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Abstract— Copositive Lyapunov functions are used along
with dissipativity theory for stability analysis of uncertain linear
positive systems. At the difference of standard results, linear
supply-rates are employed for robustness and performance
analysis and lead to L1- and L∞-gain characterizations. This
naturally guides to the definition of Integral Linear Constraints
(ILCs) for the characterization of input-output nonnegative
uncertainties. It turns out that these integral linear constraints
can be linked to the Laplace domain, in order to be tuned
adequately, by exploiting the L1-norm and input/output signals
properties. This dual viewpoint allows to prove that the static-
gain of the uncertainties, only, is critical for stability. This
fact provides a new explanation for the surprising stability
properties of linear positive time-delay systems. The obtained
stability and performance analysis conditions are expressed
in terms of (robust) linear programming problems that are
transformed into finite dimensional ones using the Handelman’s
Theorem. Several examples are provided for illustration.

Index Terms— Positive linear systems; Integral Linear Con-
straints; Robustness; Robust linear programming

I. INTRODUCTION

Linear internally positive systems are a particular class of
linear systems whose state takes only nonnegative values.
Such models can represent many real world processes, from
biology [1], passing through ecology and epidemiology [2]
to networking [3]. This is because many physical systems
involve quantities that are nonnegative in nature, it seems
then natural to represent them by models involving nonneg-
ative quantities as well. By extension, positive systems can
also be generalized to (internally or not) input/ouput positive
systems, meaning that for any positive input, the output is
also positive.

Several results focusing on the (robust) stability analysis
and the (robust) stabilization of linear positive systems have
already been reported in the literature, see e.g. [4], [5], [6],
[7], [8], [9]. The stability of such systems can be determined
using quadratic Lyapunov functions V (x) = xTPx, P =
PT � 0 as any linear system. But, surprisingly, the Lyapunov
matrix P can losslessly be chosen as diagonal, this is referred
to as diagonal stability [10]. There also exists another class
of Lyapunov functions leading to necessary and sufficient
condition, the so-called linear copositive Lyapunov functions
V (x) = λTx for some Rn 3 λ > 0 where ′ >′ is
componentwise [5], [6], [11], [12], [13], [14]. In such a
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case, the resulting problem takes the form of a linear pro-
gramming problem (convex) which can be solved efficiently
using solvers implementing the simplex algorithm, active
sets methods or linear interior-point algorithms [15]. The
Lyapunov function being linear, there is no more relationship
with the vector 2- and the L2-norms as for a quadratic one.
The connection with the vector 1- and L1-norms is however
evident1.

In this paper, the stability analysis of uncertain positive
systems is considered in the L1- and the L∞-norms using
linear copositive Lyapunov functions and dissipativity theory
[17], [5]. Stability analysis results for unperturbed systems
are first provided to set up the ideas and introduce the
important tools. It is then shown that the exact computa-
tion problems of L1- and L∞-gains for linear internally
input/output positive systems amount to solve linear pro-
gramming problems. The L1-gain is computed via a direct
application of the dissipativity theory while the L∞-gain
computation relies on the concept of adjoint system.

The robust stability analysis is based on Linear Fractional
Transformations (LFTs), a classical tool of robust analysis
[18], which seems to have been ignored in the context of
positive systems. In this framework, the uncertain positive
system is rewritten as the interconnection of a nominal pos-
itive system and an uncertain diagonal matrix of input/ouput
positive operators. The uncertain operators are characterized
by Integral Linear Constraints (ILCs) whose name is to put in
contrast with the well known Integral Quadratic Constraints
(IQCs). Although the provided framework does not enjoy the
availability of the Plancherel Theorem, frequency domain
analysis can still be used in order to select the scalings
accurately. Finally, using dissipativity theory or, equiva-
lently, a linear counterpart of the full-block S-procedure
[19], robust stability analysis tools, formulated as robust
linear programming problems, are provided. The problem is
made tractable by applying the Handelman’s Theorem [20]
which yields linear programs involving a finite number of
constraints. In order to reduce the computational complexity
of the approach, an elimination procedure for some of the
extra variables introduced by the Handelman’s Theorem is
considered.

The outline of the paper is as follows, Section II introduces
the problem, fundamental definitions and results. Section III
is devoted to the stability analysis of unperturbed systems.
Section IV brings out Integral Linear Constraints. Results

1This has also been noticed in the paper [16], also published in the same
conference as this one.
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on robust stability are detailed in Section V. Illustrative
examples are treated in Section VI.

The notation are the following: 1n denotes a column
vector with n rows containing only 1 entries. For general
real matrices/vectors A,B ∈ Rn×m, the inequality A <
(≤)B is componentwise. The vector 1-norm is denoted
by ||x||1 =

∑n
i=1 |xi| while the vector ∞-norm is de-

fined by ||x||∞ = maxi∈{1,...,n} |xi| for any vector x ∈
Rn. Given v : R → Rn, the L1-norm ||v||L1 and the
L∞-norm ||v||L∞ are defined by ||v||L1

=
∫
R ||v(t)||1dt

and ||v||L∞ = ess supt∈R ||v(t)||∞ respectively. We also
define the sets Rn++ = {α ∈ Rn : α > 0}, Rn+ :=
{α ∈ Rn : α ≥ 0, ||α|| 6= 0} and R̄n+ := {α ∈ Rn : α ≥ 0}.
A linear function `(x) = cTx is said to be copositive if
cTx > 0 for all x ∈ R+.

II. PRELIMINARIES

Let us consider general LTI systems of the form:

ẋ(t) = Ax(t) + Ew(t)
z(t) = Cx(t) + Fw(t)
x(0) = x0

(1)

where x, x0 ∈ Rn, w ∈ Rp and z ∈ Rq are respectively the
system state, the initial condition, the exogenous input and
the controlled output.

The following definitions and results will be useful in the
sequel:

Definition 1: The autonomous version of system (1) is
said to be internally positive if the matrix A is a Metzler
matrix, i.e. all the off-diagonal elements are nonnegative.

Definition 2: A linear map V (x) = λTx is said to be
a linear copositive Lyapunov function for the internally
positive system ẋ(t) = Ax(t) if V is a linear copositive
function and λTAx < 0 for all x ∈ Rn+.

Definition 3: The system (1) is said to be internally input-
output positive if for any x0 ∈ R̄n+ and w(t) ∈ R̄p+, we have
x(t) ∈ R̄n+ and z(t) ∈ R̄q+ for all t ≥ 0.

Lemma 1: The system (1) is internally input-output posi-
tive if and only if the following statements hold:

1) the matrix A is Metzler,
2) the matrices E,C and F are nonnegative. M
Definition 4: The L1-gain ||Σ1||L1−L1

of the operator
Σ1 : Lp1 → Lq1 is defined as the smallest γ1 > 0 such that
||Σ1w||L1

≤ γ1||w||L1
holds for all w ∈ L1. The explicit

solution when the system is LTI is given by [21]:

||Σ1||L1−L1 := max
j∈{1,...,q}

{
p∑
i=1

∫ +∞

0

|hij(t)|dt

}
(2)

where hij(t) is the impulse response from input j to output
i.

Definition 5: Similarly, the L∞-gain of the operator Σ∞ :
Lp∞ → Lq∞ is defined as the smallest γ∞ > 0 such that
||Σ∞w||L∞ ≤ γ∞||w||L∞ holds for all w ∈ L∞. Moreover,
when the system is LTI we have [21]:

||Σ∞||L∞−L∞ := max
i∈{1,...,p}


q∑
j=1

∫ +∞

0

|hij(t)|dt

 . (3)

The L1-gain quantifies the gain of the most influent input
since the max is taken over the columns. In contrast, the L∞-
gain of a system is the max taken over the rows and then
characterizes the most sensitive output. Note that in the SISO,
symmetric and certain sparse cases, the two norms coincide.
Another important fact, needed later, is the correspondence
of the L1-induced and L∞-induced norms using the notion
of adjoint system:

Proposition 1: The L∞-gain of a LTI finite dimensional
system H is related to the L1-gain of the adjoint system
through the equality:

||H||L∞−L∞ = ||H∗||L1−L1
(4)

where H∗(s) = BT (sI − AT )−1CT + DT is the adjoint
system of H(s) = C(sI −A)−1B +D.

Proof: The proof follows from the definitions of the
adjoint and the norms.

Coming back to internally input-output positive systems,
we have the following useful facts:

Fact 1.The adjoint system of an internally input-output
positive system is also internally input-output pos-
itive.

Fact 2.The L1-norm of a nonnegative function
v : R+ → Rn+ is given by ||v||L1 =

∫ +∞
0

1Tnv(t)dt.

III. NOMINAL STABILITY AND PERFORMANCE ANALYSIS

In this section, stability and performance analysis criteria
for unperturbed systems are derived. That is, we tacitly
assume that (1) is internally input/ouput positive.

Lemma 2: The system (1) is asymptotically stable if and
only if there exist λ ∈ Rn++ and a scalar γ > 0 such that the
following linear program[

ATλ+ CT1q
ETλ− γ1p + FT1q

]
< 0 (5)

is feasible. Moreover, in such a case, the L1-gain of the
transfer w → z is lower than γ. M

Proof: The proof is based on dissipativity theory for
nonnegative systems [17], [5] used along with a linear copos-
itive storage function of the form V (x) = λTx, λ ∈ Rn++.

Lemma 3: The system (1) is asymptotically stable if and
only if there exist λ ∈ Rn++ and a scalar γ > 0 such that the
following linear program[

Aλ+ E1p
Cλ− γ1q + F1p

]
< 0 (6)

is feasible. Moreover, in such a case, the L∞-gain of the
transfer w → z is lower than γ. M

Proof: The proof is based on Proposition 1 and Lemma
2.

It is important to stress that the above lemmas are
necessary and sufficient conditions for stability and gain-
computation. Therefore, in both results, by minimizing γ > 0
the exact norm can be computed.
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IV. HANDLING UNCERTAINTIES USING ILCS AND
LAPLACE DOMAIN INTERPRETATION

In robust stability analysis theories for interconnected sys-
tems, the stability condition usually consists of two separate
local conditions: one for each subsystem. The first one,
generally very precise, is used to characterize the nominal
system usually enjoying nice properties: e.g. linearity, time-
invariance, etc. The second condition, often more difficult to
derive when high precision is sought, is used to characterize
the uncertain part. IQCs are very powerful objects able
to accurately describe uncertain operators [22] through the
consideration of their input/output signals. Unfortunately,
they are based on quadratic functionals and do not fall into
the current ’linear functionals-based framework’. Yet, we can
find inspiration in this idea.

A. Integral Linear Constraints

Our framework is indeed more adapted to Integral Linear
Constraints (ILCs) taking the form∫ +∞

0

ϕT1 |α(t)|+ ϕT2 |β(t)|dt ≥ 0 (7)

where the functions α, β ∈ L1 verify β = Σα for some
given uncertain operator Σ and where the absolute value is
componentwise. For positive signals α = z0, β = w0 and a
positive operator Σ = Σ0, the above ILC reduces to

Φ :=

∫ +∞

0

ϕT1 z0(t) + ϕT2 w0(t)dt ≥ 0. (8)

The operator Σ0 may consist of any nonnegative operator:
nonnegative time invariant/varying parameters, delay opera-
tors, nonnegative transfer functions, etc.

The efficiency of IQCs lies in the fact that, by virtue
of the Plancherel Theorem, it is possible to convert the
inequality to the frequency domain in which the tuning of
the IQC kernel may be easier and/or more precise. Finally,
by virtue of the Kalman-Yakubovich-Popov Lemma and the
S-procedure, the frequency domain conditions are converted
back to time-domain conditions, taking the form of tractable
LMIs problems.

However, in L1, a Plancherel Theorem does not exist and
we cannot expect to switch from time to frequency domains
in the same spirit as in L2. We can, however, still link time
and frequency domains together by noting that

Φ =
∫ +∞
0

[
ϕT1 z0(t) + ϕT2 w0(t)

]
e−stdt

∣∣∣
s=0

= ϕT1 ẑ0(0) + ϕT2 ŵ0(0)
(9)

where hatted signals stand for the Laplace transform of the
corresponding signals. So, we can see that ILCs characterize
the static-gain of an operator, independently of its nature (i.e.
time-invariant or time-varying). Hence the static-gain only is
critical for stability in this context.

If the operator Σ0 is linear and time invariant, the transfer
function Σ̂0(s) exists and the ILC rewrites[

ϕT1 + ϕT2 Σ̂0(0)
]
ẑ0(0) ≥ 0. (10)

Note that since the signal z0(t) is positive, then so is ẑ0(0).
It is hence enough to select nonzero ϕ1 and ϕ2 such that
the left factor is always nonnegative. If Σ̂0(0) is exactly
known, then equality can be ensured by elimination, i.e.
ϕT1 = −ϕT2 Σ̂0(0). Otherwise the terms are tuned such that
the inequality holds for all possible for Σ̂0(0).

It is also important to note that in the time-invariant case,
the problem always reduces to a problem with parametric
uncertainty Σ̂0(0). It turns out that this may be the case
for time-varying uncertainties for which the ’static-gain’ is
assimilated to the worst-case (maximal) values.

B. Examples

Example 1: Let us consider the constant delay operator
Σ̂0(s) = e−sh, h ≥ 0. In this case, the static-gain is Σ̂0(0) =
1 for all h ≥ 0. Hence, it is enough to choose ϕT1 = −ϕT2 .
This will be further developed in Section VI-B. �

Example 2: Consider now an uncertain positive SISO
transfer function Σ̂0(s, ρ) depending on some uncertain
parameters ρ ∈ P ⊂ RN . Then, all that matters
is the value of the static-gain of Σ̂0(s, ρ) lying within
I :=

{
Σ̂0(0, ρ) : ρ ∈P

}
. The problem hence essentially

reduces to a problem with constant parametric uncertainties.
�

Example 3: Let us consider in this example the multipli-
cation operator Σ0 which multiplies the input signal by a
bounded and time-varying positive parameter δ(t). Since the
parameter is time-varying it is not possible to use the Laplace
transform. However, we can write∫ +∞

0

[ϕT1 + ϕT2 δ(θ)]z0(θ)dθ (11)

which has to be nonnegative. Since z0(·) ≥ 0, then a
sufficient condition is given by ϕT1 + ϕT2 δ(t) ≥ 0 for all
t ≥ 0. This condition turns out to be also necessary when
no restrictions are made on the trajectories of δ(t) ≥ 0 and
z0(t) ≥ 0. �

C. Parameter Dependent Scalings

When the problem can be formulated as a problem with
constant parametric uncertainties (Examples 1 and 2) or as
a time-varying parametric uncertainty (Example 3), it may
be interesting to make the scalings ϕ1 and ϕ2 parameter
dependent. Such a choice can be useful in order to saturate
the inequality constraint over the entire parameter domain.
A simple constraint saturation can be obtained by choos-
ing ϕ1(δ) = −∆(δ)Tϕ2(δ), where ∆(δ) is the uncertain
parametric operator with parametric uncertainties δ. Since
the matrix ∆(δ) can be considered w.l.o.g. as linear in the
parameters, then it turns out that ϕ1(δ) and ϕ2(δ) can be
chosen as polynomials. If the polynomials are adequately
chosen, the obtained results will be non conservative. This
approach leads however to robust linear optimization prob-
lems. An approach based on the Handelman’s Theorem
[20], parameterizing positive polynomials over polyhedra,
will be used to convert the optimization problem into a
tractable finite-dimensional one. One of the feature of the
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Handelman theorem is the preservation of the linearity of the
optimization program. Sum-of-Squares [23] could have also
been used but would have resulted in semidefinite programs.

V. ROBUST STABILITY AND PERFORMANCE ANALYSIS

In this section, robust stability analysis results will be
derived for the following uncertain linear positive system
subject to N ∈ N distinct parametric uncertainties δ ∈ δ :=
[0, 1]N :

ẋ(t) = Aδ(δ)x(t) + Eδ(δ)w1(t)
z1(t) = Cδ(δ)x(t) + Fδ(δ)w1(t)
x(0) = x0

(12)

where x, x0 ∈ R̄n+, w1 ∈ R̄p+ and z1 ∈ R̄q+ are the
system state, the initial condition, the exogenous input and
the performance output respectively.

We assume in this section that for all δ ∈ δ, the matrix
Aδ(δ) is Metzler and that Eδ(δ), Cδ(δ) and Fδ(δ) are non-
negative. For exposure, we will derive in this section results
on uncertain systems with constant parametric uncertainties.
The methodology straightforwardly generalizes to any type
of positive operators: delays, uncertain/neglected dynamics,
nonlinearities, etc. The reason for this stems from the fact
that it is possible in many cases to bring back the stability
analysis problem to a problem with parametric uncertainties,
as illustrated in Section IV-B.

A. Linear Fractional Transformations (LFTs)

Using LFT, the system (12) is rewritten as

ẋ(t) = Ax(t) + E0w0(t) + E1w1(t)
z0(t) = C0x(t) + F00w0(t) + F01w1(t)
z1(t) = C1x(t) + F10w0(t) + F11w1(t)
w0(t) = ∆(δ)z0(t)

(13)

where the virtual robustness channel z0, w0 ∈ R̄n0
+ has been

added. Since the original system is positive, it is always
possible to choose positive matrices for the output z0 in order
to make z0 positive (e.g. identity matrices). The matrices with
negative entries can be placed at the input, acting on w0. The
uncertainty matrix ∆(δ) can be w.l.o.g. chosen to belong to
the set ∆ defined by:

∆ :=

{
N

diag
i=1

[δiI`i ] : δ ∈ δ

}
(14)

where `i ∈ N is the number of occurrence of the ith

parameter in the matrix ∆(δ). Since ∆(δ) ≥ 0 for all
δ ∈ δ, the uncertainty matrix is also an input/output positive
operator.

The LFR of the adjoint system of (12) is given by

ẋ(t) = ATx(t) + Ẽ0w0(t) + CT1 w1(t)
z0(t) = C̄0x(t) + F̄00w0(t) + F̄01w1(t)

z1(t) = ET1 x(t) + F̃10w0(t) + FT11w1(t)
w0(t) = ∆(δ)z0(t)

(15)

where the matrices F̃10 and Ẽ0 are specific matrices of the
adjoint system. All the other matrices are those of systems
(12) and (13).

Remark 1: It must be stressed here that the Linear Frac-
tional Transformation operation does not commute with the
adjoint transformation. In other words, the adjoint of the
LFR does not coincide in general with the LFR of the ad-
joint system. Indeed, some matrices may remain unchanged
(non transposed) while some can be really different. This
has motivated the use of the ’bar’ and ’tilde’ notation to
differ possibly unchanged matrices from completely different
matrices respectively. For instance, when the system depends
polynomially on the parameters, it is then possible to have
F̄00 = F00, F̄01 = F01 and C̄0 = C0: they are not transposed.

B. Main Results

Theorem 1: The uncertain linear positive system (12) is
asymptotically stable if there exist λ ∈ Rn++, ϕ1(δ), ϕ2(δ) ∈
Rn0 and γ > 0 such that the robust linear program

λTA+ ϕ1(δ)TC0 + 1Tq C1 < 0
λTE0 + ϕ2(δ)T + ϕ1(δ)TF00 + 1Tq F10 < 0
λTE1 − γ1Tp + ϕ1(δ)TF01 + 1Tq F11 < 0

(16)

ϕ1(δ)T + ϕ2(δ)T∆(δ) ≥ 0 (17)

is feasible for all δ ∈ δ. Moreover, in such a case, the L1-
gain of the transfer from w1 → z1 is bounded from above
by γ. M

Proof: The proof relies on dissipativity theory. Define
the storage function to be V (x) = λTx and the supply-rate
s(w, z) as

ϕ1(δ)T z0(t) + ϕ2(δ)Tw0(t)− γ1Tp w1(t) + 1Tq z1(t) (18)

where z = col(z0, z1) and w = col(w0, w1). Consider now
the functional H(x,w, z) = V (x(t)) +

∫ t
0
s(w(θ), z(θ))dθ

whose derivative along the trajectories of the system (13) is
given by: (λTA+ ϕ1(δ)TC0 + 1Tq C1)T

(λTE0 + ϕ2(δ)T + ϕ1(δ)TF00 + 1Tq F10)T

(λTE1 − γ1Tp + ϕ1(δ)TF01 + 1Tq F11)T

T  x(t)
w0(t)
w1(t)


and is negative on Rn+n0+p

+ if and only if (16) holds. The
nonnegativity of the ILC for robustness is guaranteed by (17).

Theorem 2: The uncertain linear positive system (12) is
asymptotically stable if there exist λ ∈ Rn++, ϕ1(δ), ϕ2(δ) ∈
Rn0 and a scalar γ > 0 such that the componentwise
inequalities:

Aλ+ C̄0ϕ1(δ) + E11p < 0

ẼT0 λ+ ϕ2(δ) + F̄T00ϕ1(δ) + F̃T101p < 0
C1λ− γ1q + F̄01ϕ1(δ) + F111p < 0

(19)

ϕ1(δ)T + ϕ2(δ)T∆(δ) ≥ 0, δ ∈ δ (20)

is feasible for all δ ∈ δ. Moreover, the L∞-gain of the
transfer from w1 → z1 is bounded from above by γ. M

Proof: The proof is based on the use the Linear
Fractional Representation of the adjoint system (15).
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C. Solving Robust Linear Programs with Complexity Reduc-
tion

We propose in this section, a resolution scheme based on
Handelman’s Theorem [20] recalled below for completeness:

Theorem 3 (Handelman’s Theorem): If S is a compact
polytope in the Euclidean N -space, defined by linear inequal-
ities gi(·) ≥ 0, and if P is a polynomial in N variables that is
(negative) positive on S, then P can be expressed as a linear
combination with nonnegative (nonpositive) coefficients of
products of members of {gi}. M
When dealing with univariate polynomials, finding such a
representation is somehow easy. However, when multivariate
polynomials are considered, we face the problem of deter-
mining the number and order of products of linear basis
functions. A bound on the necessary order has been provided
in [24] and generalizes immediately to matrix polynomials.

The Handelman’s Theorem introduces additional variables
and supplementary linear equality constraints increasing then
the computational complexity but still preserving a tractable
structure to the problem. When the considered problem is
large, it is interesting to reduce the computational burden
by a suitable preprocessing of the problem. Solving equality
constraints first, indeed allows to reduce the number of
decision variables.

VI. EXAMPLES

A. Computation of Norms

In this example, many linear positive systems have been
randomly generated and their induced-norms computed on a
laptop equipped with an Intel U7300 processor of 1.3GHz
with 4GB of RAM. The Yalmip interface [25] has been used
with the solver LINPROG. The mean computation time and
the standard deviation for different systems are gathered in
Table I. The number of variables is n+ 1 for both problems
while the number of constraints is 2n+p+1 and 2n+1+q for
the L1-gain and the L∞-gain respectively. We can see that,
roughly speaking, both norms take the same computation
time. Exactness of the computed values can be checked
using the explicit formulas of Definitions 4 and 5. It is
also important to mention that the approach based on linear
programming is faster than a direct norm computation from
the definitions.

B. Theoretical Robustness Analysis

This example aims at illustrating that the provided robust-
ness analysis tool based on LFT and ILC may be intrinsically
nonconservative. To this aim, let us consider the positive
system with constant time-delay:

ẋ(t) = Ax(t) +Ahx(t− h) (21)

for some h ≥ 0. It is well known that such a system is
internally positive if and only if the matrix A is Metzler and
the matrix Ah is nonnegative. The corresponding LFR is

ẋ(t) = Ax(t) +Ahw0(t)
z0(t) = x(t)
w0(t) = ∇c(z0)(t)

(22)

where ∇c is the constant delay operator with transfer func-
tion ∇̂c(s) = e−sh. According to the discussion of Section
IV-B and Theorem 1, the system is asymptotically stable if
there exist λ ∈ Rn++ and ϕ1, ϕ2 ∈ Rn such that the following
conditions are satisfied

λTA+ ϕT1 < 0
λTAh + ϕT2 < 0
ϕT1 + ϕT2 = 0

(23)

where the two first inequalities are obtained from Theorem 1
and the last one is deduced from the saturation of (10). This
yields the conditions λTA + ϕT1 < 0 and λTAh − ϕT1 < 0
which are in turn equivalent to λT (A+Ah) < 0, known to be
a necessary and sufficient condition for asymptotic stability
of internally positive systems with constant time-delays [26].

C. Numerical Robustness Analysis

Let us consider the uncertain system with constant para-
metric uncertainty δ ∈ [0, 1]:

ẋ(t) =
(∑2

i=0Aiδ
i
)
x(t) +

(∑2
i=0Eiδ

i
)
w1(t)

z1(t) =
(∑2

i=0 Ciδ
i
)
x(t) +

(∑2
i=0 Fiδ

i
)
w1(t)

(24)
with the matrices

A0 =

−10 2 4
3 −8 1
2 1 −5

 , A1 =

 1 0 2
0 1 2
−1 2 −1

 ,
A2 =

1 −1 −1
1 −1 0
0 1 −1

 , E0 =

1 3
3 0
2 1

 ,
E1 =

[
1 1 2
3 1 1

]T
, E2 =

[
1 0 1
3 1 4

]T
,

C0 =

[
1 3 1
2 0 1

]
, C1 =

[
1 0 2
3 1 0

]
,

C2 =

[
0 3 2
1 4 1

]
, F0 =

[
2 1
1 2

]
,

F1 =

[
0 2
1 0

]
, F2 =

[
1 1
2 1

]
.

(25)
Rewriting the system into the forms (13) and (15) allows

us to apply the results of the paper. Using Theorems 1
and 2 (with equality constraints elimination) and different
structures for the scalings ϕ1 and ϕ2, we obtain the results
gathered in Tables II and III. We can see that the L1-gain
is not very well estimated compared to the L∞-gain for
parameter independent scalings. Using scalings of degree two
considerably reduces the conservatism of the approach. In
such a case, we are indeed able to estimate exactly the L∞-
gain while few conservatism persists for the L1-gain. The
computation of the L∞-gain is also much faster. Finally, it
seems important to mention that, by using the same reasoning
as in Example 3, the above numerical results also hold when
the uncertainty is time-varying.

VII. CONCLUSION

A framework based on LFR and ILCs has been developed
to deal with robust stability analysis of positive systems. The
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nb. of systems (n, p, q) L1-gain L∞-gain
20 (300,100,150) µ = 12.282, σ = 1.1406 µ = 14.186, σ = 1.4151
100 (50, 20, 30) µ = 0.53973, σ = 0.27486 µ = 0.50735, σ = 0.080446

TABLE I
MEAN COMPUTATION TIME µ AND STANDARD DEVIATION σ FOR GAIN COMPUTATION

ϕ1(δ) ϕ2(δ) constraints computed L1-gain time
ϕ0
1 ϕ0

2 ϕ0
1 ≥ 0, ϕ0

1 + ϕ0
2 ≥ 0 133.95 2.7844s

ϕ1
1δ ϕ0

2 ϕ1
1 = −ϕ0

2 133.95 3.829s
ϕ1
1δ + ϕ2

1δ
2 ϕ0

2 + ϕ1
2δ ϕ1

1 = −ϕ0
2, ϕ2

1 = −ϕ1
2 94.167 4.2758s

TABLE II
L1-GAIN COMPUTATION OF THE TRANSFER w1 → z1 OF SYSTEM (24) USING THEOREM 1 – EXACT L1-GAIN: 92.8358

ϕ1(δ) ϕ2(δ) constraints computed L∞-gain time
ϕ0
1 ϕ0

2 ϕ0
1 ≥ 0, ϕ0

1 + ϕ0
2 ≥ 0 86.195 0.68989s

ϕ1
1δ ϕ0

2 ϕ1
1 = −ϕ0

2 86.195 1.4629s
ϕ1
1δ + ϕ2

1δ
2 ϕ0

2 + ϕ1
2δ ϕ1

1 = −ϕ0
2, ϕ2

1 = −ϕ1
2 82.025 1.7509s

TABLE III
L∞-GAIN COMPUTATION OF THE TRANSFER w1 → z1 OF SYSTEM (24) USING THEOREM 2 – EXACT L∞-GAIN: 82.0249

considered techniques allow for the exact characterization of
L1- and L∞-induced norms. It has been proved that only the
static gain of uncertainty operators is critical for stability in
this context. Examples have emphasized the potential of the
approach.
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