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Abstract— This paper proposes a closed-loop propofol ad-
mission strategy for depth of hypnosis control in anesthesia. A
population-based, robustly tuned controller brings the patient
to a desired level of hypnosis. The novelty lies in individualizing
the controller once a stable level of hypnosis is reached. This is
based on the identified patient parameters and enhances sup-
pression of output disturbances, representing surgical stimuli.
The system was evaluated in simulation on models of 44 patients
obtained from clinical trials. A large amount of improvement
(20 – 30%) in load suppression performance is obtained by the
proposed individualized control.

Index Terms— Medical control systems, Drug delivery, Con-
trol system synthesis, Medical simulation.

I. INTRODUCTION

During surgical procedures, a combination of anesthetic

drugs are given in order to 1) maintain a desired depth of

hypnosis (sleep), 2) keep the patient in an analgesic (pain

free) state, and in some cases 3) establish a neuro-muscular

blockade to avoid movement. This paper focuses on the

problem of individualized closed-loop control of depth of

hypnosis (DOH) based on propofol administration. Fig. 1

outlines the system from a control engineering point of view.
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Fig. 1. Closed-loop DOH control system.

Propofol hypnosis can be divided into three temporal

phases. During the induction phase, the aim is to bring the

patient to a reference DOH level. Once a stable DOH close

to the reference is achieved, the maintenance phase, during

which surgery takes place, begins. The surgical stimuli can

be viewed as output disturbances, reducing the DOH. At the

same time, the administration of analgesic drugs increase
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the DOH via anesthetic-opioid synergy. Hence, the challenge

during the maintenance phase is to administer propofol to

counteract the disturbances, without over- or under-dosing.

Once surgery is completed, the emergence phase, during

which administration of propofol is terminated, takes place.

The aim of this paper is to examine the potential benefit

of individualized propofol delivery based on controller re-

tuning at the end of the induction phase. The main advantage

of a single update before the maintenance phase begins,

as opposed to continuous adaptation (see e.g. [1]), is that

unmeasured disturbances during the maintenance phase do

not result in poor performance or even instability due to

drifting parameters. Focus does not lie on the controller

tuning per se, but rather on what can be gained by the

proposed individualization. The rationale supporting this

papar can therefore be combined with previous work in the

area of closed-loop propofol anesthesia, such as [2], [3] and

[4].

The paper is organized as follows: Section II presents

the models that controller synthesis is based upon. The PID

controller and its tuning is explained in Section III. Patient

model parameter identification for individualized control is

the topic of Section IV. The proposed control scheme is

evaluated in a simulator, explained in Section V. Simulation

results are presented and discussed in Section VI. Finally,

conclusions are drawn in Section VII.

II. MODEL OF THE PROPOFOL-DOH PROCESS

Patient models for anesthesia consist of a pharmacokinetic

(PK) model explaining the distribution and metabolism of

the drug, and a pharmacodynamic model relating the plasma

drug concentration to clinician effect. In a previous work [5]

PK and PD parameters were derived from demographic data,

based on which robust controllers were synthesized to handle

inter- and intra-patient variability.

Controller and PD identifier were designed based on the

patient PKPD model with the propofol infusion rate u as

input and the DOH measurement y as output.

A. Parameters and Signals

Table I lists signals and parameters used throughout the

paper.

B. Pharmacokinetic (PK) Model

The PK model relates infusion rate u to plasma concen-

tration Cp. In this paper, the Schüttler PK model [6] was

used. It is a three-compartment mamillary model, outlined

in Fig. 2. Each compartment represents a class of tissues.
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symbol unit/range name

A, B, C - Schüttler PK system matrices

Ce mg·l−1 Effect site concentration

Cp mg·l−1 Primary compartment concentration

Cpm mg·l−1 Estimate of Cp from Em

DOH (100,0) Depth of hypnosis (100 ⇔ awake)
eL - Load step control error
E (0,1) Normalized DOH (0 ⇔ awake)
Em (0,1) Estimate of E from y
Emσ - Signal threshold

EC50 mg·l−1 Hill gain parameter
h s Controller sample period

kiji, j = 1, 2, 3 s−1 Rate constants (flow i → j)

k−1

d
s Effect PD time constant

k10 s−1 Elimination rate constant
K - True FOTD gain

K̂ - Estimate of K
KD - Derivative controller gain
KI - Integral controller gain
KP - Proportional controller gain
L - True FOTD delay

L̂ - Estimate of L
N - Maximal derivative gain
pk, k = 1, 2, 3 - Schüttler PK poles
r (0,1) Normalized DOH reference
tγ s Duration of γ identification
tind s Duration of induction phase
T - True FOTD time constant

T̂ - Estimate of T
Td s Effect PD delay
TI s Controller integral time
TD s Controller derivative time
Tr s Reference filter time constant
Tt s Anti-windup tracking time

u mg·s−1 Infusion rate

umax mg·s−1 Upper bound of control signal

umin mg·s−1 Lower bound of control signal
uσ - Signal threshold
v - Signal in Hill function
v̂ - Feedback quantity
vm - Estimate of v from E
V1 l Primary compartment volume

x = [x1 x2 x3]T mg·l−1 Compartment concentrations
xD - PID derivative filter state
xI - PID integrator state
y (0,1) Normalized measured DOH
γ - Hill slope parameter
γ̂ - Estimate of γ

TABLE I

SIGNALS AND PARAMETERS.
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Fig. 2. Schüttler’s three-compartment mammillary model.

The drug is delivered into the primary (central) compartment

with rate u. Denoting x the vector of drug concentration in

each compartment, the Schüttler’s model is given by

ẋ =





−(k10 + k12 + k13) k12 k13

k21 −k21 0
k31 0 −k31



x +
1

V1





1
0
0



u.

(1)

The transfer function representation of (1) from u to x1 is

GCp,u(s) =
1

V1

(s + k21)(s + k31)

(s + p1)(s + p2)(s + p3)
, (2)

where pk, k ∈ {1, 2, 3} are defined accordingly from kij . It

was concluded by Schüttler et al. [6] that age and lean body

mass are reliable demographic covariates for the parameters

of (2). Functions relating these covariates to volumes and

clearance rates V1, kk, k ∈ {1, 2, 3} are presented in [6].

C. Pharmacodynamic (PD) Model – Hill Function

1) Effect Site Dynamics: The output of the Schüttler PK

model is the primary compartment concentration of propofol,

Cp. However, the effect site of the drug is the brain, not

the plasma. To account for the distribution of drug from the

plasma to the effect site, the PK model was augmented by a

delayed first order system [7]:

GCe,Cp
(s) =

kd

s + kd
e−Tds, (3)

where the delay is intended to model the drug transport from

the intravenous to the effect site.

2) Dose-Response Characteristics: The clinical effect E
is normalized to (0, 1), where 0 corresponds to fully awake

state. In the steady state, the relation between Ce and E is

well described by a sigmoidal Emax function:

E(Ce) =
Cγ

e

ECγ
50 + Cγ

e
, (4)

which is also known as the Hill function. It is parametrized

by EC50, the value of Ce corresponding to E = 0.5, and

γ, defining the steepness of the sigmoidal curve. The Hill

function (4) can be decomposed into a series of a linear gain

v(Ce) =
1

2EC50
Ce, (5)

and a sigmoidal nonlinearity

E = f(v; γ) =
vγ

1
2

γ
+ vγ

, (6)

which is parametrized only in γ. It is obvious from (6) that

E = 0.5 corresponds to v = 0.5.

For model identification purposes, the effect PD and linear

Hill gain are lumped together to yield the following first

order time delayed (FOTD) system:

v(s) =
Kd/(2EC50)

s + Kd
e−sTdCp(s), (7)

whereas the nonlinear part (6) is treated separately.

856



D. Clinical Front End

There are several clinical options for measuring DOH

based on the electroencephalogram (EEG), which can be

sampled using non-invasive probes mounted on the patient’s

forehead. The most popular option is the Bispectral Index

(BIS) [8], for which commercial instrumentation equipment

are available. However, BIS is not ideal for control design

purposes since its dynamics are strongly time-varying and

that the proprietary algorithm often exhibits nonlinear be-

havior. The use of wavelet techniques has been proposed to

overcome these challenges, yielding the WAVCNS index [9]. It

correlates well with BIS, and moreover, it has time-invariant

linear dynamics:

Gy,E(s) =
1

(8s + 1)2
, (8)

which is preferable to BIS from a control design perspective.

The WAVCNS monitor is graded in BIS units. They range

(0, 100), where 100 corresponds to the fully awake state.

E. PKPD Model

The patient model is obtained by combining the PK and

PD models. A block diagram of this combination, together

with the WAVCNS monitor, is shown in Fig. 3.

u yGCp,u GCe,Cp Hill GE,y
Cp Ce E

Schüttler PK effect PD Hill PD Sensor

LTI LTI SNL LTI

Fig. 3. PKPD patient and sensor model, relating DOH y to propofol infu-
sion rate u. Subsystems are linear time invariant (LTI) or static nonlinearities
(SNL).

It was demonstrated that PK parameters of propofol are

linear in the range 25 − 200 µg·kg−1·min−1 and that the

model is generally invalid outside this range [10]. Similarly,

the Hill function (4) describes the steady-state relation be-

tween Ce and E.

F. Surgical Stimuli

Surgical stimulation was modeled as an output distur-

bance, which was adapted from [4] (see Fig. 4).

t [min]

d

0 18 40
0

10

20

Fig. 4. Disturbance profile from [4].

III. ROBUST PID CONTROL SYNTHESIS

A two-degrees-of-freedom PID controller was designed for

DOH control. Two novel output filters were introduced in this

paper in an effort to facilitate control design by effectively

cancelling out the monitor dynamics and the Hill function

nonlinearity.

A. Output Filter I

The system shown in Fig. 3 cannot be readily divided

into its LTI and static nonlinearity components, due to the

existence of the Hill function between the effect PD and the

monitor dynamics. This is a limiting factor in both patient

model identification and controller synthesis. To overcome

this problem, we propose to augment a delayed inverse of the

monitor dynamics as follows. The control system operates at

1 Hz. A zero order hold (ZOH) sampling of (8) with period

h = 1 s yields

Gh
y,E(z) =

1

100

0.719z + 0.662

z2 − 1.765z + 0.778
. (9)

To invert (9) without introducing acausality, a delay of h was

added, resulting in the delayed inverse:

F1(z) = 100
z2 − 1.765z + 0.778

0.719z2 + 0.662z
. (10)

This filter was applied to the sensor output to convert the

system dynamics to a standard Wiener model by canceling

out the effect of the monitor dynamics. The sensor plus the

delayed inverse was modeled as a delay h in controller syn-

thesis. Depending on the high pass nature of the drug delivery

actuator, further filtering might therefore be desirable.

B. Output Filter II

The model in Fig. 3 is nonlinear due to the Hill function.

In the context of synthesizing a maintenance phase controller,

this can be approached by linearizing (4) around the operat-

ing point Ce = EC50. However, this is not acceptable during

the induction phase, in which no well-defined operating point

exists. If a PID controller (or any controller involving integral

action) is used, the integral state will build up rapidly during

the beginning of the induction phase due to the low dose

concentrations, Cp ≪ EC50. This will in turn cause an

undershoot of the WAVCNS response. A possible remedy

to alleviate this problem is to reduce the integral action,

but this may increase the duration of the induction phase.

To facilitate the controller design by further linearizing the

system dynamics, an additional linearizing filter was used in

series with (10) as follows. The inverse of the non-linear part

of the Hill function (6) is given by

v = F2(E; γ) = f−1(E; γ) =
1

2

(
E

1 − E

) 1

γ

. (11)

Letting γ and γ̂ be the true and demographics-based slope

parameters, respectively, yields

v̂ = f−1(f(v; γ); γ̂) =
1

2
(2v)γ/γ̂ , (12)

which is close to v when γ̂ ≈ γ. The controller was based

on the assumption that γ̂ = γ and that the nonlinearity was

completely cancelled out by closing the loop from v̂ in (12).
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C. Plant Model

Combining (2), (3), (5), (9), (10) and (12) and assuming

γ̂ = γ yields the plant model

P (s) =
kd

2EC50V1

(s + k21)(s + k31)e
−s(Td+h)

(s + p1)(s + p2)(s + p3)(s + kd)
, (13)

which was used for controller synthesis.

D. Controller

The PID controller was parametrized in its proportional

(Kp), integral (KI ) and derivative (KD) gains. Two robust

PID design methods, outlined below, were evaluated to

determine these gains. They are both based on minimizing

norms of the tracking error caused by step load disturbances.

1) Robust Load IE Minimization: The objective of this

method is to find PID parameters {KP ,KI ,KD} that mini-

mize the integral of the control error (IE) eL caused by a step

load disturbance. Robustness is enforced by restricting the

open-loop Nyquist curve outside a circular disc with radius

Ms, centered at −1. This is equivalent to restricting the ∞-

norm of the sensitivity function:.

min
KP ,KI ,KD

∫
∞

0

eL(τ)dτ, (14)

s.t.max
ω

|S(ω)| ≤ Ms. (15)

See [11] for a thorough description of the method or [12]

for a summary. A regimen for determining suitable Ms is

described in [4].

2) Robust Load IAE Minimization: An oscillatory zero-

mean error can yield small IE values, yet is not desirable.

This can be prevented by using the following optimization

constraint:

min
KP ,KI ,KD

∫
∞

0

|eL(τ)|dτ. (16)

The minimized quantity is referred to as the integral absolute

error (IAE). A useful algorithm is presented in [13].

E. Reference Filter

In order to avoid oscillations and over-dosing during the

induction phase, the reference was processed using the fol-

lowing filter, whose time constant Tr was chosen according

to [14].

Fr(s) =
1

sTr + 1
. (17)

F. Implementation Aspects

1) Saturation and Integrator Anti-Windup: The control

signal has a natural lower bound umin = 0 (since drug

cannot be extracted once infused). For safety reasons, an

upper bound umax of 3.33 mg·s−1 was also introduced.

Tracking was utilized in order to avoid integral windup; see

Fig. 5(b). The tracking constant was heuristically chosen as

the geometric mean of the PID integral (TI = KP

KI
) and

derivative (TD = KD

KP
) times as suggested in [12]:

Tt =
√

TITD =

√

KD

KI
. (18)

2) Setpoint Weighting: In this paper, disturbance rejection

and absence of output oscillations are prioritized to tight

reference tracking. Hence, a zero setpoint weight was chosen

for proportional and derivative components of the controller,

forcing the reference to enter the control signal only through

the integral term, as shown in Fig. 5(b).

3) Derivative Filter: To suppress the high frequency

noise, the differentiator KDs was filtered as

sKP KDN

sKD + KP N
, (19)

where N = 5 was chosen heuristically to yield an adequate

trade off between noise suppression and phase lead. Note

that the reference was not differentiated to facilitate a smooth

response to rapid and abrupt reference changes.

4) Derivative Kick: The low-pass reference filter com-

bined with the zero setpoint weight resulted in a slow

increase of u, and consequently y, during the beginning of

the induction phase, which is not desirable, since the propofol

infusion is painful to the patient while the DOH is low. To

avoid this problem, the derivative term of the PID control

signal was set to a strictly positive value during the beginning

of the induction phase, yielding a spike in u.

5) Discretization: The controller was discretized using the

approximation s ≈ z − 1, which is acceptable since the

sample period is small compared to the dominant time scale

of the system. Using ZOH discretization or performing the

tuning optimization in the discrete time domain would have

been other options. However, they lack the intuitive insight

provided by the continuous-time PID control architecture that

the proposed discretization preserves.

6) Bumpless Parameter Changes: Let xI and xD be the

state of the PID integrator and derivative filter, shown in

Fig. 5(b) and Fig. 5(c). The control signal is given by

u = satumax

umin
(−v̂KP
︸ ︷︷ ︸

P

+ xI
︸︷︷︸

I

−v̂KP N − xD
KP N

KD
︸ ︷︷ ︸

D

). (20)

Switching the set of PID controller parameters from

{KP ,KI ,KD} to {K ′

P ,K ′

I ,K
′

D} at the end of the induction

phase, may lead to discontinuity in the derivative term,

resulting in discontinuity in the control signal. This risk was

prevented by simultaneously updating the states as follows:

x′

D = v̂(K ′

P − KP )
K ′

D

K ′

P

− xD
KP

KD

K ′

D

K ′

P

, (21)

x′

I = xI + v̂(K ′

P − KP ). (22)

G. Closed-Loop System

Summarizing, Fig. 5(a) shows the block diagram of the

closed loop system, including patient, controller and filters,

discussed above. The block diagram of the PID controller is

shown in Fig. 5(b). The derivative filter block of Fig. 5(b) is

illustrated in detail in Fig. 5(c).
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(a) Closed-loop system. The plant and sensor is equivalent to Fig. 3.
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1
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1
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derivative
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(b) PID controller. The derivative filter block contains the ZOH dis-
cretization of (19).

−v̂
KP N

xD

−

KP N

KD
ΣΣ

1

z−1

D

(c) The derivative filter (19) block of Fig. 5(b).

Fig. 5. Closed-loop system and PID controller.

IV. SYSTEM IDENTIFICATION

The objective of the system identification was to derive

parameter estimates for the model that relates Cp to E; see

Fig. 3. The model consists of the FOTD (7), parametrized in

K =
1

2EC50
, T =

1

Kd
, L = Td, (23)

and the nonlinear part of the Hill function (6), parametrized

in γ. Since E is not directly available, its estimate Em was

used. It was obtained by applying F1 in (10) to y. Likewise,

an estimate Cpm
of Cp, obtained by driving the PK model

(2) with u, was used.

A. Hill Function Nonlinearity

Since v in (7) ranges from 0 to ≈ 0.5 during the induction

phase, linearizing (7) around a nominal value does not

present a feasible approach towards PD model parameter

identification. Furthermore, it is not trivial to simultaneously

identify the LTI parameters {K,T,L} and the Hill function

parameter γ. For this reason a two-stage approach was

employed. The parameter γ was identified and fixed during

the first stage and LTI parameters were identified during the

second stage.

B. Initial Parameter Estimates

Inspecting the simulation pairs of u and E reveals that the

first order dynamics are fast compared with the time scale of

induction. Hence, it was reasonable to approximate (7) by a

delayed gain K · e−Ls.

The initial estimate L̂ of L was obtained by identifying

the time instants after which Em and u stay above thresholds

Emσ
and uσ, respectively. The initial estimate K̂ of K was

then obtained by averaging the ratio of Em and u over the

last 3 min of the induction phase.

Subsequently, the initial estimate γ̂ of γ was obtained by a

bisection search, which minimized (the discretized equivalent

of)
∫ tγ

0

(
f−1(Em; γ̂)(t) − KCpm

(t + L)
)2

dt. (24)

Fixing γ̂ yielded the estimate vm of v:

vm = f−1(Em; γ̂). (25)

Finally, a bisection search was used to find the estimate

T̂ of T , which minimized (the discretized equivalent of)

∫ tind

0

(

vm(t) − L−1

(

K̂e−sL̂

sT̂ + 1
Cpm

))2

dt. (26)

C. PD Identification Using Induction Phase Response

A gradient-based identification method [15] was employed

to obtain refined estimates of the PD model parameters

from the patient’s response during the induction phase. The

parameter estimates were identified to minimize

J(θ̂) =

∫ tind

0

(vm − v̂)2dt, (27)

where vm was parametrized in θ̂ = {K,T,L} (while γ̂
was fixed). Computing the gradient ∇J(θ̂) was done by

simulating an augmented system, where the augmented states

were partial derivatives of the objective function (27) with

respect to the PD model parameters to be identified. Details

of the methods are outlined in [15].

V. SIMULATED EXPERIMENT

The surgical procedure was simulated for each patient in

the test population, as described below.

A. Test Population

The test population consisted of 44 PKPD models. Model

parameters were derived using clinical data and are disclosed

in [4]. In the course of PD identification, it was assumed that

individual PK models can be accurately characterized using

Shcüttler’s covariate formulae [6]. This essentially lumps all

the parametric uncertainty into the PD model.

B. Experiment Layout

1) Induction Phase: Prior to the simulated surgical pro-

cedure, the induction phase controller was synthesized ac-

cording to Section III, based on the control design model

(13). Parameters k21, k31, p1, p2 and p3 were computed from

the patient age and weight using Schüttler’s formulae, while

population averages were used for Kd, EC50 and Td. Propo-

fol was administered using this population-based controller

during the induction phase of the simulated surgical proce-

dure.

2) PD Identification and Controller Re-Design: PD pa-

rameters were estimated as described in Section IV. At the

end of the induction phase, the estimated PD parameters were

used to synthesize an individualized controller, based on the

same procedure as the induction phase controller.
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3) Maintenance and Emergence Phases: During the be-

ginning of the maintenance phase, the simulation state was

saved to allow for parallel maintenance phase simulations

with (i) the induction phase controller, (ii) the individualized

controller and (iii) and an ideal controller based on the

actual parameter values of the simulated patient. Signals from

these simulations were saved and analyzed as described in

Section VI.

C. PK Uncertainty

In order to introduce a realistic amount of PK uncertainty

in the simulated procedure, perturbations were given to the

parameters of the patient model. This was done using nor-

mally distributed random numbers with standard deviations

chosen as the standard deviations of the prediction residuals

reported in Schüttler et al. [6]. Nominal values were used

for the controller synthesis.

VI. RESULTS AND DISCUSSION

Overall, the individualized controller outperformed the

population-based controller. Fig. 6 shows the simulation

profiles for each of the 44 patients, using the individualized

controller. In terms of IAE, the individualized controller

could provide a 23 % reduction in error over the 44 pa-

tient models, compared with the population-based controller.

Moreover, it was only 4 % larger than with the ideal con-

troller, synthesized using the true patient PKPD models. The

results clearly demonstrate the potential of an individualized

control scheme.

t [min]

D
O

H

0 20 60 70
0

50
70

100

(a) Measured DOH with disturbance profile of Fig. 4.

t [min]

u

0 20 60 70
0

1

2

3

4

(b) Infusion profiles with disturbance profile of Fig. 4.

Fig. 6. Measured DOH and infusion profiles of the test population.

The use of an output filter (11) significantly improved the

reference tracking performance in the induction phase. In the

absence of the filter, undershoots by as much as 30 BIS units

were observed in some patients.

Due to the presence of the perturbations in the PK models,

the identified PD parameters generally did not converge to

the patient values. Instead they converged to values close to

their true counterparts in order to compensate for the PK

mismatch. It should be noted, however, that the identified

PD parameters converged to the true parameter values when

the PK model uncertainty was not considered.

Although rigorous parameter convergence proof is not

feasible due to the non-convexity of the system identification

problem discussed in Section IV, the proposed two-stage

identification strategy was able to provide accurate parameter

estimates for all the simulated procedures. In a future study,

however, its validity and performance needs to be extensively

examined before it can be introduced into clinical practice.

VII. CONCLUSION

A novel propofol administration strategy for closed-loop

DOH control has been proposed. Evaluation of the proposed

control scheme in simulated procedures over wide-ranging

PKPD models with parameter perturbations suggested that

1) the closed-loop performance can be significantly enhanced

by employing the individualized controller based on the PD

model identified using the induction phase response, and that

2) the proposed control scheme is equipped with a sufficient

level of robustness against uncertainty in the PK model.
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