · q

n̄+1

] [
χ2

n̄+1
· · · χn̄+1

n̄+1
0n̄+1

]
= − 1

ε

[
q

2
· · · q

n̄+1
0n̄

]
(28)

2) Then, from (14), (15) and (28), we get:[
q

1
· · · q

n̄
q
n̄+1

]
+
[

0 · · · 0 χn̄
n̄

]
=

− 1
ε (Mn̄ − Un̄)

[
q

2
· · · q

n̄
q
n̄+1

0n̄
]

(29)

3) For solving (29), the columns have to be equated
from the last to the first.

4) Observe that: (χ1
n̄
)TR0 = − 1

εq(1,2)
(χ1
n̄
)T , where

q(i,j) is the entry (i, j) of matrix Q0.

B. Proof of Corollary 1

We first consider the case ε = 0, and then we analyze
the case ε > 0.

1) Let us consider for a while that ε = 0, then from
(16) and (9), we get:6

(Mn̄ − Un̄) zf0(t) =
(
χn̄
n̄

)
ȳ(t) =

(
χn̄
n̄

)
(χn̄+1
n̄+1

)Tw(t)
(30)

Substituting (14) and (15) into (30), we obtain the
equation:

(Mn̄ − Un̄) zf0(t) = [(Mn̄ − Un̄)R0 −Q0]w(t)
(31)

Using (27) and (31), the last equation can be
written as:

(Mn̄ − Un̄) z̄0(t) = −Q0w(t) (32)

Because (9) is an ideal observed, the following
identity holds:

−Q̂−1
0 (Mn̄ − Un̄) z̄0(t) =

[
Q̂−1

0 q
1

In̄
]
ζ(t)

=
[
Q̂−1

0 q
1

0n̄
]
ζ(t) +

[
0n̄ In̄

]
ζ(t)

(33)
Finally we get:

−Q̂−1
0 (Mn̄ − Un̄) z̄0(t)− Q̂−1

0 q
1
y(t) =[

dy/dt · · · dn−1y/dtn−1
]T (34)

2) Let us now consider the case, ε > 0, which is based
on the particular case ε = 0.
From (16) and (9) we get:

(d/dt+ βf )xf = −εn̄+1
(
χ1

n̄

)T
zf

(εIn̄d/dt+ (Mn̄ − Un̄)) zf = χn̄

n̄
xf + χn̄

n̄

(
χn̄+1

n̄+1

)T

w

(35)

If we apply the operator (d/dt+ βf ) to the second
row of the last equation, we then have (recall that
(9) is an ideal observer):

(Mn̄ − Un̄)
(

d
dt

+ βf

)
zf = χn̄

n̄

(
χn̄+1

n̄+1

)T (
d
dt

+ βf

)
ζ

−ε
(

In̄

(
d
dt

+ βf

)
d
dt

+ εn̄χn̄

n̄

(
χ1

n̄

)T
)
zf

(36)

taking into account (14), (15) and (27), we have:(
d
dt + βf

)
((Mn̄ − Un̄) z̄ +Q0ζ) =

−ε
(

In̄
(

d
dt + βf

)
d
dt + εn̄χn̄

n̄

(
χ1
n̄

)T)
zf

(37)

6We write, zf0 and z̄0, instead of, zf and z̄, for emphasizing that
we are considering the case ε = 0.
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This last equation is equivalent to:(
d
dt + βf

)
Q̂0

[
Q̂−1

0 (Mn̄ − Un̄) z̄ + Q̂−1
0 Q0ζ

]
= −ε

(
In̄
(

d
dt + βf

)
d
dt + εn̄χn̄

n̄

(
χ1
n̄

)T)
zf

(38)
Let us rewrite this last equation in the same form
as (33) and (34):

Q̂0

(
d
dt + βf

)
h = εh̄

Q̂−1
0 (Mn̄ − Un̄) z̄ + Q̂−1

0 q
1
y

+
[

dy/dt · · · dn−1y/dtn−1
]T

= −h

h̄ =
(

In̄
(

d
dt + βf

)
d
dt + εn̄χn̄

n̄

(
χ1
n̄

)T)
zf

(39)

We can check that system (16) satisfies the invert-
ibility condition of Theorem 3.1 in Chapter 2 in [8].
Indeed, let us first define the matrices:

A0 = −β − εn̄+1
(
χ1
n̄

)T
(Mn̄ − Un̄)−1

χn̄
n̄

and
A22 = (Mn̄ − Un̄)

(40)

From (13), we get: det (Mn̄ − Un̄) = 1; in [9], the
matrix inverse of (Mn̄ − Un̄) is computed. Further-
more, we can see from (13) that the n̄ eigenvalues
are distinct. Then Theorem 3.1 states that the
eigenvalues of (16) are approximated as follows:

λ1 = λ1 (A0) +O(ε) = −βf +O(ε)
and
λi = 1

ε (λ1 (A22) +O(ε)) , i ∈ {1, . . . , n̄}
(41)

Since matrices A0 and A22 are Hurwitz, then Corol-
lary 3.1 in Chapter 2 in [8] implies that there exists
an ε∗ > 0, such that (16) is asymptotically stable
for all ε ∈ (0, ε∗].
Now, since the input ȳ of the filter (16) is obtained
by means of the ideal observer (9), and since we
have assumed conditions insuring differentiability
and boundedness of the related signals (see assump-
tions H1–H4), it follows that h̄(t) is also a bounded
vector function.
Finally, from equation (39) we have:

h(t) = Q̂−1
0 e−βf th(0) + εQ̂−1

0

∫ t

0

e−βf (t−τ)h̄(τ)dτ

then the vector function h(t) tends exponentially
to 0 when ε tends to 0. Therefore, from (39) we
get:

−Q̂−1
0 (Mn̄ − Un̄) z̄ − Q̂−1

0 q
1
y(t) =[

dy/dt · · · dn−1y/dtn−1
]T
.

(42)

This concludes the proof. �

References

[1] R. W. Daniels. Approximation Methods for Electronic Filter
Design, McGraw-Hill Book Company, Inc. 1974.

[2] C. A. Desoer and M. Vidyasagar. Feedback Systems: Input-
Output Properties, Academic Press . 1975.

[3] F. R. Gantmacher. The Theory of Matrices, Chelsea Publish-
ing Company New York, N. Y. Vols. I and II, 1977.

[4] G. H. Hardy. A Course of Pure Mathematics, Cambridge
University Press, 10th edition. 1975.

[5] S. H. Javid. Uniform Asymptotic Stability of Linear Time
- Varying Singularly Perturbed Systems, Journal of The
Franklin Institute, Vol. 305, No. 1, January 1978.

[6] S. H. Javid. Observing the Slow States of a Singularly Per-
turbed System, IEEE Transactions on Automatic Control,
Vol. AC-25, No. 2, June 1980.

[7] S. H. Javid. Stabilization of Time-Varying Singularly Per-
turbed Systems by Observer-Based Slow-State Feedback,
IEEE Transactions on Automatic Control, Vol. AC-27, No.
3, June 1982.
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