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Abstract— We propose a new solution to the problem of glob-
ally asymptotically stabilizing a nonlinear system in feedback
form with a known pointwise delay in the input. The result
covers a family of systems wider than those studied in the
literature and endows with control laws with a single delay, in
contrast to the existing one, which include two distinct pointwise
delays or distributed delays. The design strategy is based on the
construction of an appropriate Lyapunov-Krasovskii functional.

I. INTRODUCTION

Time-delay systems represent an important family of
systems spanning a wide range of application including
network control, population dynamics, biological systems
to cite only a few. Most of the literature in the field
is devoted to linear systems (see, for instance [5], [26],
[24] and the references therein). Nevertheless, especially in
the last two decades, some important results for nonlinear
systems with delay have appeared. In particular, extensions
to systems with delays of the two techniques of recursive
design of control laws called backstepping and forwarding
have been obtained. Forwarding [11] and backstepping [4],
[25] approaches have been adapted to important families of
systems with pointwise delays and delay-free inputs. It is
worth mentioning that the problem of stabilizing nonlinear
systems with time delayed inputs is also of interest due to
the transport and measurement delays that naturally arise
in control applications (see, e.g., [24]). Although such a
problem appears as being difficult, a few papers present
extensions of the forwarding approach to the case of retarded
inputs (see, e.g., [15], [2], [29] and [21]). For backstepping,
the situation is different: although backstepping is one of the
most popular techniques of design of stabilizing control laws
for nonlinear systems, which has been largely developed in
the literature (see, for instance, [17], [14], [18], [1], [16] and
the references therein), to the best of our knowledge, only
three contributions [3], [19], [12] are devoted to the problem
of extending the backstepping approach to the case where
there are delays in the inputs. More precisely, stabilization is
achieved in [3] and [12], via a control law with distributed
terms over some time interval and in [19], stabilization is
achieved via a control law with two pointwise delays.
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UMR CNRS 8506, CNRS-Supélec, 3 rue Joliot Curie, 91192,
Gif-sur-Yvette, France. The author is also with Projet DISCO
Silviu.Niculescu@lss.supelec.fr

M. Bekaik is with Projet INRIA DISCO, CNRS-
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Motivated by the precedent considerations, the present
work continues the efforts to extend the backstepping ap-
proach to nonlinear systems with a pointwise delay in the
input. Since it owes a great deal to [19], we briefly describe
its main result. Systems of the form:{

ẋ(t) = f(x(t)) + g(x(t))z(t) ,
ż(t) = u(t− τ) + h(x(t− τ), z(t− τ)) , (1)

with x ∈ <n, z ∈ <, u ∈ < the input and τ ≥ 0 the delay
under appropriate initial conditions, are considered. The
existence of a control law zs(x) that globally asymptotically
stabilizes the system ẋ = f(x) + g(x)zs(x) is assumed.
Technical assumptions are also introduced to guarantee that
the system

ẋ(t) = f(x(t)) + g(x(t))zs(x(t− τ)) (2)

admits the origin as a globally asymptotically stable equi-
librium point. Basically, these assumptions are growth con-
ditions on the functions f and g that prevent the finite
escape time phenomenon and make it possible an explicit
construction of a strict Lyapunov-Krasovskii functional for
the system (2). With these considerations in mind, the
introduction of the operator Z : Cin 7→ < defined on the
dynamics of (1) by

Z(t) = z(t)− zs(x(t− τ)) , (3)

which plays the role of a change of coordinates, leads to a
Lyapunov functional U and a control law

u(t− τ) = −ε[z(t− τ)− zs(x(t− 2τ))]
−h(x(t− τ), z(t− τ))
+R(x(t− τ), z(t− τ)) ,

(4)

with
R(x, z) =

∂zs
∂x

(x)[f(x) + g(x)z] ,

with ε > 0, which ensures that, for all t ≥ τ , the derivative of
U along the trajectories of the closed-loop system is smaller
than a negative definite function depending on x(t), z(t). To
the best of the authors’ knowledge, this pioneer technique
made it possible for the first time to globally stabilize
nonlinear systems in feedback form by retarded feedbacks
of class C1 without using distributed terms. However, such
an approach has three limitations: (i) in the formula of
the control law (4), both x(t) and x(t − τ) are present,
although in (1) only the delay τ is present in u(t − τ) and
h(x(t − τ), z(t − τ)), (ii) the derivative of the Lyapunov-
Krasovskii functional along the trajectories of the closed-
loop system is negative definite only for values of time larger
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than τ . Although, as proved in [13], Lyapunov functionals
of this type can usually be used to establish robustness
results similar to those which can be derived from the
so-called “classical” Lyapunov-Krasovskii functionals, they
are not as familiar and convenient as classical Lyapunov-
Krasovskii functionals (see for instance [27] and [8] for
more information on the usefulness of Lyapunov-Krasovskii
functionals), especially when one aims to determine ISS
estimates. (iii) Finally, the function h in (1), which depends
on the retarded values x(t− τ), z(t− τ), cannot depend on
x(t), z(t). If it does, such a technique of construction does
not apply.

In the present work, we overcome these limitations. In
particular, we wish to point out that the main result of
stabilization we are deriving applies to systems of the family: ẋ(t) = f(x(t)) + g(x(t))z(t) ,

ż(t) = u(t− τ) + h1(x(t), z(t))
+h2(x(t− τ), z(t− τ)) ,

(5)

with x ∈ <n, z ∈ <, u ∈ <, under appropriate initial
conditions. It is worth mentioning that such a class of
systems is important due to the presence of the term without
delay h1(x(t), z(t)) and since this family encompasses the
family of the systems of the form:

ẋ1(t) = x2(t) ,
...

ẋn−1(t) = xn(t) ,
ẋn(t) = z(t),
ż(t) = u(t− τ) + h1(x(t), z(t)) ,

(6)

with x = (x1, ..., xn), which may result from the attempt
to linearize a single-input single-output system including a
single delay only in the input, which cannot be completed
when τ > 0 because the term h1(x(t), z(t)) cannot be
removed through a change of feedback. Interestingly, the
contribution [6] presents results for the systems (6), under
various assumptions on the growth properties of the term h1.
In contrast to the feedbacks of the present work, the control
laws of [6] depend on the past values of the controls.

The Lyapunov based technique we are proposing relies
on the use of an operator of a new type. It is reminiscent
of the one introduced for the first time in [22] and [23]
and also shares some features with the one used in [9]
and [10] to reduce a system with delay to another one
without delay. However neither the approach of [22] nor
the one of [9] and [10] can be applied to stabilize systems
of the form (5): the assumptions imposed in [22] are not
satisfied by (5) (notice in particular that the main result
of [22] is a result of exponential stabilization whereas (5)
is not necessarily locally exponentially stabilizable) and the
contributions [9] and [10] are not concerned with retarded
inputs. The operator leads to the construction of a Lyapunov-
Krasovskii functional whose derivative along the trajectories
of (5) can be made negative definite by an appropriate choice
of state feedback of class C1. Using this strict Lyapunov-
Krasovskii functional, we shall prove for a family of systems

with additive disturbances that the control laws we propose
give to the systems the desirable ISS property (see for
instance [28], [18] for a detailed presentation of the notion
of ISS) with respect to additive disturbances.

The remaining of the paper is organized as follows. In Sec-
tion II, we introduce the general family of systems that will
be studied and the assumptions that will be used throughout
the paper. Next, the main result is stated and proved in
Section III. A result of ISS robustness is established in
Section IV. A second-order example in Section V illustrates
the control design of the previous section. Some concluding
remarks in Section VI complete the work.
Notations and definitions: • Denote | · | the Euclidean norm
of matrices and vectors of any dimension. • Given φ :
I → <p defined on an interval I , denote its (essential)
supremum over I by |φ|I . • Let p be any positive integer.
We denote Cin = C([−τ, 0],<p) the set of all continuous
<p-valued functions defined on a given interval [−τ, 0]. •
For a continuous function ϕ : [−τ,+∞) → <k, for all
t ≥ 0, the function ϕt defined by ϕt(θ) = ϕ(t + θ) for
all θ ∈ [−τ, 0] is sometimes called translation operator. • A
function κ : [0,+∞)→ [0,+∞) is of class K∞ if κ(0) = 0,
κ is continuous, increasing and unbounded. • The notations
will be simplified whenever no confusion can arise from the
context.

II. PARTICULAR FAMILY OF SYSTEMS IN FEEDBACK
FORM

We consider the nonlinear systems: ẋ(t) = f(x(t)) + g(x(t))z(t) ,
ż(t) = u(t− τ) + h1(x(t), z(t))

+h2(x(t− τ), z(t− τ)) ,
(7)

with x ∈ <n, z ∈ <, where u ∈ < is the input, where
τ > 0 is a constant, where f , g, h1, h2 are functions of class
C1, under appropriate initial conditions. The main goal of
the section is to develop a method for deriving stabilizing
feedbacks for systems (7). To achieve it, we introduce a set
of assumptions:
Assumption H1. There exist a positive definite, radially
unbounded function V of class C1 and a function zs(x) of
class C2 such that zs(0) = 0 and the function

W : <n → < , W (x) = −∂V
∂x

(x)F (x) , (8)

where

F : <n → <n , F (x) = f(x) + g(x)zs(x) , (9)

is positive definite.
Assumption H2. There exist a constant c1 ≥ 0 and a
nonnegative locally Lipschitz function G1 such that the
function

H : <n ×< → < ,
H(x, Z) = −∂zs∂x (x)[F (x) + g(x)Z]

+h1(x, Z + zs(x))
(10)

satisfies, for all x ∈ <n, Z ∈ <, the inequality

|H(x, Z)| ≤ c1|Z|+G1(x) . (11)
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There exist constants c2 > 0 and c3 > 0 such that, for all
x ∈ <n, the inequalities∣∣∣∣∂V∂x (x)g(x)

∣∣∣∣2 ≤ c2W (x) , (12)

G1(x)
2 ≤ c3W (x) , (13)

are satisfied.
Assumption H3. The delay τ and the constants ci, i =
1, 2, 3, in Assumption H2 satisfy

τ <

{
min

{
1

2
√
2c1
, 1√

6c2c3

}
if c1 > 0 ,

1√
6c2c3

if c1 = 0 .
(14)

III. MAIN RESULT

We are ready to state and prove the following result:
Theorem 1: Consider the system (7). Assume that it sat-

isfies Assumptions H1 to H3. Then for all L ∈ < such that

L ∈
[
c1 −

1

2
√
2τ
, 0

)
(15)

the system (7) in closed-loop with

u(x, z) = −h2(x, z) + LeτL(z − zs(x))
+eτL

[
∂zs
∂x (x)(f(x) + g(x)z)− h1(x, z)

] (16)

admits the origin as a globally asymptotically stable equilib-
rium point.
Discussion of Theorem 1.
− Assumption H1 is one of the fundamental assumptions

of the backstepping method: it ensures the stabilizability of
the x-subsystem of (7) with z as virtual input.
− Implicit growth restrictions on the functions f , g, h1

are imposed in Assumption H2. They allow us performing
our Lyapunov design. However, they are not simple technical
assumptions which might be removed without changing the
result. It is worth pointing out that in [19], it is proved that
there are some systems (1), which do not satisfy Assumption
H2 and for which there exists no feedback u(x(t− τ), z(t−
τ)) so that the finite escape time phenomenon does not occur.
− Since in the absence of delay, globally asymptotically

stabilizing feedbacks can be determined through the back-
stepping approach, the result of [20], which is a result of
robustness with respect to the presence of a delay in the
input, applies in some cases when extra assumptions, which
pertain in particular to the growth of ∂f

∂x , ∂g∂x
∂h1

∂x , ∂h1

∂z , ∂
2zs
∂2x ,

are satisfied. In this particular case these assumptions are
complicated. For the sake of brevity we do not give give
them.
− One can easily check that if the system (7) is linear

and asymptotically stabilizable, then there always exists a
quadratic Lyapunov function V and a linear function zs such
that Assumptions H1 and H2 are satisfied.
− Assumptions H1 to H3 do not imply that the system

(7) with τ = 0 admits an exponentially stabilizable linear

approximation at the origin: they are satisfied for instance
by the two-dimensional system{

ẋ(t) = x(t)z(t) ,
ż(t) = u(t− τ) , (17)

studied in [19] with V (x) = ln(1 + x2), zs(x) = − ωx2

1+x2 ,
ω > 0, where τ is sufficiently small relative to ω. This is
a remarkable feature of Theorem 1 because most of the
stabilization results for systems with delays apply only to
systems that can be locally exponentially stabilized by a
feedback of class C1.

Proof. To begin with, we observe that Assumption H3
ensures that there exist negative constants L such that the
inequality (15) is satisfied. Now, to simplify the control
design, we perform the change of coordinate Z = z− zs(x)
and take u under the form u(t − τ) = v(x(t − τ), z(t −
τ) − zs(x(t − τ))) − h2(x(t − τ), z(t − τ)), where v is a
function to be determined later. With these transformations,
the system (7) becomes

ẋ(t) = F (x(t)) + g(x(t))Z(t) ,

Ż(t) = v(x(t− τ), Z(t− τ))
+H(x(t), Z(t)) ,

(18)

with F defined in (9) and H defined in (10). Then, we
start the construction of a Lyapunov functional candidate by
introducing the operator α : Cin 7→ < defined by

α(φx, φZ) =

∫ 0

−τ
e−L(m+τ)v(φx(m), φZ(m))dm , (19)

where L is the constant given in Theorem 1. Along the
trajectories of (18), it satisfies

α(xt, Zt) =

∫ t

t−τ
eL(t−m−τ)v(x(m), Z(m))dm , (20)

and its time-derivative, denoted simply α̇(t), satisfies

α̇(t) = Lα(xt, Zt) + e−τLv(x(t), Z(t))
−v(x(t− τ), Z(t− τ)) . (21)

It follows that the operator β : Cin 7→ < defined by

β(φx, φZ) = φZ(0) + α(φx, φZ) (22)

is such that, for all t ≥ 0,

β̇(t) = Lα(xt, Zt) + e−τLv(x(t), Z(t))
+H(x(t), Z(t)) .

(23)

Selecting the function

v(x, Z) = −eτLH(x, Z) + LeτLZ , (24)

which corresponds to the control (16), we obtain

β̇(t) = Lβ(xt, Zt) . (25)

We note that β(xt, Zt) is a solution of an exponentially stable
system since L < 0. We shall use this property implicitly
later. For the time being, we observe that the equality

Z(t) = β(xt, Zt)

−
∫ t

t−τ
eL(t−m−τ)v(x(m), Z(m))dm ,

(26)
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with v defined in (24) and the negativity of L imply that, for
all t ≥ 0, the inequality

|Z(t)| ≤
∫ t

t−τ
|H(x(m), Z(m))− LZ(m)|dm

+|β(xt, Zt)|
(27)

holds. From (11) in Assumption H2 and the definition of H
in (10), we deduce that, for all t ≥ 0,

|Z(t)| ≤
∫ t

t−τ
[c4|Z(m)|+G1(x(m))]dm

+|β(xt, Zt)| ,
(28)

with c4 = c1−L. This inequality together with the inequality
(57), Cauchy-Schwartz inequality imply that, for all t ≥ 0,

Z(t)2 ≤ 5
4τ

∫ t

t−τ
[c4|Z(m)|+G1(x(m))]2dm

+5β(xt, Zt)
2

≤ 5
2τ

∫ t

t−τ
[c24Z(m)2 +G1(x(m))2]dm

+5β(xt, Zt)
2 .

(29)

Then, we introduce a new operator γ : Cin 7→ < defined by

γ(φZ) =

∫ 0

−τ

∫ 0

`

φZ(m)2dmd` , (30)

which satisfies, along the trajectories of (18), for all t ≥ 0,

γ(Zt) =

∫ t

t−τ

∫ t

`

Z(m)2dmd` and

γ̇(t) = τZ(t)2 −
∫ t

t−τ
Z(m)2dm

= −τZ(t)2 −
∫ t

t−τ
Z(m)2dm

+2τZ(t)2 .

(31)

Combining this equality with (29), after some straightforward
algebraic manipulations, we obtain, for all t ≥ 0, the
inequality

γ̇(t) ≤ −τZ(t)2 + (5τ2c24 − 1)

∫ t

t−τ
Z(m)2dm

+5τ2
∫ t

t−τ
G1(x(m))2dm

+10τβ(xt, Zt)
2 .

(32)

The inequality (15) implies that 5τ2c24 − 1 ≤ −3τ2c24. It
follows that, for all t ≥ 0,

γ̇(t) ≤ −τZ(t)2 − 3c24τ
2

∫ t

t−τ
Z(m)2dm

+5τ2
∫ t

t−τ
G1(x(m))2dm

+10τβ(xt, Zt)
2 .

(33)

We continue our Lyapunov construction by considering the
functional U1 : Cin 7→ < defined by

U1(φx, φZ) = V (φx(0)) + c5γ(φZ) , (34)

where V is the function given by Assumption H1 and
where c5 > 0 is a constant to be chosen later. Then, from
Assumption H1 and (33), we deduce that, for all t ≥ 0,

U̇1(t) ≤ −W (x(t)) + ∂V
∂x (x(t))g(x(t))Z(t)

−c5τZ(t)2 − c6τ2
∫ t

t−τ
Z(m)2dm

+5c5τ
2

∫ t

t−τ
G1(x(m))2dm

+10c5τβ(xt, Zt)
2 ,

(35)

with c6 = 3c5c
2
4. From the inequality (12) in Assumption

H2, we deduce that, for all t ≥ 0,

U̇1(t) ≤ −W (x(t)) +
√
c2W (x(t))|Z(t)|

−c5τZ(t)2 − c6τ2
∫ t

t−τ
Z(m)2dm

+5c5c3τ
2

∫ t

t−τ
W (x(m))dm

+10c5τβ(xt, Zt)
2 .

(36)

This inequality leads us to consider the functional U2 :
Cin 7→ < defined by

U2(φx, φZ) = kβ(φx, φZ)
2 + U1(φx, φZ)

+6c5c3τ
2

∫ 0

−τ

∫ 0

`

W (φx(m))dmd` ,
(37)

with k = 1+10c5τ
−2L (since L < 0, k > 0). Bearing in mind

(25), through elementary calculations, we obtain that for all
t ≥ 0, the following inequality holds:

U̇2(t) ≤ (6c5c3τ
3 − 1)W (x(t))

+
√
c2W (x(t))|Z(t)| − c5τZ(t)2

−β(xt, Zt)2 − c6τ2
∫ t

t−τ
Z(m)2dm

−c5c3τ2
∫ t

t−τ
W (x(m))dm .

(38)

Therefore there exists a constant c7 ∈ (0, c5τ) such that, for
all t ≥ 0,

U̇2(t) ≤ −c7W (x(t))− c7Z(t)2 − β(xt, Zt)2

−c6τ2
∫ t

t−τ
Z(m)2dm

−c5c3τ2
∫ t

t−τ
W (x(m))dm ,

(39)

if there exists c5 ∈
(
0 1
6c3τ3

)
such that the inequality:

c2 + 4c5τ(6c5c3τ
3 − 1) < 0 (40)

holds (this fact can be proved by using the inequal-
ity

√
c2W (x(t))|Z(t)| ≤ c2

4(c5τ−c7)W (x(t)) + (c5τ −
c7)|Z(t)|2). Since Assumption H3 ensures that τ < 1√

6c2c3
,

the constant c5 = 1
12c3τ3 is such that (40) is satisfied

because this value for c5 leads to c2 +4c5τ(6c5c3τ
3− 1) =

c2− 1
6c3τ2 < 0. However, although the right hand side of (39)

is nonpositive, we cannot apply the Lyapunov-Krasovskii
Theorem yet (see for instance [7], [18]) because we do not
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know if there is a function λ of class K∞ such that, for all
functions (φx, φZ) ∈ Cin the inequality:

λ(|φx(0)|2 + φZ(0)
2) ≤ U2(φx, φZ) (41)

is satisfied. To overcome this obstacle, we replace U2 by the
functional

U3(φx, φZ) = U2(φx, φZ)

+ c7
2

∫ 0

−τ
[W (φx(m)) + φZ(m)2]dm .

(42)

The rest of the proof is omitted.

IV. ISS CLOSED-LOOP SYSTEMS

In this section, we use the Lyapunov-Krasovskii functional
constructed in the previous section to establish that, under
supplementary assumptions, the control (16) gives an ISS
property to the system ẋ(t) = f(x(t)) + g(x(t))[z(t) + w1(t)] ,

ż(t) = u(t− τ) + h1(x(t), z(t))
+h2(x(t− τ), z(t− τ)) + w2(t) ,

(43)

with x ∈ <n, z ∈ <, where u ∈ < is the input, under
appropriate initial conditions, where τ > 0 is a constant,
and f , g, h1, h2 are functions of class C1 and where w1

and w2 are disturbances. More precisely, we establish the
following result:

Theorem 2: Consider the system (43). Assume that it
satisfies Assumptions H1 to H3 with a function W that is
radially unbounded. Assume also that there exists a constant
c8 > 0 such that, for all x ∈ <n,∣∣∣∣∂zs∂x (x)

∣∣∣∣ ≤ c8 . (44)

Then, for all L ∈ < such that (15) holds, the system (43)
in closed-loop with the control (16) is ISS with respect to
(w1, w2).
Proof. For the sake of brevity, the proof is omitted.

V. ILLUSTRATIVE EXAMPLE

In this section, we illustrate Theorem 2. We consider the
pendulum equations:{

ẋ(t) = z(t) + w1(t) ,
ż(t) = u(t− τ) + a sin(x(t))− bz(t) + w2(t) ,

(45)

where a 6= 0, b and τ are positive constants, x ∈ <, z ∈ <,
where u ∈ < is the input and where w1, w2 are disturbances.
Due to the presence of the term a sin(x)− bz, the technique
of [19] does not apply to (45).
For this system, with the notations of Section IV, f(x) = 0,
g(x) = 1, h1(x, z) = a sin(x)− bz, h2(x, z) = 0. We apply
Theorem 2 with the following functions zs(x) = −rx,
where r > 0 and r 6= b and V (x) = 1

2x
2. Then, with the

notation of Section III,

W (x) = rx2 , F (x) = −rx , ∂V
∂x

(x)g(x) = x (46)

and H(x, Z) = r[−rx+ Z] + a sin(x)− b(Z − rx)
.

It follows that, for all (x, Z) ∈ <2,

|H(x, Z)| ≤ c1|Z|+G1(x) , (47)

with c1 = |b − r|, G1(x) = |(b − r)rx + a sin(x)|. Finally,
noticing that W is positive definite and radially unbounded,
∂zs
∂x (x) = −r,(

∂V

∂x
(x)g(x)

)2

= x2 = c2W (x) (48)

with c2 = 1
r and

G1(x)
2 ≤ 2[r2(b− r)2 + a2]x2 = c3W (x) , (49)

with c3 = 2 r
2(b−r)2+a2

r , we deduce from Theorem 2 that if

τ < min

{
1

2
√
2|b− r|

,
1√
12

r√
r2(b− r)2 + a2

}
,

then the system (45) in closed-loop with the control law

ur(x, z) = LeτL(z + rx)
+eτL [−rz − a sin(x) + bz] ,

(50)

with
L ∈

[
|b− r| − 1

2
√
2τ
, 0

)
(51)

is globally ISS with respect to (w1, w2). Observe that,
rewriting ur as

ur(x, z) = eτL [Lrx− a sin(x) + (L+ b− r)z] , (52)

and choosing r < b and L = r − b, we obtain the feedback

ur(x, z) = eτ(r−b) [(r − b)rx− a sin(x)] (53)

which is independent from z. This feature may be of interest
in the cases where the variable of velocity z cannot be
measured. ISS for the system (45) can be also achieved by
linear output feedbacks

ul(x) = −sx , s ∈ < , (54)

when the delay τ is sufficiently small. However, the families
of stabilizing feedbacks (54) and (53) do not have the same
features. Since, for all (x, z) ∈ <2,

|ur(x, z)| ≤ eτ(r−b) [(b− r)r|x|+ |a|] , (55)

and since r can be chosen arbitrary close to b (independently
from τ ), for any ε > 0, the family (53) contains elements
which satisfy, for all (x, z) ∈ <2, the inequality

|ur(x, z)| ≤ ε|x|+ |a| . (56)

(For instance, a possible choice for obtaining this is by
choosing r = b −min

{
ε
b ,

b
2

}
). By contrast, one can prove

that if a feedback ul(x) = −sx stabilizes the system (45),
then there exists xl ∈ < such that |ul(xl)| > ε0|xl| + 2|a|
with ε0 = |a|

9 . We omit this proof.
We conclude that the family of stabilizing control laws

ur given in (53) has an advantage over the family of the
stabilizing linear control laws ul given in (54), relative to the
size of their elements: roughly speaking, outside a compact
set, no stabilizing linear feedback will be smaller than some
of the feedbacks provided by Theorem 2.
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Fig. 1. Numerical simulation of a solution of the system (45) in closed-loop
with the control (53) with a = b = 1, r = 0.8879, τ = 0.1806.

VI. CONCLUSION

We have developed a new backstepping method for a
new family of systems with delay in the input. We have
obtained state feedbacks of class C1 whose analytic expres-
sions include delay information, and explicit expressions of
strict Lyapunov-Krasovskii functionals for the closed-loop
systems. Much remains to be done.
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Systems. Birkhäuser, Boston, 2009.

[16] M. Krstic, H. Deng, Stabilization of Nonlinear Uncertain Systems.
Communications and Control Engineering Series, Springer, London
Ltd., 1998.

[17] M. Krstic, I. Kanellakopoulos, P.V. Kokotovic, Nonlinear and Adaptive
Control Design. New York: Wiley, 1995.

[18] M. Malisoff, F. Mazenc, Constructions of Strict Lyapunov Functions.
Communications and Control Engineering Series, Springer, London
Ltd., London, ISBN: 978-1-84882-534-5 (Print), UK, 2009.

[19] F. Mazenc, P.A. Bliman, Backstepping Design for Time-Delay Nonlin-
ear Systems. IEEE Trans. on Aut. Contr., vol. 51, no.1, pp. 149-154,
Jan. 2006.

[20] F. Mazenc, M. Malisoff, Z. Lin. Further Results on Input-to-State
Stability for Nonlinear Systems with Delayed Feedbacks. Automatica,
vol. 44, no. 9, pp. 2415-2421, Sept. 2008,
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VIII. USEFUL INEQUALITIES

For all real numbers A, B and ρ ∈ (0,+∞) the inequality

(A+B)2 ≤ (1 + ρ)A2 + (1 +
1

4ρ
)B2 , (57)

is satisfied. For all real numbers A, B and for all ρ ∈ (0, 1),
the inequality

(A+B)2 ≥ ρA2 − ρ

1− ρ
B2 (58)

is satisfied.
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