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Abstract. The paper deals with several fundamental issues
that have not been previously addressed in the modeling
and optimization of nonlinear stochastic delay systems. For
an example, consider the special case of a system with a
delayed control term of the form f(u1(t+ θ1), u2(t+ θ2)),
where the delays θi < 0 are different and f(·) is not the
sum of functions of each of the controls separately. The
class of adapted relaxed controls is no longer adequate as
the class of admissible controls, at least in the sense that the
infimum of the costs over this class is not the infimum over
the class of ordinary controls, and the limit of convergent
sequences might be meaningless. We deal with such issues
of admissibility and optimization for a large class of systems
that includes the above example. The appropriate extensions
and the proofs are not obvious. The issues are crucial for the
convergence of numerical approximations to optimal control
problems, as well as for the optimization problem to be well-
defined.

I. INTRODUCTION AND MOTIVATION.

We are concerned with a fundamental issue that has not
been previously addressed in the modeling, optimization,
and numerical optimization of nonlinear stochastic delay
systems and which arises with many new classes of models.
The proofs of the existence of optimal controls generally
use weak convergence methods. One chooses a minimizing
sequence of admissible controls, shows that the set of (paths,
controls) is tight, and that the limit of any weakly convergent
subsequence is an optimal process. This has required the use
of relaxed controls since a minimizing sequence of ordinary
controls will not have a meaningful convergent subsequence
in general, and (least for a compact control-value space,
and the use of the weak topology), any sequence of relaxed
controls is compact; i.e., closed under weak convergence.
With this method, the limit control would be in relaxed
form. Under quite weak conditions any relaxed control can
be approximated by a piecewise-constant ordinary control
in the sense that the (approximating controls, associated
paths) converge weakly to the (original relaxed control and
associated path), and that the associated costs converge.
This approximation property is essential for the method to
work, since it assures that the use of relaxed controls does
not enlarge the range of values of the cost function. In
particular, the infimum of the cost function in this class
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equals the infimum over the class of ordinary controls (e.g,
[10, Theorem 10.1.2]).

Similar issues arise in the proofs of convergence of
numerical approximations to optimal control problems, say
by the Markov chain approximation method [10]. In the
convergence proofs, the approximating chain is interpolated
into a continuous-time process, and the continuous-time
interpolation of the controls is represented in relaxed control
form. It is then shown that the set of approximations (param-
eterized by the approximation parameter) is tight and that the
limit of any weakly convergent subsequence is optimal. The
requires the existence of an optimal control for the original
process, as well as arbitrarily good piecewise-constant and
finite-valued approximations to it.

For the classical models with no delays, the above results
can be shown under very broad conditions. The same is
true for the traditional types of nonlinear stochastic delay
systems, such as (2.1) below and those in [9], which develops
numerical methods for getting optimal controls and value
functions or to evaluate performance for a large class of such
systems, with possibly reflecting boundaries, by extensions
of the Markov chain approximation methods. The methods
are the same as those for the non-delay models, using relaxed
controls. Then the set of adapted relaxed controls can be
taken to be the set of admissible controls.

There are many important classes of models with delays
for which the adaptation of these methods has not been done
and is not obvious. For motivation consider the problem
dx(t) = f1(xt, u1(t + θ1), u2(t + θ2))dt + f2(xt, u0(t +
θ3), u0(t + θ4))dt + dw(t), where xt is the path memory
segment at t, w(·) is a Wiener process, the functions fi(·)
are NOT sums of functions of their individual arguments,1

and the delays θi < 0 take different values. The set of
relaxed controls representations is not adequate since it does
not capture the JOINT values of the controls at the delay
times, and the question of piecewise-constant approximations
is open. The difficulty with getting the approximations is that
all of the values {ui(t)} are computed at time t, but applied
to the dynamics only after the individual delays. So it is the
representations (what ever that will be) of the set of controls
{ui(t)} that must be approximate by admissible controls,
such that, when delayed, we get a good approximation to
the joint values that are needed for the dynamics as in the
above equation.

One of our motivations came from a problem of admission

1E.g., fi(·) is the product of the controls at the different delays.
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control in a network. Jobs arrive at a portal and send a
message to a downstream buffer/router requesting admission.
The acceptance arrives at the portal after the round trip
transportation delay, and if accepted the source can start
sending data. If rejected, the source has the possibility of
reapplying after a (perhaps random) delay. Then a new
control at the router will determine the acceptance. This leads
to a model where controls appear in a product form with
different delays, and which modulates the arrival process.
This paper is devoted to such matters for a new class of
systems.

II. THE MODEL

A currently common form. The paths of all of the
considered process will be confined to a convex bounded
polyhedron G by boundary reflections. To put our model
into perspective, first recall the model that was used for the
development of numerical algorithms for the approximation
of optimal controls and values in [9, Chapter 9], and covers
most forms used in the study of delay systems:

dx(t) = c(x(t), u(t))dt+ σ(x(t))dw(t) + dz(t)

+dt

∫ 0

−θ̄
b(x(t+ θ), u(t+ θ), θ)dµa(θ)

+dt

∫ 0

θ=−θ̄
p(x(t+ θ))dθy(t+ θ).

(2.1)

yi(·) is the component of z(·) due to reflection from the ith
face of G and u(t) ∈ U , a compact set. We use reflected
diffusions with delays since they model many problems of
interest and there is little data concening them. If there is no
reflecting boundary, then simply drop all of the z(·) and y(·)
processes. Reflecting boundaries with delays of the reflection
terms occur frequently in the modeling of communications
systems. For example some of the state space constraints
might be due to finite buffers. Loosely speaking, in simple
models of the internet TCP control, information (non ac-
knowledgements) concerning buffer overflows is sent to the
source after a transportation delay, and affects the source
rate. Numerical data for such problems is in [4], [5], and
attests to the possibilities of the numerical methods in [9].
In such problems it is selected components of the reflection
process that are fed back after a delay.

The model (2.1) was extended in [6], which was concerned
with numerical methods, to allow more general forms of the
delayed reflection term component and there was a controlled
and delayed Poisson measure driving term as well. For both
of these forms the class of admissible controls is just the
class of adapted relaxed controls, and the proof of this fact
follows the usual lines described in the Introduction. The
situation is much more complicated for the models in the
sequel.

In models such as (2.1) the vector-valued control u(·)
appears in the dynamics in a form that is like a function
of the control at one delay plus a function at another delay,
etc., what we call an “additive” form. It was easy to show
that the set of admissible controls is just the set of relaxed

controls and to get arbitrarily good piecewise-constant ordi-
nary control approximations to any relaxed control, in that
the corresponding paths and costs are arbitrarily close. It was
this property that allowed the use of the relaxed controls as
admissible controls, since its use did not enlarge the range
of the cost function values and the set of paths and relaxed
controls is closed under weak convergence.

As noted in the Introduction, we need to define the
class of admissible controls not only to get a well-defined
model, but also to get existence (of an optimal control)
proofs and limit and approximation theorems. The existence
of such piecewise-constant approximations ensures that we
have not enlarged the range of values of the cost function,
and is necessary for the convergence proofs for numerical
approximations to optimal controls and values.

Our model. The model considered in this paper is the
following. Let 0 ≥ θk · · · > θ1 = −θ̄, where θ̄ is the
maximum delay, and consider (for t ≥ 0, xt denotes the
part of x(·) on [t− θ̄, t])

dx(t) = dt

∫ 0

−θ̄
ba(xt, ua(t+ θ), θ)µa(dθ) + σ(xt)dw(t)+

b(xt, u1(t+ θ1), u2(t+ θ2), . . . , uk(t+ θk), t)dt+ dz(t),
(2.2)

where ui ∈ Ui, ua(·) ∈ Ua, all compact, and U =
∏k
i=1 Ui.

The values ua(t), ui(t), i = 1, . . . , are determined at time t,
but they appear in the dynamics with the appropriate delays.
The memory segments are ui(t + θ), θ ∈ [θi, 0], i ≤ k, and
(ua(t+ θ), x(t+ θ)), θ ∈ [−θ̄, 0]. A delayed reflection term
could be included, but since it does not play a major role in
the concerns of this paper, for expositional simplicity it will
not be included.

We will concentrate on the discounted cost function, for
β > 0 and bounded and continuous k(·):

W (x̄, r) = Erx̄

∫ ∞
0

∫
U

e−βt [k(x(t), α)r(dα dt) + q′dy(t)] ,

(2.3)

where the expectation is for the process under initial path
data x̄ and the use of relaxed control r(·).

III. ASSUMPTIONS

Weak convergence. Let S be a complete and separable
metric space with metric ρ(·). Define D(S; [−θ̄,∞)) to be
the space of S-valued functions on [−θ̄,∞) that are right-
continuous with left-hand limits. The symbol ⇒ denotes
weak convergence. The following criterion for tightness will
be used.

Theorem 3.1. [7, Theorem 2.7b.] Let Xn(·) be processes
with paths in D(S; [−θ̄,∞)). For each δ > 0 and rational
t < ∞, let there be a compact set Sδ,t ⊂ S such that
supn P (Xn(t) 6∈ Sδ,t) ≤ δ. Let Fnt be the σ-algebra
determined by {Xn(s), s ≤ t} and let Tn(T ) be the set
of Fnt -stopping times that are no bigger than T . Suppose
that

lim
δ1→0

lim sup
n

sup
τ∈Tn(T )

Emin {1, ρ(Xn(τ + δ1), Xn(τ))} = 0
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for each T < ∞. Then {Xn(·), n < ∞} is tight in
D(S; [0,∞)).

The weak topology is used on the space of re-
laxed controls. Thus rn(·) ⇒ r(·) if and only if∫ ∫

φ(α, s)rn(dα ds)→
∫ ∫

φ(α, s)r(dα ds) for all contin-
uous real-valued functions φ(·) with compact support. The
space of relaxed controls with this topology is compact.
Otherwise S is a vector-valued Euclidean space with the
Skorokhod topology [3]. For A a Borel set in U , and a ≤ b,
we will write r(A, [a, b]) = r(A × [a, b]), and r(A, b) if
a = 0.

Assumptions (A3.1) and (A3.2) below on the constraint set
G are slightly weaker than those in [10, Section 5.7]. They
are quite standard in the treatment of diffusions with con-
straining boundaries, and include the so-called “completely
S” conditions that are used in modeling stochastic networks.
References [1], [2] and [8, Section 3.5] discuss their role in
applications in queueing and communications systems. These
assumptions are made only because they ensure the bounds
(3.1) and (3.2), which in turn ensure that the reflection
component of the cost functions are well-defined, and that
the various sequences of reflection processes are tight.

A3.0. b(·) and σ(·) are bounded and continuous. The conti-
nuity in xt is in the sup norm topology.

After the admissible controls are defined, we will impose
a weak-sense uniqueness condition.

A3.1. G is compact and is the intersection of a finite number
of closed half spaces in Euclidean r-space IRr and is the
closure of its interior. Let ∂Gi, i = 1, . . . , denote the faces
of G, and ni the interior normal to ∂Gi. In the interior
of ∂Gi, the reflection direction is the unit vector di, and
〈di, ni〉 > 0 for each i. The possible reflection directions
at points on the intersections of the ∂Gi are in the convex
hull of the directions on the adjoining faces. No more than
r constraints are active at any boundary point.

A3.2. For an arbitrary corner or edge, let di denote the
directions of reflection on the adjoining faces only. Then
there are constants ai > 0 such that for all such i,

ai〈ni, di〉 >
∑
j 6=i

aj |〈ni, dj〉| .

With this notation, yi(·) can increase only when x(t) ∈ ∂Gi
and z(t) =

∑
i diyi(t).

Bounds on the reflection term. The following growth
estimate is needed to ensure that the cost function is well
defined, and for the proofs of tightness in convergence. Let
xi(t) = ψi(t) + zi(t), define x = x1 − x2, z = z1 − z2, etc.,
and let |z|(a, b) denote the variation of z(·) on [a, b]. Then
(A3.1) and (A3.2) imply that there is C <∞ such that [1]2

|z|(0, t)|+ |y(0, t)| ≤ C sup
s≤t
|ψ(s)|. (3.1)

2See [10, Theorem 11.1.1] and [8, Theorem 3.5.1]. Our (A2.2) is the
(A3.5.4) of the last reference and as noted in [8, Section 3.5], it implies the
condition (A3.5.3) there, which in turn (see [1]) ensures (3.1).

For (2.3) or (3.1) and τ a bounded stopping time,

lim
δ→0

sup
x̄,r,τ

Erx̄|z|2(τ, τ + δ) = 0, (3.2)

which implies that, for T > 0, supx̄,r,tE
r
x̄|z|2(t, t+T ) <∞.

IV. ADMISSIBLE CONTROLS

Let R denote the class of adapted relaxed controls
r(·), the relaxed control extensions of the set of ordinary
controls u(·) = (ua(·), u1(·), u2(·), . . . , uk(·)) and defined
on [−θ̄,∞). Let R denote the class of relaxed controls
r̄(·), defined on [0,∞), where r̄(·) is the class of relaxed
control extensions of the set of delayed ordinary controls
(ū1(·), . . . , ūk(·)) = (u1(·+ θ1), u2(·+ θ2), . . . , uk(·+ θk)).
By the ith marginal ri(·) of r(·) we mean the specialization
to the ith component of the control, and analogously define
the ith marginal r̄i(·). Let r′i(dαi, t) and r̄′i(dαi, t) denote the
left-hand derivatives of the ith marginals ri(·) and r̄i(·), resp.
Then, by the definitions, the marginals of r̄(·) are delayed
in that r̄i(dαi dt) = r̄′i(dαi, t)dt = r′i(dαi, t+ θi)dt.

The control ua(·) plays a minor role since it appears
“additively” and the piecewise-constant approximations are
the usual ones. For simplicity of notation and development,
the ba(·) term will be dropped, and we work with k = 2.
The development and results are the same for the general
case. The definitions mean (meas=Lebesgue measure)

r(A1 ×A2, [0, t]) = meas {s : ui(s) ∈ Ai, i ≤ 2, on [0, t]} ,

r̄(A1×A2, [0, t])=meas {s :ui(s+θi)∈Ai, i ≤ 2, on [0, t]} .

On dropping ba(·) and using k = 2, (2.2) can be written as

x(t) = x(0) +

∫ t

0

σ(xs)dw(s) + z(t)

+

∫ t

0

∫
U

b(xs, α1, α2)r̄(dα1 dα2 ds).

(3.1)

The following assumption will be used.

A4.1. There is a unique weak-sense solution to (2.2) and
(3.1) for each (r(·), r̄(·), w(·)).

To show that (R,R), the set of pairs (r(·), r̄(·)), can be
used as the class of admissible controls, we need to show
that it (together with the set of corresponding solutions to
(3.1)) is closed under weak convergence, and that any control
in it can be approximated by a piecewise-constant control,
with arbitrarily small changes in the cost and solution paths.
Next we show that r̄(·) cannot be obtained from r(·). Then
we prove the closure property and show that any control
in (R,R) can be approximated by a piecewise-constant
ordinary control.

To show that we cannot get r̄(·) from r(·) in general,
consider the example where un1 (·) = un2 (·) and un1 (t) =
1, t ∈ [l/n, l/n + 1/n) for l odd, un1 (t) = 0 for l even.
Let θ2 = 0 and |θ1| an odd multiple of 1/n for the
sequence n that is used. Then rn(·) → r(·), r̄n(·) → r̄(·).
The limits satisfy r′((a, a), t) = 1/2 for a = 1 or 0, and
r̄′((a, a), t) = 0 for a = 1 or 0. Thus r(·) does not yield
the joint distributions of the controls, when each is evaluated
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at a different time, which is what is needed in (3.1). Hence
r̄(·) must be included in the definition of admissible control.

V. LIMITS OF CONVERGENT SEQUENCES

The weak-sense uniqueness assumption (A4.1) means that
the probability law of (r(·), r̄(·), w(·)) uniquely implies
that of (x(·), z(·), r(·), r̄(·), w(·)). Thus we should speak
of admissible sets (r(·), r̄(·), w(·)) instead of admissible
controls r(·).

Let C denote the set of bounded, continuous, and real-
valued functions of their arguments. The initial path data on
[−θ̄, 0] is denoted by x̄.

5.1. Theorem 5.1. Let wn(·) be a Wiener pro-
cess, (rn(·), r̄n(·)) ∈ (R,R), adapted to wn(·). Let
(rn(·), r̄n(·), wn(·)) ⇒ (r(·), r̄(·), w(·)). Then w(·) is a
Wiener process, (r(·), r̄(·)) ∈ (R,R), and is adapted to
w(·). If xn(·), zn(·) correspond to (rn(·), r̄n(·), wn(·)), then

(xn(·),zn(·), rn(·), r̄n(·), wn(·))⇒(x(·),z(·), r(·), r̄(·), w(·)),

where x(·), z(·) corresponds to (r(·), r̄(·), w(·)). The other
limit processes are nonanticipative with respect to w(·). The
costs converge to that for the limit.

Proof. First we show the consistency of the weak-sense limit
of the controls. For any φ(·) ∈ C and i = 1, 2, where ds(s+
θi) is the s-differential at time (s+ θi),∫ t

0

∫
U

φ(αi, s)r̄
n(dα1 dα2 ds)

=

∫ t

0

∫
Ui

φ(αi, s)r
n
i (dαi ds(s+ θi)).

In the limit∫ t

0

∫
Ui

φ(αi, s)r̄i(dαi ds)

=

∫ t

0

∫
Ui

φ(αi, s)ri(dαi ds(s+ θi)),

which implies that the ith-marginal r̄i(·) is the delayed ri(·).
It follows from (3.1), (3,2), (A3.0), and Theorem 3.1, that

{zn(·)} is tight and asymptotic continuous. Then the tight-
ness and asymptotically continuity of {xn(·)} follows. Sup-
pose that (xn(·), zn(·), rn(·), r̄n(·), w(·))⇒ (x(·), z(·), r(·),
r̄(·), w(·)). Then w(·) must be a Wiener process.

Nonanticipativity of the limit (x(·), z(·), ri(·), r̄i(·), i ≤
k) with respect to w(·) can be shown by the following
martingale method. Let h(·), φm(·), φ̄m(·),m ≤ q, f(·), all
be in C, with f(·) having its partial derivatives up to second
order bounded and continuous. For arbitrary nonnegative
p, q, t, τ , and tl ≤ t, l ≤ p, by Itô’s Lemma we have3

Eh
(
xn(tl), z

n(tl), w
n(tl), 〈rni , φm〉(tl), 〈r̄ni , φ̄m〉(tl),

l ≤ p,m ≤ q, i = 1, 2) [wn(t+ τ)− wn(t)] = 0.
(5.1)

(5.1) holds in the limit, where the n is dropped. Due to the
arbitrariness of t, τ, tl, φm(·), φ̄m(·), f(·), h(·), p, q,m, w(·)

3〈r, φ〉(t) =
∫ t

0

∫
U
φ(α, s)r(dα ds).

is a martingale with respect to the filtration generated by
(x(·), z(·), r(·), r̄(·), w(·)). Hence the other limit processes
are nonanticipative.

To show that that x(·) satisfies (3.1) take weak-sense limits
of the terms in

xn(t) = x(0) +

∫ t

0

∫
U

b(xns , α)r̄n(dα ds)

+

∫ t

0

σ(xns )dwn(s) + zn(t),

(5.2)

which yields (3.1). The proof that z(·) is the reflection
process for x(·) is the same as that in [10, Section 11.1.2].
Owing to the weak-sense uniqueness of the solution to (3.1),
any sequence (rn(·), r̄n(·), wn(·)) satisfying the hypotheses
yields the same limit process, in the sense of measure.

The existence of an optimal admissible control is shown
by taking a minimizing sequence (rn(·), r̄n(·), wn(·)), and
showing that there is a subsequence that converges to an
admissible set, and that the associated costs converge to that
under the associated limit process and control.

5.2. Approximating the controls. Introduction. To mini-
mize the notation and algebra we henceforth suppose that all
θi are integral multiples of the δ that are used. We can do
without this assumption, at the expense of more detail. Ow-
ing to the continuity of b(·) and the weak-sense uniqueness
in (A4.1), the process and costs can be well approximated by
using fine enough finite subsets of the Ui, so we can (w.l.o.g.)
suppose that Ui = {ai,j , j}, a finite set for all i. Theorem
5.1 says that (R,R) is closed in that it contains the weak-
sense limits of convergent subsequences, and any weakly
convergent subsequence of (xn(·), zn(·), rn(·), r̄n(·), wn(·))
yields an adapted pair (r(·), r̄(·)) ∈ (R,R)), and the limits
satisfy (3.1). To show that (R,R) can be taken to be the
set of admissible controls we need to show any r(·) with
(r(·), r̄(·)) ∈ (R,R)) can be approximated by a piecewise-
constant ordinary control that yields an approximation to
r̄(·). We use the definitions r̄i(a, [b, c]) = r̄i({a} × [b, c])
and r̄((a1, a2), [lδ, lδ+ δ)) = r̄({a1, a2}× [lδ, lδ+ δ)), with
analogous definitions for ri(·).

Two cases will be considered. The first where the com-
ponents ui(·) or ri(·) can be chosen independently of one
another, in that there are no a priori constraints connecting
them, such as u1(·) = u2(·). The second case is where the
controls are dependent, in particular, u1(·) = u2(·). The
approximation in the latter case is more subtle, since only
one control is involved, but plays a double role in that the
correlation of the values at the delays must be consistent
with the original pair of delayed controls.

Let δ > 0 be the approximation parameter, and let
uδ(·) = (uδi (·), i ≤ k) denote an approximation that is
constant on [lδ, lδ + δ), l = 0, 1, . . . . If there were no
delays or if the system were of the form of (2.1) then the
approximation is standard and simple: On [lδ, lδ + δ), we
define uδ(t) = (uδi (t), i ≤ k) = (ami

∈ Ui, i ≤ k) on a
subinterval of length r((ami , i ≤ k), [lδ−δ, lδ)). The relaxed
control representation of uδ(·) converges weakly to r(·). The
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process paths also converge weakly and we have the desired
approximation.

The development of the piecewise-constant approximation
when there are delays that are unequal is far more subtle,
since while uδi (t) is computed at time t, it is applied at t+|θi|,
and we must approximate the joint distributions of the set of
delayed processes that is given by r̄(·), the relaxed control
representation of (u(· + θi), i ≤ k). In all cases, we will
approximate r̄(·) on the interval [lδ − δ, lδ). Then it will be
applied to the dynamics on [lδ, lδ + δ). This procedure will
assure nonanticipativity.

5.3. Piecewise-constant approximations. Independent
controls. The first step is to approximate r̄(·) (or, in the case
of ordinary controls, ū(·) = {ui(·+ θi)}) since that is what
appears in the dynamics. ūδ(·) must be a piecewise-costant
admissible control, with all components uδi (t) computed at
time t. Define ūδ(t) = {uδi (t + θi}. The construction will
be in two parts. First we construct ūδ(·), an approximation
to r̄(·), and then we construct admissible uδ(·), which will
yield ūδ(·) when the components are delayed.

Constructing ūδ(·). Approximate r̄(·) on the interval
[lδ − δ, lδ). and apply it to the dynamics on [lδ, lδ + δ).
Let {Ft} be the basic filtration. Starting with the largest
delay, |θ1|, divide [lδ, lδ+ δ) into successive subintervals of
lengths r̄1(a1,j , [lδ−δ, lδ)), j = 1, . . . . As will be seen, it is
important that we have subdivided for the largest delay first-
to assure a nonanticipative approximation.

The next step is to take each of the subintervals of [lδ, lδ+
δ) of length r̄1(a1,j , [lδ − δ, lδ)) that were just constructed,
and further subdivide it into successive subintervals whose
lengths are the joint values

r̄((a1,j , a2,n), [lδ − δ, lδ)), a2,n ∈ U2, n = 1, . . . .

Define ūδi (·), i = 1, 2, by setting ūδ(t) = (a1,j , a2.n) on the
(j, n)-th subinterval.4 See Figure 5.1 for an illustration for
U1 = U2 = {1, 0}, ai,1 = 1, ai,2 = 0, i = 1, 2.

lδ lδ + δ

ūδ1(t)

ūδ2(t)

a1,1 = 1 a1,2 = 0

a2,1 = 1 a2,1 = 0 a2,1 = 1 a2,1 = 0

Fig. 5.1. Control-value regions for ūδi (·), i = 1, 2.

The lengths of the subintervals that we constructed are
arbitrary real numbers. If we want them to be integral
multiples of some small ρ > 0, then further divide each
of them into smaller subintervals, where δ/ρ =integer, so
that the resulting controls are constant on each of them. On
the “remainder” subintervals, define the controls in any way
at all. If ρ/δ → 0, then this further approximation has no
asymptotic consequences.

Let r̄δ(·) denote the relaxed control representation of
{ūδi (·), i = 1, 2}. On [lδ, lδ + δ), the components ūδi (·) are

4If there are more than two controls, then continue the subdivisions for
u3, etc.

F(lδ+θi)−−adapted, since |θ1| > |θ2|. (This would not have
been the case if we subdivided first for the control with the
shorter delay.) By the construction, r̄δ(·)⇒ r̄(·), as δ → 0.

Constructing uδ(·). We have just approximated r̄(·).
by the piecewise-constant ūδ(·). Now we must use ūδ(·)
to construct an admissible piecewise-constant control uδ(·)
which yields that ūδ(·). This is important since it is uδ(t)
that that we would actually compute at time t.

Again, we start with the component of ūδ(·) with the
longest delay, namely ūδ1(·), and define uδ1(t) = ūδ1(t+ |θ1|).
On the interval [lδ, lδ + δ), uδ1(·) is Flδ-adapted, since its
values on the subintervals of [lδ, lδ + δ) are determined by

r̄1(a1,j , [lδ + |θ1| − δ, lδ + |θ1|))

= r1(a1,j , [lδ − δ, lδ)), a1,j ∈ U1, j = 1, . . . .

Next define the component uδ2(t) = ūδ2(t + |θ2|) with the
next longest delay. This component is also Flδ-adapted on
[lδ, lδ+ δ), since its values on the subintervals of [lδ, lδ+ δ)
that we have constructed are determined by

r̄((a1,j , a2,n), [lδ−δ+|θ2|, lδ+|θ2|)), a1,j ∈ U1, a2,n ∈ U2,

which is Flδ−adapted since θ1 < θ2. Subdividing using
the longest delay first, then the next longest delay, with the
successive subdivisions conditioned on those for the earlier
ones, assures that uδ(·) is Flδ-adapted on [lδ, lδ + δ).

The procedure gives us a piecewise-constant admissible
control that yields ūδ(·) when the components are ap-
propriately delayed. Let rδ(·) denote the relaxed control
representation of uδ(·).

1

lδ + δ

-

lδ + |θ2| lδ + |θ2|+ δlδ

uδ1(t)

uδ2(t)

1 01 A B

C D

00

1 0 1 01 0 1 0

1 0

-
tlδ + |θ1| lδ + |θ1|+ δ

ūδ1(t)

ūδ2(t)

E
1 0

Fig 5.2. The piecewise-constant approximation uδ(·).
The construction is illustrated in Figure 5.2 for the exam-

ple of Figure 5.1. The figure is split, the lower part should
be to the right of the upper part. The lines B and E indicate
the division of the intervals [lδ + |θ2|, lδ + |θ2| + δ) and
[lδ + |θ1|, lδ + |θ1| + δ), resp., into the subintervals for the
first component ūδ1(·) on those intervals. The line E, shifted
left to the interval [lδ, lδ + δ) gives the values of uδ1(·) on
[lδ, lδ + δ). This division is just the line A. The values of
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ūδ2(·) on [lδ + |θ2|, lδ + |θ2| + δ)) are indicated on the line
D. We now shift this to the interval [lδ, lδ + δ) as indicated
by the line C, to get the value of uδ2(·) on [lδ, lδ + δ).

Theorem 5.1 together with the next theorem shows that
(R,R) satisfies all of the requirements for being the class
of admissible controls. Since we are working with weak
convergence and weak-sense uniqueness, the terminology
in the next Theorem is a little loose. For each δ, we
should construct a new probability space with a copy of
(rδ(·), r̄δ(·)), w(·)) and on which there are the associated
solution processes to (3.1). But, we try to keep the notation
simple. The meaning should be clear.

Theorem 5.2. Let rδ(·) be the relaxed control representation
of uδ(·). r̄δ(·) can be constructed from the uδi (·), i =
1, 2, simply by delaying the component uδi (·) by |θi|.
Then (rδ(·), r̄δ(·), w(·)) ⇒ (r(·), r̄(·), w(·)). If xδ(·) and
zδ(·) are the path and reflection process corresponding to
(rδ(·), r̄δ(·), w(·)), then (xδ(·), zδ(·), rδ(·), r̄δ(·), w(·)) ⇒
(x(·), z(·), r(·), r̄(·), w(·)), where x(·), z(·) correspond to
(r(·), r̄(·), w(·)). The costs converge as δ → 0. The set
(R,R) can be considered to be the class of admissible
controls.

Proof. Since we started with (r(·), r̄(·), w(·)), it is easy
to show the weak convergence (rδ(·), r̄δ(·), w(·)) ⇒
(r(·), r̄(·), w(·)) from the construction. The proof of the
convergence of (xδ(·), zδ(·), rδ(·), r̄δ(·), w(·), costs) is like
that in Theorem 5.1. This convergence and Theorem 5.1,
which showed the closure of (R,R), shows that (R,R) is
the closure of the piecewise-constant controls, and that the
use of (R,R) as the class of admissible controls does not
affect the range of the costs.

5.4. The piecewise-constant approximation for non-
independent controls. The above construction depended on
there being no constraints tying the values of the components
together. If that is not the case, then the method fails. We
now consider the basic case where u0(·) = u1(·) = u2(·),
so that at time t, we compute u0(t), and then apply it to
the dynamics at times t + |θ1| and t + |θ2|. Let U0 be
the compact control-value space for u0(·). For simplicity of
exposition, we continue to use k = 2, but the conclusion
holds for any value of k. Let r0(·) denote the relaxed control
extension of u0(·), and r̄0(·) the relaxed control extension
of (u0(·+θ1), u0(·+θ2)). The marginals (r̄0,1(·), r̄0,2(·)) of
r̄0(·) are consistent with r0(·) in that for Ai ⊂ U0 and times
0 ≤ t1 < t2, r̄0,i(Ai, [t1, t2]) = r0(Ai, [t1 + θi, t2 + θi]).
Owing to the generality of the form b(xt, u0(t+ θ1), u0(t+
θ2)), we must choose the approximating control such that
the joint distributions or values in r̄(·) are approximated.

The construction. Since it is the joint values that are to
be approximated, the construction will be via a conditional
probability formula that approximates the joint distributions,
and then a martingale approach to the law of large numbers
is employed to verify the construction.

Owing to the way that law of large numbers will be

used, we work with a finer interval than δ. For δ > 0 and
ρ > 0, where δ/ρ = q0, a large integer, let uδ,ρ(·) denote
the approximating control. It will be constant on intervals
[kρ, kρ+ρ), k = 0, 1, . . . . Let ai denote the elements of the
set U0, which, w.l.o.g., we continue to suppose is finite.
r0(·) is defined on [θ1,∞). In [θ1, θ1 + δ), use any value

uδ,ρ(t) ∈ U0. Since δ → 0, the value is unimportant. In the
interval lδ + qρ + θ1 ≤ θ2, l > 0, construct the control via
the conditional probability fromula

P
{
uδ,ρ0 (lδ + qρ+ θ1) = a

∣∣∣
uδ,ρ0 (s), s < lδ + qρ+ θ1; r̄0(·), w(·)

}
= r0(a, [θ1 + lδ − δ, θ1 + lδ))/δ.

(5.3)

So far we have assigned values on the time interval [θ1, θ2).
For t ≥ θ2, we are obliged to take the correlations into
account. I.e., for lδ+ qρ ≥ 0, the value of uδ,ρ0 (lδ+ qρ+ θ2)
should depend on uδ,ρ0 (lδ+qρ+θ1), which has already been
assigned. This is done via the conditional probability formula

P
{
uδ,ρ0 (lδ+qρ+θ2)=a2

∣∣∣uδ,ρ0 (s+ θ2),s < lδ + qρ;

uδ,ρ0 (lδ + qρ+ θ1) ∈ A1; r̄0(·), w(·)
}

= P
{
uδ,ρ0 (lδ + qρ+ θ2) = a2

∣∣∣
uδ,ρ0 (lδ + qρ+ θ1) ∈ A1; r̄0(·), w(·)

}
=
r̄0((A1, a2), [lδ − δ, lδ))
r̄0((A1, U0), [lδ − δ, lδ))

=
r̄0((A1, a2), [lδ − δ, lδ))

r0(A1, [lδ − δ + θ1, lδ + θ1))
.

(5.4)

By the construction in (5.4), the distribution of the control,
conditioned the entire past, depends only on the control value
|θ1 − θ2| units of time ago, and on r̄(·), w(·), and not on
any other past controls. Since the right-hand side of (5.4) is
Flδ+θ2 -adapted, so is uδ,ρ0 (t + θ2) for t ∈ [lδ, lδ + δ). This
completes the construction.

To get the expression for the conditional probability of
uδ,ρ0 (lδ+qρ+θ1) given the past, just add θ1 − θ2 < 0 to lδ
in (5.4). This moves us back in time by |θ1 − θ2| and, for
A3 ⊂ U0, yields

P
{
uδ,ρ0 (lδ+qρ+θ1)=a1

∣∣∣uδ,ρ0 (s+θ1), s < lδ + qρ;

uδ,ρ0 (lδ + qρ+ 2θ1 − θ2) ∈ A3; r̄0(·), w(·)
}

=
r̄0((A3, a1), [lδ + θ1 − θ2 − δ, lδ + θ1 − θ2))

r̄0((A3, U0), [lδ + θ1 − θ2 − δ, lδ + θ1 − θ2))
.

(5.5)

The key to the proof below is the fact that the construction
implies that, in each interval [lδ, lδ + δ) and conditioned
on {uδ,ρ0 (nρ), nρ < lδ; r̄0(·), w(·)}, the random variables
{uδ,ρ0 (lδ + qρ), qρ < δ} are mutually independent and
identically distributed. Define ūδ,ρ0 (lδ+qρ) = (uδ,ρ0 (lδ+qρ+
θ1), uδ,ρ0 (lδ + qρ + θ2)). Let rδ,ρ0 (·) and r̄δ,ρ0 (·) denote the
relaxed control representations of uδ,ρ0 (·) and ūδ,ρ0 (·), resp.
The following fact is implied by the construction. If A3 = U0

in (5.5), then uδ,ρ0 (lδ + qρ + 2θ1 − θ2) is averaged out and
(5.5) takes the value r0(a1, [lδ + θ1 − δ, lδ + θ1))/δ.
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We will need the joint probability of the controls at the
two delays, conditioned on just (r̄0(·), w(·)). This is obtained
by multiplying (5.4) by the probability that uδ,ρ0 (lδ + qρ +
θ1) = a1, conditioned on (r̄0(·), w(·)). To do this multiply
the second and third lines of (5.4) by (5.5) with A1 = {a1}
and A3 = U0, yielding

P
{
uδ,ρ0 (lδ+qρ+θ1) = a1, u

δ,ρ
0 (lδ+qρ+θ2) = a2

∣∣∣
r̄0(·), w(·)}

= r̄0((a1, a2), [lδ − δ, lδ))/δ.

(5.6)

The class of admissible controls. By Theorems 5.1 and
5.3, this can be considered to be (R0,R0) in that it is
closed under weak convergence (together with the associated
path processes), any control in it can be approximated by a
piecewise-constant control, and the infimum of the costs over
this class equals that over the piecewise-constant controls.

Theorem 5.3. Suppose that ρ/δ = 1/q0 → 0 and let xδ,ρ(·)
and zδ,ρ(·) denote the solution and reflection processes,
resp., under (rδ,ρ0 (·), r̄δ,ρ0 (·), w(·)). As δ → 0 and ρ/δ → 0,

(xδ,ρ(·), zδ,ρ(·), rδ,ρ0 (·), r̄δ,ρ0 (·), w(·))

⇒ (x(·), z(·), r0(·), r̄0(·), w(·)),
(5.7)

solving (3.1). The costs converge to that for the limit process.

Proof. Let φ(·) be bounded, continuous, and real-valued. By
the definition of r̄δ,ρ0 (·), with α = (α1, α2),∫ t

0

φ(ūδ,ρ0 (s), s)ds=

∫ t

0

∫
U0×U0

φ(α, s)r̄δ,ρ0 (dα ds). (5.8)

We now show that, for any T <∞, as δ, ρ/δ → 0,

sup
t≤T

E

∣∣∣∣∫ t

0

∫
U0×U0

φ(α, s)
[
r̄δ,ρ0 (dα ds)− r̄0(dα ds)

]∣∣∣∣→ 0.

(5.9)
By subdividing the time interval and adding the pieces we
can suppose that φ(·) does not depend on s, and evaluate

t/δ−1∑
l=0

E

∣∣∣∣∣
∫
U0×U0

∫ lδ+δ

lδ

φ(α)r̄δ,ρ0 (dα ds)

−
∫
U0×U0

∫ lδ

lδ−δ
φ(α)r̄0(dα ds)

∣∣∣∣∣ .
Using (5.8) in the form∫ lδ+δ

lδ

∫
U0×U0

φ(α)r̄δ,ρ0 (dα ds) = ρ

q0−1∑
q=0

φ(ūδ,ρ0 (lδ + qρ)),

it is sufficient to evaluate

E

t/δ−1∑
l=0

∣∣∣∣∣ρ
q0−1∑
q=0

φ(ūδ,ρ0 (lδ + qρ))

−
∫ lδ

lδ−δ

∫
U0×U0

φ(α)r̄0(dα ds)

∣∣∣∣∣ .
(5.10)

We will evaluate each bracketed term separately, using the
fact that the controls in each interval [lδ, lδ+δ) are mutually

independent and identically distributed, given the data to
lδ and (r̄0(·), w(·)). This will be done in several steps by
centering the summands about their conditional expectation
and using martingale inequalities. The conclusion will be
that φ(ūδ,ρ0 (lδ + qρ)) can (asymptotically) be replaced by
its conditional expectation given only (r̄0(·), w(·)), which is
given by (5.6). This yields the result, since (5.10) is zero with
this replacement. Let Et denote the expectation, conditioned
on {uδ,ρ0 (s), s ≤ t; r̄0(·), w(·)}.

For the first step, define the conditional expectation

φ1(uδ,ρ0 (lδ + qρ+ θ1)) =

E{lδ+qρ+θ2−ρ}φ(uδ,ρ0 (lδ + qρ+ θ1), uδ,ρ0 (lδ + qρ+ θ2)) =∑
α2

φ(uδ,ρ0 (lδ + qρ+ θ1), α2)P
{
uδ,ρ0 (lδ + qρ+ θ2) = α2

∣∣∣
uδ,ρ0 (s), s < lδ + qρ+ θ2; r̄0(·), w(·)

}
.

(5.11)
By (5.4), this depends only on (uδ,ρ0 (lδ+qρ+θ1), r̄0(·), w(·)).

Center the terms in the inner sum (that over q) in (5.10)
about their conditional expectations in (5.11) to yield∣∣∣∣∣
q0−1∑
q=0

ρ
[
φ(ūδ,ρ0 (lδ+qρ))− φ1(uδ,ρ0 (lδ+qρ+θ1))

]∣∣∣∣∣ . (5.12)

Owing to the centering about the conditional expectation,
for q = 0, . . . , q0−1, the summands in (5.12) are martingale
differences with variance O(ρ2). Thus the variance of (5.12)
is O(ρδ) and the mean of its absolute value is O(

√
ρδ). Since

there are t/δ such terms in (5.10) and ρ/δ → 0, it follows
that the limit of (5.10) equals that of

E

t/δ−1∑
l=0

∣∣∣∣∣ρ
q0−1∑
q=0

φ1(uδ,ρ0 (lδ + qρ+ θ1))

−
∫ lδ

lδ−δ

∫
U0×U0

φ(α)r̄0(dα ds)

∣∣∣∣∣ .
(5.13)

Repeat the procedure of the first step by centering the
summands in the inner sum in (5.13) about their conditional
expectation given the data to lδ + qρ + θ1 − ρ. To do this,
note that, for q < q0, (5.5) implies that

E{lδ+qρ+θ1−ρ}φ1(uδ,ρ0 (lδ + qρ+ θ1))

= E{lδ+qρ+θ1+(θ1−θ2)}φ1(uδ,ρ0 (lδ + qρ+ θ1))

= E{lδ+qρ+θ1+(θ1−θ2)}

φ(uδ,ρ0 (lδ + qρ+ θ1), uδ,ρ0 (lδ + qρ+ θ2))

≡ φ2(uδ,ρ0 (lδ + qρ+ θ1 + (θ1 − θ2)).

(5.14)

By the argument for the first step, the limits are unchanged if
we use φ2(uδ,ρ0 (lδ+qρ+θ1+(θ1−θ2)) in (5.13). The key line
in (5.14) is the third, E{lδ+qρ+θ1+(θ1−θ2)}φ(ūδ,ρ(lδ + qρ)).

Continue with this procedure, working backward |θ1−θ2|
at a time, with the conditioning on the control for each
step being pushed back in time by that amount, until the
conditioning on the control is in the interval [θ1, θ2) and the
conditional probabilities are given by (5.6) and φ(ūδ,ρ0 (lδ +
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qρ) in (5.10) is replaced by E{w(·),r̄0(·)}φ(ūδ,ρ0 (lδ + qρ)
which by (5.6) is∑

α

φ(a)r̄0(α, [lδ − δ, lδ))/δ

=

∫ lδ

lδ−δ

∫
U0×U0

φ(α)r̄0(dα ds)/δ.

With this expression replacing φ(ūδ,ρ0 (lδ + qρ)) in (5.10),
(5.10) equals zero.

Each step introduces a further error of order O(
√
ρδ) in

the approximation of the bracketed term in (5.10), and there
are at most t/|θ2−θ1|+1 steps. Since there are t/δ bracketed
terms in (5.10), modulo an error of magnitude O(

√
ρδ)/δ,

we have that (5.10), hence (5.9), goes to zero as δ, ρ→ 0..
The convergence of the paths and costs follows from a

proof like that of Theorems 5.1 and 5.2 and the details are
omitted.

5.5. Both independent and dependent controls. Suppose
that the function b(·) in (3.1) or (2.3) is replaced by
b1(·) + b2(·) where in b1(·) the values of the controls can
be chosen independently of each other as in Subsection
5.3, and b2(·) has the form used in Subsection 5.4, with
the two sets being independent of each other. Then, with
r(·) denoting the relaxed control representation of all of the
controls, and r̄(·), r̄0(·) as in Subsections 5.3 and 5.4, resp.,
the construction of the approximations is just that of Sections
5.3 and 5.4 used for the appropriate set of controls. The set
of admissible controls is (R,R,R0).
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