
Direct Optimization Determination of Auxiliary Test Signals for Linear
Problems with Model Uncertainty

Ivan Andjelkovic and Stephen L. Campbell

Abstract— Recently there has been increased interest in active
approaches for fault detection which use auxiliary test signals.
Theory and algorithms have been presented in the literature
for the design of fault detection signals for linear systems
with model uncertainty. These approaches cannot solve many
problems with constraints. This paper gives the first direct opti-
mization formulation of the more general constrained problem.
The use of a direct optimization formulation allows the solution
of problems not possible by the original algorithms such
as problems with input and state constraints. Computational
examples are given both to illustrate the theory and to discuss
computational issues.

I. INTRODUCTION

The traditional fault detection approach uses passive fault
detection which is well established and widely used. The
idea is to observe or estimate functions of parameters or
states of the system, and if these deviate enough from the
expected values, the fault would be declared. Thresholds
are often chosen using a probabilistic approach. There are
numerous references on research and implementation of
passive approaches [9], [10], [11], [12], [16] many of which
are model based. While these approaches are very useful,
controller action can sometimes mask a fault until it becomes
critical. In addition it may be desirable to detect incipient
faults at an earlier stage.

The basic idea of active fault detection is that instead of
just observing the system we act on it using an additional,
“auxiliary or test” input signal. The test signal is applied
over a short horizon. The purpose of this signal is to disturb
the system just enough so we can conclude, based on the
output, if part of the system is at fault. Such signals are
called proper. During the testing, we want to avoid causing
too large a disruption in systems operation. Hence “the best”
criterion is usually focused on keeping the effect of the test
signal small in some sense and returning to normal operation
as quickly as possible by the end of the test. The best proper
test signal is optimal. The actual criteria depends on the
system and design considerations. Active detection allows
the detection of faults before they become serious and can
often detect faults before a passive approach can. Active fault
detection can be used during testing of system design, as
well as during the scheduled checkups and maintenance of
the system. Our focus is on the applications of active fault
detection during regular operation of the system. In certain
safety critical processes, only a passive approach may be

This work supported in part by ECS-0620986 and DMS-0907832
Cisco Systems, Cary, North Carolina, USA.
Department of Mathematics, North Carolina State University, Raleigh,

NC 27695-8205, USA. slc@math.ncsu.edu

permitted. We are not talking here about the situation in
which a fault is detected by passive means and then the
system accommodates the fault [13]. Such systems are also
sometimes called active [18]. The use of test signals, of
course, is not new but dates to [14], [19]. Recent work on
active fault detection includes that of [15], [18]. However,
that work is either statistical in nature or limited to linear
time invariant systems without constraints.

One active approach has been developed in [6]. There
are two computational approaches toward computing the test
signal defined by this method. One is based on control ideas
such as Riccati equations. We refer to this as the CB or
control based approach. The other makes use of advanced
optimization software and will be referred to as DO or direct
optimization. CB is easier to implement. DO has the potential
to handle more difficult problems such as those with control
constraints or operational constraints. Previous work has
considered the DO solution of linear problems with additive
uncertainty [6], [8] and some delay problems [6]. However,
that DO formulation could not handle problems with model
uncertainty. In this paper we give the first DO solution of
problems with both model and additive uncertainty. We also
show that this approach can solve problems that the CB
approach and earlier DO formulations could not. This paper
can be considered a sequel to [8]. Some of the results were
briefly announced in the short survey paper [2]. Additional
computational examples, discussion, and software implemen-
tation details are in [1]. In our approach while we talk
of noise or uncertainty there are no statistical assumptions
unlike [3]. The only assumptions on the uncertainty are that
certain bounds hold. Thus the noise could include unmodeled
nonlinearities and other effects.

We first quickly review the model uncertainty approach
from [6]. We then formulate the optimization problem that
we must solve. Next we discuss some of the needed software
capabilities. We give several computational examples that
illustrate both theoretical and computational issues. Although
we use SOCS for the examples in this paper, our discussion
is relevant to similar direct transcription software packages
such as SOCX (Sparse Optimal Control Software Extended)
from Access Analytics International.

II. PROBLEM FORMULATION

We assume there are two models, a faulty one and a
nonfaulty one. There are bounds on the uncertainties. A test
signal v is proper if the sets of possible outputs from the
two models over all possible admissible noises are disjoint.
Otherwise it is not proper. There is a cost associated to the

2011 50th IEEE Conference on Decision and Control and
European Control Conference (CDC-ECC)
Orlando, FL, USA, December 12-15, 2011

978-1-61284-799-3/11/$26.00 ©2011 IEEE 909

test signal and we want the smallest proper test signal. For
linear systems with additive uncertainty, the set of not proper
v form an open convex set and we seek the smallest v on
the boundary of this set. The characterization of a proper
test signal as having non overlapping output sets is not
computationally useful. Instead we characterize proper by
the fact that if we assume that we get the same output from
both models, then too much noise is required to observe
the same output from both models and the noise bound is
violated at least once. In particular, the smallest noises that
can produce the same outputs from both models violates
the noise bound. The model uncertainty case discussed here
has a number of extra technical difficulties compared to the
additive uncertainty case. For one, the size of the output set
can grow with increasing v since more input can create more
uncertainty. Another difficulty is that there are conditions that
must be tested internal to the optimization interval.

We use an uncertainty formulation derived from [17]. We
assume two models (i = 0, 1) of the form:

ẋi = (Ai +Ki∆iGi)xi + (Bi +Ki∆iHi)v +Miνi (1a)
yi = (Ci + Li∆iGi)xi + (Di + Li∆iHi)v +Niνi. (1b)

Model 0 is the normally operating system and model 1 is
the faulty system. Here xi ∈ Rni are the ni states, yi ∈ Rm
are the m observed outputs, v ∈ Rl are the l control test
signals, and νi ∈ Rai are the additive noise components.
x0 and x1 can have different dimensions and so can the νi.
Matrices Mi and Ni are weights on the additive noise. Ma-
trices Li,Ki, Gi, Hi and ∆i represent multiplicative (model)
uncertainties. The following reformulation is standard. The
model uncertainty is bounded by σ(∆i(t)) ≤ 1 where σ is
the largest singular value. Scaling of Ki, Gi, Hi, Li includes
bounds other than one. The test period is [0, T]. The additive
uncertainty is bounded by

xi(0)TPixi(0) +
∫ s

0

νTi Γ̄νi dt < 1, ∀s ∈ [0, T], (2)

where Pi is positive semidefinite and Γ̄ = I . Again scaling
allows the consideration of bounds other than one. The
notation Γ̄ is used so that (2) and (6) can be analyzed at
the same time [6]. We then consider the modified system:

ẋi = Aixi +Biv +Kiµi +Miνi (3a)
yi = Cixi +Div + Liµi +Niνi (3b)
ξi = Gixi +Hiv (3c)

with µi = ∆iξi. From the model uncertainty bound
σ(∆i(t)) ≤ 1, we get |µi| − |ξi| ≤ 0, ∀t ∈ [0, T], which in
turn implies∫ s

0

|µi|2 − |ξi|2 dt < 0, ∀s ∈ [0, T]. (4)

(4) allows for more noise since (4) allows |µi| ≥ |ξi| on a
subinterval. Adding (2) and (4) the overall noise bound is:

Si = xi(0)TPixi(0) +
∫ s

0

|νi|2 + |µi|2 − |ξi|2 dt < 1,

∀s ∈ [0, T]. (5)

Bound (5) allows for even more noise than (4) and introduces
more conservatism in our solution. This conservatism is not
in the form of missed faults. The auxiliary signal v obtained
this way will be proper. However, it may be suboptimal in
terms of the original uncertainty. Bound (5) can be rewritten

xi(0)TPixi(0) +
∫ s

0

ϕTi Γϕi dt < 1,∀s ∈ [0, T] (6)

with ϕi = Stack(νi, µi ξi) and Γ = Diag(I, I,−I). Stack
places the vector or matrices into a column vector or matrix.

Unlike in the additive uncertainty case, Γ is not positive
definite in the model uncertainty case. As a consequence,
for the model uncertainty case we need to make sure that
(4) is not violated ∀s ∈ [0, T] when deciding if v is proper
and not just for s = T . We assume Ni have full row rank.
This is not restrictive since it means we allow noise into all
dynamic and output equations. A test signal that is proper
under this assumption will be proper if Ni is not full row
rank. We now derive formulas for the DO method.

We take the cost of the test signal v to be

δ2(v) = ψ(T)TWψ(T) +
∫ T

0

|v|2 + ψTUψ dt (7a)

ψ̇ = F0ψ + F1v, ψ(0) = 0. (7b)

Matrices F0, F1 depend on design considerations. For exam-
ple, ψ could be the amount v perturbs the nonfaulty model,
the faulty model, or both. The end point term with weight
W penalizes the change in the system at the end of the
test period. W,U are positive semidefinite. v is proper if
y = y1 = y0 means too much noise is required. This is,

min
s,y,xi0,φi

max
i=0,1

{S0(x0(0), ϕ0, s), S1(x1(0), ϕ1, s)} ≥ 1.

(8)
We replace the inner max using a parameter β between 0
and 1. Let φβ(v, s) be

inf
xi,ϕi,y,s

βS0(x0(0), ϕ0, s) + (1− β)S1(x1(0), ϕ1, s). (9)

Then v is proper if there is a {β, s} so that φβ(v, s) ≥ 1.
The differential-algebraic path constraints for our opti-

mization problem are the equations (3) for i = 0, 1 and the
condition that y0 = y1,

ẋ = Ax+Bv +Mν (10a)
0 = Cx+Dv +Nν (10b)
0 = Gx+Hv + ξ, (10c)

where A = Diag(A0, A1), B = Stack(B0, B1), M =
Diag([K0,M0], [K1,M1]), x = Stack(x0, x1), C = [C0 −
C1], N = [L0, N0,−L1,−N1], G = Diag(G0, G1),
ν = Stack(µ0, ν0, µ1, ν1), H = Stack(H0, H1), and D =
Stack(D0, D1).

It is beneficial to reduce the size of the problem by
eliminating some of the algebraic constraints in (10). The D
and H terms have no effect in how the problem is approached
although they can impact on the solution. To simplify the
discussion we will temporarily assume that H = 0 and

910

D = 0. If they are not zero, the matrices that we compute
would have additional easily determined terms.

Since Ni have full row rank, we can perform a constant
orthogonal change of additive noise components νi in ν
resulting in Ni = [N i, 0] with N i being invertible. Using
the same decomposition, we will have Mi = [M i, M̃i] and
νi = Stack(νi, ν̃i). Then we use (10b) to solve for ν0 and
eliminate those variables from the other equations (We could
choose to eliminate ν1 instead). Solving for ν0 will involve
redefining the noise vector, and having all matrices involved
multiplied by N

−1

0 . To keep our notation simple we will
call N

−1

0 C just C, and the same with the remaining parts
of the matrix N . After substituting, our system becomes
ẋ = Âx+Bv + M̂ν with

Â =
[
A0 −M0C0 M0C1

0 A1

]
, B =

[
B0

B1

]
,

M̂ =

[
K0 −M0L0 M̃0 M0L1 M0N1 0

0 0 K1 M1 M̃1

]
,

and a new noise vector ν = Stack(µ0, ν̃0, µ1, ν1, ν̃1). Equa-
tion (10c) is used to solve for ξ and substitute into (5). The
cost in the inner minimization problem (9) has the form:

x(0)TPβx(0) + 1
2

∫ s

0

xTQx+ xTEν + νTRν dt, (11)

where Pβ = βP0 + (1 − β)P1. Explicit formulas for the
Q,E,R are in [1]. Finally, after introducing a new variable
z to account for noise, and using Lagrange multipliers λ with
Hamiltonian H(t) = 1

2 (xTQx+xTEν+νTRν)+λT (Ax+
Bv+M) to replace the inner minimization problem with its
necessary conditions, we obtain our DO problem:

min δ2(v) = ψ(T)TWψ(T) +
∫ T

0

|v|2 + ψTUψ dt (12a)

subject to path constraints

ẋ = Âx+Bv + M̂ν (12b)
ψ̇ = A0ψ +B0v (12c)
λ̇ = −Qx− 1

2Eν −A
Tλ (12d)

ż = 1
2 (xTQx+ xTEν + νTRν) (12e)

0 = Rν + 1
2E

Tx+MTλ (12f)

and boundary conditions and parameter bounds

λ(0) + 2Pβx(0) = 0, ψ(0) = 0 (13a)
z(0) = x(0)TPβx(0) (13b)

0 < β < 1, 0 ≤ s ≤ T (13c)
z(s) ≥ 1, λ(s) = 0. (13d)

(13d) says that (8) holds for some β, s. The correct handling
of the s parameter was a major factor in the difficulty of
setting up the DO solution of the model uncertainty problem.
Working with (13d) requires some care since it is talking
about a problem on a subinterval with unknown s.

III. SOFTWARE REQUIREMENTS

To solve the optimization problems we used the commer-
cially available Sparse Optimal Control Software (SOCS)
package [4]. SOCS uses a direct transcription method
(collocation method) to convert the continuous system of
differential-algebraic equations and bounds into its dis-
cretized approximation. That way, SOCS deals with a
sparse, finite dimensional nonlinear programming problem
and solves it as such. Our inner optimization problem stays
the same since that characterizes proper. However, any
additional constraints, such as restrictions on v are handled
by the software which simplifies problem solution.

Several features of the chosen software were very impor-
tant. They include; the ability to import an initial guess which
is useful for problem nonlinearities or multiple minimums,
allowing the time interval to vary which becomes extremely
handy for the model uncertainty problem, allowing for
multiple phases of varying length with different equations
on each phase, allowing outside routines to define desired
functions, ability to works with both equality and inequality
path constraints, a default grid and initialization option, and
control over the permitted numerical error. Our code was
verified by comparing the solution of some simpler test
problems to solutions obtained by codes from [6] written
in Scilab [7], and run by K. Sweetingham.

The integrand in the cost function on v is defined over the
testing interval [0, T] while our condition for the noise bound
depends on the parameter s ∈ [0, T]. For additive noise we
did not have this issue since we were able to set s = T . For
model uncertainty problems that is not the case since Γ is
not positive definite anymore. When U = W = 0 we can set
the end of the interval to be T = s, where s is the value for
which one of the models causes the combined noise bound to
be exceeded. We can do that since for t > s, we already know
which model we are dealing with, so v = 0 is the optimal
solution for t > s. Though this modification is simple, due
to the nonlinearities in s, we can encounter local minimums
depending on the initial guess for s. When either U or W is
not 0, the problem is more difficult since the cost function
now depends on ψ. Hence, even for t > s, v can help reduce
the size of ψ. Thus v = 0 after t = s is not necessarily
an optimal solution anymore. Therefore we have to account
in our code for both T and s. We solved that problem by
splitting the problem into 2 phases. The final time of phase
1 is s. We use the system of equations derived in this section
as constraints for this phase with one modification. We need
the value of the cost function on interval 0 ≤ t ≤ s to be
passed to phase 2. This is done by adding another differential
equation to accumulate the cost. Phase 2 is defined on the
time interval s ≤ t ≤ T . Since we know that the noise bound
is already broken, we only have to account for the influence
of v on ψ and how the cost is effected. Thus Phase 2 is
much simpler. A phase must have nonzero length, so (13c)
is implemented as Lb ≤ s ≤ Lu where Lb > 0 but is close
to zero and Lu < T but is close to T .

911

IV. COMPUTATIONAL EXAMPLES

Example 1: (Example 3.3.1[6].) The system of
differential-algebraic constraints with model uncertainty is

ẋ0 =
[

0.4δ1 1
−1 + 0.4δ2 0

]
x0 + v

+κ
[

1 0 0
0 1 0

]
ν0 (14a)

ẋ1 =
[

0.4δ3 3
−3 + 0.4δ4 0

]
x1 + v

+κ
[

1 0 0
0 1 0

]
ν1 (14b)

0 = [1 2](x0 − x1) + [0 0 1](ν0 − ν1), (14c)

with κ = 10−4 so that (3) is

ẋ0 =
[

0 1
−1 0

]
x0 +v+

[
1 0 κ 0 0
0 1 0 κ 0

]
ν0(15a)

ẋ1 =
[

0 3
−3 0

]
x1+v +

[
1 0 κ 0 0
0 1 0 κ 0

]
ν1(15b)

z0 =
[

0.4 0
]
x0 (15c)

z1 =
[

0.4 0
]
x1 (15d)

0 =
[

1 2
]

(x0 − x1)
+
[

0 0 0 0 1
]

(ν0 − ν1). (15e)
We take Pi = I and T = 10.

If U = W = 0, then DO and CB both found that
s = 10 gives the optimal proper signal v and computed
essentially the same v. The cost is slightly improved using
DO. This is probably due to the CB Scilab routine that uses β
optimization on a fixed grid, while in SOCS β is a continuous
parameter. For the computationally more difficult case where
U = W = I , T = 10, the DO and CB approaches again
produced the same v. Here s had only an upper bound of
s ≤ 9.99.

When using DO we sometimes have an issue with choos-
ing initial guesses and local minimums showing up due to
the nonlinearity in s. This is shown in the next computation
which is similar to the first except that we take δ2 = δ4 = 0.
Our DO default is to generate an initial guess by interpolating
between any given bounds. Since the dependence on s is
nonlinear, we can have local minimums. We will consider
only when U = W = 0 and T = 10 here. Depending on the
lower bound constraint Lb on s we obtained different values
for s and hence different signals v as shown in Figures 1 and
2. The performance parameters of these 3 calculated signals
are in Table I. Suboptimal signal 2 is intermediate in shape
between Figure 1 and Figure 2.

TABLE I
DIFFERENT SOLUTIONS FOR v IN EXAMPLE 2.

Parameter β Cost Time(s) Lb s
The best v 0.773 0.725 144.8 7 10

Suboptimal 1 .631 0.998 32.5 0.1 4.56
Suboptimal 2 .750 .809 32.8 3 7.65

The initial guess of s was Lb. DO got stuck twice in a local
minimum as a consequence of the different initial guesses.

0 1 2 3 4 5 6 7 8 9
 0.4

 0.3

 0.2

 0.1

0

0.1

0.2

0.3

0.4

v1 SOCS

v2 SOCS

Fig. 1. Best v found for Example 1, case 2 using DO.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
 0.6

 0.4

 0.2

0

0.2

0.4

0.6

0.8

v1 suboptimal 1

v2 SOCS suboptimal 1

Fig. 2. Suboptimal signal 1 found using DO for Example 1.

While Lb = 5, 7, 8 or 9 gave us the best answer, Lb = 6
gave us the suboptimal 2 result. All v found were proper.

Example 2: The second example is a modification of
Example 4.2.3 in [6]. Here

δ2(v) =
∫ 1

0

|v|2 dt (16a)

ẋ0 = (−2 + g0δ1)x0 + v +
[

1 0
]
ν0 (16b)

ẋ1 = (−1 + g1δ2)x1 + v +
[

1 0
]
ν1 (16c)

0 = x0 − x1 +
[

0 1
]
ν0 −

[
0 1

]
ν1. (16d)

The gi parameterize the uncertainty level. Our test interval is
[0, 1]. We now consider cases where the CB approach does
not work, and the DO approach presented here does. We
use Problem 2 with P = 0. The auxiliary signal v obtained
for various values of g is in Figure 3 . P = 0 takes more

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
 300

 200

 100

0

100

200

300

400

g=0

g=0.05

g=0.07

g=0.09

g=0.1

Fig. 3. Auxiliary signal v for various values of g, and P = 0 in Example
2.

CPU time than P = I . Having P 6= 0 and positive definite,
no matter how small will guarantee that our output sets are

912

bounded and convex [6]. We can not guarantee boundedness
for P = 0, which in return increases the complexity of the
problem for numerical solvers.

A. Hard Bound on the Auxiliary Signal v

Many problems have practical constraints on the auxiliary
signal v. Here we consider hard bounds, vmin ≤ v ≤
vmax or v ≤ vmax. These problems cannot be solved by
CB or any of the other published methods of finding test
signals. DO can find many of these test signals and the DO
implementation is straight forward given what has been done
earlier in this paper. First, we consider g = 0 in Example
2. Figure 4 shows the result for no bound, |v| ≤ 60, and
v < 50. For the case studied here if v is proper, then so is
−v. The unconstrained v∗ was positive. For the case when
v ≤ 50, DO correctly found −v∗. Here if we set |v| ≤ 50,
then there are no proper test signals.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
 80

 60

 40

 20

0

20

40

60

80

no bound

|v|<60

v<50

Fig. 4. DO solution with hard bound on auxiliary signal v, with g = 0 in
Example 2.

Next we allow for a small amount of model uncertainty
with g = 0.05. We use the v∗ without v constraints as an
initial guess, and we leave the ending time s free. The results
are in Figure 5. Notice that both upper and lower bounds play
a role in the |v| ≤ 71.2 case. That is not surprising since
the shape of the auxiliary signal when model uncertainty is
present is more complex . Also, probably due to the increased
difficulty, this time SOCS was not able to find that −v∗ is
the solution of v ≤ vmax type of bound when v∗ was an
initial guess, since it was not able to find a feasible point.
We needed to use a negative initial guess.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
 100

 80

 60

 40

 20

0

20

40

60

80

100

no bound on v

|v|≤ 71.2

|v|≤ 73

v≤ 60

Fig. 5. DO solution with hard bound on v, with g = 0.05 in Example 2.

B. Soft Bound on the Auxiliary Signal v

Sometimes it is desirable to discourage v from approach-
ing certain values r(t). That can be achieved by increasing
the cost function if v approaches the specific values r(t). To
illustrate the use of soft bounds, and point out some compu-
tational considerations, we define two new cost functions

Soft Bound: δ2(v) =
∫ 1

0

cs
(r2 − v2)2

dt (17)

Mixed bound: δ2(v) =
∫ 1

0

cs
(r2 − v2)2

+ cvv
2 dt, (18)

where cs and cv are positive weight coefficients. We use
r2 − v2 instead of just r − v to assure that v is not close to
±r. The other power of 2 is to assure that the integrand is
positive.

If we are using soft bounds and we want v to be continu-
ous, we may need to include hard bounds vmin ≤ v ≤ vmax.
The reason is that DO is using a continuous v approximation
on each phase. It can approximate piecewise continuous
functions very closely in the L2 sense by putting grid points
close together. For example, without hard bounds we can end
up with the solution in Figure 6 obtained for the mixed cost
(18) case. Note that v jumps across the value to be avoided.
The very short interval of chatter at the second discontinuity
often occurs when computing piecewise smooth controls and
is a numerical artifact which could be removed by adding
additional phases incorporating the jumps.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
 20

0

20

40

60

80

100

Fig. 6. Noncontinuous v found by DO with only soft bounds in Example
2.

The calculated auxiliary signals for P = 0 and g = 0.05
are in Figure 7. We used cs = 1, r = 73 and cv = 10−8. We
also used vmax = −vmin = 72.99 as hard bounds to insure
that v was continuous.

C. Bound on the States

Often it is desirable to directly limit the state during the
test. This leads to problems with state constraints. There
are two ways to approach this. The first is to add the state
constraint to the inner optimization problem. In that case the
necessary conditions used in the inner optimization problem
must be changed. The other, and simpler conceptually, is
to just add the state constraint to the outer optimization
so that they become an extra feasibility restriction on the
proper v. The numerical solution of state constrained optimal
control problems is often technically difficult and a number

913

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
 80

 60

 40

 20

0

20

40

60

80

|v|≤ 73

soft cost

mixed cost

Fig. 7. v found by DO with soft and hard bounds on auxiliary signal in
Example 2 with g = 0.05.

of subtleties exist when working with inequality constraints
[5]. Here we examine putting constraints outside of the inner
optimization problem and focus on additive noise only, g = 0
and constraints of the type |xi| ≤ Bx. By observing the
values of x0 and x1 from the case without state constraints,
we chose values Bx = 20, 18, 16 for our bound since they
were not overly tight. Found proper signals v are in Figure
8 while states are in Figure 9. For Bx = 16, for some

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
 40

 20

0

20

40

60

80

100

120

140

no bound

|x |<20

|x |<18

|x |<16

Fig. 8. Comparison of DO v for bounds on states xi in Example 2.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
 30

 25

 20

 15

 10

 5

0

5

10

15

20

no bound on x
0

no bound on x
1

|x
0
|<20

|x
1
|<20

|x
0
|<18

|x
1
|<18

|x
0
|<16

|x
1
|<16

Fig. 9. Comparison of DO xi for bounds on states xi in Example 2.

time intervals, the computed auxiliary signal v is very noisy.
The same, but not as obvious, is present for Bx = 18. This
happens while the state constraint is active. In this case we
actually have a differential algebraic equation (dae). From
(16b) and (16c) we would expect v to be constant when
the constraint is active and that is what is observed in the
computed v. The result of the constraint activation can be
chatter near the constraint and where the constraints change.

V. CONCLUSION

This paper has given the first DO formulation of the
auxiliary test signal design problem for linear systems with
both model and additive uncertainty. A DO formulation
solves some additional important problems, such as when
there are constraints on v and states xi. These problems
cannot be solved by other methods. We illustrated this with
several examples. Computational issues were also discussed.
Many systems are nonlinear. The CB approach does not
readily extend to nonlinear systems. The DO approach given
here has greater potential for being extended to nonlinear
systems [1]. The CB approach is limited to two models.
The DO approach is capable of working with more than
two models and a test signal can be constructed to test
for several faults by making it proper in several problems
simultaneously [6]. The same type of approach can be used
here for designing test signals for multiple faults in linear
systems with model uncertainty.

REFERENCES

[1] I. Andjelkovic, Auxiliary Signal Design for Fault Detection for
Nonlinear Systems: Direct Approach, Ph.D. Thesis, North Carolina
State University, 2008.

[2] I. Andjelkovic, K. Sweetingham and S. L. Campbell, “Active fault
detection in nonlinear systems using auxiliary signals”, in Proc.
American Control Conference (ACC), Seattle, WA, 2008.

[3] A. Benveniste, M. Basseville, R. Nikoukhah, and A. S. Willsky, “On
the use of descriptor systems for failure detection and isolation”, in
Proc. IFAC World Congress, 7, Sidney, Australia, 1993, pp. 497–500.

[4] J. T. Betts, Practical Methods for Optimal Control and Estimation
using Nonlinear Programming, SIAM, PA; 2010.

[5] J. T. Betts, S. L. Campbell, and A. Engelsone, “Direct transcription
solution of optimal control problems with higher order state con-
straints: theory vs practice”, Optim. & Eng., 8 (2007), pp. 1–19.

[6] S. L. Campbell, and R. Nikoukhah, Auxiliary signal design for failure
detection, 1st ed. Princeton, NJ; 2004.

[7] S. L. Campbell, J.-P. Chancelier, and R. Nikoukhah, Modeling and
simulation in Scilab/Scicos with ScicosLab 4.4, Springer, NY; 2005.

[8] S. L. Campbell, K. Horton, R. Nikoukhah, and F. Delebecque,
“Optimization formulations of auxiliary signal design for rapid multi-
model identification”, Automatica, 38 (2002), pp. 1313–1325.

[9] J. Chen and R. J. Patton, Robust Model-Based Fault Detection
Diagnosis for Dynamic Systems, Kluwer, Dordrecht, 1999.

[10] L. H. Chiang, E. L. Russell and R. D. Braatz, Fault Detection and
Diagnosis in Industrial Systems, Springer, NY; 2001.

[11] J. J. Gertler, Fault Detection and Diagnosis in Engineering Systems,
Marcel Dekker, NY; 1998.

[12] R. Isermann, Fault-diagnosis systems, Springer, Heidelberg, 2006.
[13] Mahmoud, M. M., Jiang, J., Zhang, Y., Active fault tolerant control

systems, Vol. 287 of Lecture Notes in Control and Information
Sciences. Springer-Verlag, Berlin, 2003.

[14] F. Kerestecioglu and M. B. Zarrop, “Input design for detection
of abrupt changes in dynamical systems”, International Journal of
Control, 59 (1994), pp. 1063–1084.

[15] H. H. Niemann, “A setup for active fault diagnosis”, IEEE Transac-
tions on Automatic Control, 51 (2006), pp. 1572–1578.

[16] R. J. Patton, P. M. Frank and R. N. Clark, Issues of Fault Diagnosis
for Dynamic Systems, Springer, Berlin, 2000.

[17] A. V. Savkin and I. R. Petersen, “A new approach to model validation
and fault diagnosis”, J. Optimization Theory and Application, 94
(1997), pp. 241–250.

[18] M. Simandl and H. Niemann, “Active fault detection and control:
Unified formulation and optimal design”, Automatica, 45 (2009), pp.
2052–2059.

[19] X. J. Zhang, Auxiliary signal design in fault detection and diagnosis,
vol. 134 of Lecture Notes in Control and Information Sciences.
Berlin: Springer-Verlag, 1989.

914

