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Abstract— This paper introduces the notion of absolutely
distinguishable discrete dynamic systems, with particular appli-
cability to linear time-invariant (LTI) systems. The motivation
for this novel type of distinguishability stems, in particular, from
the stability and performance requirements of worst-case adap-
tive control methodologies. The main results presented herein
show that, in most practical cases, a persistence of excitation
type of condition and a minimum number of iterations are
required to properly distinguish two dynamic systems. We also
demonstrate that the former constraint can be written as a
lower bound on the intensity of the exogenous disturbances.
The applicability of the developed theory is illustrated with a
set of examples.

I. INTRODUCTION

The identifiability of dynamic systems plays an important
role in certain areas, where it is fundamental to ensure that
the model of the plant can be inferred from input/output data.
In particular, model estimation methods require the system to
be identifiable. Otherwise, the estimation problem may not
be well-posed and lead to erroneous results. Such methods
also require, in general, a persistence of excitation condition
in the exogenous inputs, in order to avoid the issues related
to the indistinguishability due to the small amplitude of the
disturbances.

However, in applications such as fault detection [1], [2],
[3], [4], [5], identification of hybrid systems [6], [7], and
multiple-model adaptive control [8], [9], [10], it suffices to
guarantee that we can identify the family of systems to which
the true plant belongs, among a finite set of families of
dynamic systems. In such cases, we say that the families
of systems are distinguishable. This notion was introduced
in [11], where in fact the authors relate the concept of
identifiability with that of distinguishability.

Indeed, these two concepts (see, for instance, [11], [12],
[13]) are naturally related to each other. If a system can be
identified by using a certain input signal, then it is obvious
that it can be distinguished from any other system with the
same structure. A discussion on this topic can be found in
[14]. The interested reader is also referred to [15], [16], [17].

However, most of the results on system identifiability are
not enough for system absolute distinguishability. In partic-
ular, for two absolutely distinguishable systems we require,
for all the admissible input signals, the corresponding outputs
to be different from one another, unlike the most common
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definition of (structurally) identifiable system, which only
demands that the unknown parameters of the plant can be
estimated for some input signal.

The most common notion of (in)distinguishability [11],
[14] states that two systems are indistinguishable only if
there are neither initial conditions nor exogenous inputs
that can generate different outputs for the systems. This
definition, however, may not be enough in applications where
the distinguishability of the systems must be guaranteed from
a worst-case perspective.

Therefore, this paper introduces a novel definition of sys-
tem distinguishability, referred to as absolute distinguisha-
bility, as detailed in the sequel. We also provide necessary
and sufficient conditions for the absolute distinguishability
of two dynamic LTI systems under different scenarios, and
show how to design observers that can be used to distinguish
among dynamic systems. These observers are used for model
falsification, i.e., to (in)validate models of the system, based
upon the input/output data. Although this can be achieved
by using methods such as in [18], [19], the solution adopted
herein provides an iterative algorithm to solve the problem
of model falsification, which is suitable for run time appli-
cations like multiple model adaptive control.

The remainder of this paper is organized as follows: in
Section II, the notation and some of the basic concepts used
throughout the paper are introduced; in Section III, a series
of properties is derived for absolutely distinguishable LTI
systems; Section IV is devoted to the introduction of the
set-valued observers, used for system distinguishability; the
applicability of the distinguishability theory is illustrated in a
series of examples, in Section V; finally, in Section VI, some
conclusions regarding the results obtained are highlighted.

II. PRELIMINARIES AND NOTATION

In this paper, we are going to start by considering the broad
class of discrete time-varying dynamic systems described by

y(k) = Fk (x0, φ0, φ1, φ2, · · · , φk, p) , (1)

where Fk : Rn ×
k+1 times︷ ︸︸ ︷

Φ× · · · × Φ×Ω → Rny , φi ∈ Wd ×
U =: Φ ⊆ Rnu+nd for i = 0, 1, · · · , k, and p ∈ Ω ⊆ Rnp

is a vector of parameters. The sequence (φ0, φ1, · · · , φk),
where φi = [dT

i , u
T
i ]T, denotes the exogenous disturbances,

di ∈ Wd ⊆ Rnd , and control input signals, ui ∈ U ⊆ Rnu ,
at time instant i, and y(k) is the output of the system at time
k. The initial state is represented by x(0) ∈ X(0) ⊆ Rn.

The notion of distinguishability in [11], [14] states that
two realizations of Fk, parametrized by the pair of parameter
vectors (pA, pB), are indistinguishable in N sampling times
only if there are neither initial conditions nor exogenous
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inputs that can generate different outputs for the systems
parametrized by pA and pB . Hence, this definition is not
useful in some applications, namely to provide guarantees
that, regardless the input signals, the pair of parameter values
is distinguishable.

Thus, a new definition of distinguishability, referred to
U -input distinguishability, was presented in [7]. Consider
the dynamic systems SA and SB , which correspond to
realizations of (1), for p = pA and p = pB and with
outputs at sampling time k denoted by yA(k) and yB(k),
respectively. The definition in [7] states that, unless all
the initial conditions and inputs are zero, if two systems
are U -input distinguishable in N sampling times, then the
corresponding outputs must be different at some time instant
k smaller than or equal to N . This guarantees that we
can distinguish two such systems in, at most, N sampling
times, just by measuring the outputs. Nevertheless, exoge-
nous disturbances, d(k) ∈ Wd, and measurement noise,
n(k) ∈ Wn, are not taken into account in this definition
of distinguishability.

Therefore, this motivated the introduction of the following
definitions, which are going to be used extensively through-
out this article:

Definition 1: Systems SA and SB are said to be absolutely
distinguishable in N measurements if, for any non-zero(

xAo , x
B
o , d

A
0,N−1, d

B
0,N−1, n

A
0,N , n

B
0,N , u0,N−1,

)
∈

R2n × R2Nnd × R2(N+1)nn × R2Nnu ,

there exists a k ∈ {0, 1, · · · , N} such that

yA(k) 6= yB(k).

Moreover, two systems are said to be absolutely distinguish-
able if there exists N ≥ 0 such that they are absolutely
distinguishable in N measurements. �

In the definition, we used the short-hand notation v0,N to
denote a concatenation of a sequence of vectors

v0,N := [vT
o , · · · , vT

N ]T.

Definition 2: Systems SA and SB are said to be absolutely
(Xo, U,W )-input distinguishable in N measurements if, for
any non-zero(

xAo , x
B
o , d

A
0,N−1, d

B
0,N−1, n

A
0,N , n

B
0,N , u0,N−1,

)
∈

X2
o ×W 2N

d ×W 2(N+1)
n × UN

where W := Wn×Wd, there exists k ∈ {0, 1, · · · , N} such
that

yA(k) 6= yB(k).

Moreover, two systems are said to be absolutely (Xo, U,W )-
input distinguishable if there exists N ≥ 0 such that
they are absolutely (Xo, U,W )-input distinguishable in N
measurements. �

These two definitions are important when we want to
guarantee that, regardless of the input signals, two systems
can be distinguished in a given number of iterations. This
fact is going to be further stressed in the sequel.

Due to space limitations, the proofs of the results presented
in this paper are omitted. A 7-pages version of this paper,
with the complete set of proofs, is available at www.arxiv.org.

III. ABSOLUTE INPUT-DISTINGUISHABILITY OF LTI
SYSTEMS

In this section, we are going to specialize the concept
of absolute input-distinguishability for linear time-invariant
(LTI) models and discuss some of the properties of this a
class of dynamic systems.

Let Si be a discrete LTI dynamic system described by{
xi(k + 1) = Aixi(k) +Biui(k) + Lidi(k),

yi(k) = Cixi(k) +Nini(k),
(2)

where xi(0) = xi0, xi(k) ∈ Rn, ui(k) ∈ U ⊆ Rnu , di(k) ∈
Wd ⊆ Rnd , yi(k) ∈ Rny and ni(k) ∈Wn ⊆ Rnn .

Notice that, according to Definition II, two systems are
absolutely (X0, U,W )-input distinguishable in N sampling
times if, for all the input signals in U , the corresponding
outputs are different at least at some time instant k ≤ N . This
is obviously a stronger constraint than simply saying that the
two systems are distinguishable whenever the corresponding
outputs are different for a particular input sequence, as in
[11], [14].

Remark 1: In the remainder of this paper, we are going to
use the terms distinguishable and absolutely distinguishable
interchangeably. �

For the sake of simplicity, let us consider, for the time
being, that U = Rnu , Wd = Rnd and Wn = Rnn . The
following theorem can be used to test whether or not two
systems are distinguishable (in the sense of Definition II).

Theorem 1: Let

MN =


CA −CB

CAAA −CBAB

CAA
2
A −CBA

2
B

...
...

CAA
N
A −CBA

N
B

Q̄ R̄ J̄

 ,
where

Q̄ = diag(Q,Q, · · · , Q), Q =
[
NA −NB

]
,

R̄ =


0 0 · · · 0
R1

1 0 · · · 0
R2

1 R2
2 · · · 0

...
...

. . .
...

RN
1 RN

2 · · · RN
N

 , J̄ =


0 0 · · · 0
J1
1 0 · · · 0
J2
1 J2

2 · · · 0
...

...
. . .

...
JN
1 JN

2 · · · JN
N

 ,
Rk

i =
[
CAA

k−i
A LA −CBA

k−i
B LB

]
,

Jk
i =

[
CAA

k−i
A BA − CBA

k−i
B BB

]
.

Systems SA and SB are absolutely distinguishable in N
sampling times if and only if there does not exist a non-zero
vector v ∈ R2n+2(N+1)nn+N(nu+2nd) such that

MNv = 0,

i.e., if and only if,

rank(MN ) = 2n+ 2(N + 1)nn +N(nu + 2nd).

The importance of this theorem is twofold: on the one
hand, it provides necessary and sufficient conditions for the
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absolute distinguishability of two systems; on the other hand,
it allows the use of set-valued observers [20] for system
distinguishability, as shown in the sequel.

As remarked in [7] for continuous-time systems, the
distinguishability of two systems implies their observability.
In fact, we are going to obtain a similar conclusion for
discrete-time systems, but using an alternative path.

Corollary 1: Let SA and SB be two absolutely distin-
guishable systems. Then, SA and SB are both observable.

Remark 2: The concept of absolute distinguishability
of two systems requires the corresponding outputs to be
different from each other, for every non-zero initial condition.
However, if a system is non-observable, then there are (non-
zero) initial conditions for the state which do not impact on
the output of the plant. �

Corollary 1 provides necessary conditions for the distin-
guishability of two discrete LTI dynamic systems. For the
sake of completeness, we recall that there are also results
in the literature providing sufficient conditions for absolute
distinguishability. For instance, the authors of [21] show
that, if J̄ has full column rank and the sets X0 and W
are compact, then the systems can be distinguished for
sufficiently large input control signals, regardless of their
direction.

IV. DISTINGUISHING SYSTEMS USING SET-VALUED
OBSERVERS

The results presented in the previous section give us neces-
sary and sufficient conditions for absolute distinguishability.
They do not provide, however, a systematic way of distin-
guishing two models, say SA and SB . In this section, we will
show how to use set-valued observers (SVOs) to (in)validate
models of systems, i.e., to distinguish among them. This
type of observers was applied to linear time-varying systems
excited by bounded-but-unknown disturbances in [20], and
were used for model falsification in [10]. At each iteration,
these observers compute the set-valued estimate of the state,
by taking into account the model of the plant and the most
recent measurements. Since, no conservatism to the solution
is added for LTI systems (see [20]) we conclude that an SVO
can be used to falsify (invalidate) a given model of the plant
using the following reasoning:
• if the set-valued estimate of the state, X(k), at iteration
k is empty, then the model of the plant is falsified, i.e.,
the input/output data invalidates the model of the plant;

• if the set-valued estimate of the state, X(k), at iteration
k is not empty, then the model of the plant is not
falsified, i.e., the input/output data is compatible with
the model of the plant.

In order to use the SVOs for model falsification, let us
pose the following assumption:

Assumption 1: The set of admissible initial states, X0,
i.e., the minimum set containing all the possible initial states
xi0 of the systems, is convex and compact. �

Under Assumption 1, the set of initial states can be
represented by

X0 = Set(MX0 ,mX0) := {x : MX0x ≤ mX0} .

Analogously, suppose that:
Assumption 2: The set of admissible exogenous distur-

bances, Wd, is convex and compact, i.e.,

Wd = Set(Md,md).

�
Assumption 3: The set of admissible measurement noise,

Wn, is convex and compact, i.e.,

Wn = Set(Mn,mn).

�
Then, we can state the following theorem, which is an

extension of Theorem 1 for convex and compact X0 and W :
Theorem 2: Suppose that Assumptions 1–3 are satisfied.

Then, systems SA and SB are absolutely (X0,Rnu ,W )-
input distinguishable if and only if

∀
v ∈ G

v 6= 0⇒


MN

−MN

M̃X0

M̃W

 v 6≤
 0

0
m̃X0

mW

 , (3)

where

M̃X0 =
[
diag(MX0

,MX0
) 0 0 0

]
, m̃X0 =

[
mX0

mX0

]
,

M̃W =

[
0 diag(Mn, · · · ,Mn) 0 0
0 0 diag(Md, · · · ,Md) 0

]
,

mW =
[
mT

n · · · mT
n mT

d · · · mT
d

]T
,

and G = R2n × R2nn(N+1) × R2ndN × RnuN .
Although Theorem 2 provides necessary and sufficient

conditions for distinguishability of systems with polytopic
constraints on the disturbances and initial states, the con-
dition in (3) is seldom satisfied in practice. Therefore, we
add the following constraint on the disturbances intensity,
which can be interpreted as a persistence of excitation, like
condition

1

N

N∑
k=1

‖d(k)‖2 ≥ γ. (4)

Such a condition can be easily merged with (3), as explained
in the sequel.

We start by introducing the Fourier-Motzkin elimination
method, described in [22]. This method can be used to
project polyhedral convex sets on to subspaces. Indeed, we
are interested in projecting a polytope described by {x ∈
Rnx : Ax ≤ b} on to Rñx , where ñx < nx.

Let
(ALFM, bLFM) := LFM(A, b, n),

and
(ARFM, bRFM) := RFM(A, b, n),

where LFM and RFM stand for the left- and right-Fourier
Motzkin elimination methods, n = nx − ñx > 0, and where
ALFM, bLFM, ARFM and bRFM, satisfy, for all x̃ ∈ Rñx ,

ALFMx̃ ≤ bLFM ⇔ ∃x∈Rn : A

[
x
x̃

]
≤ b,
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and
ARFMx̃ ≤ bRFM ⇔ ∃x∈Rn : A

[
x̃
x

]
≤ b.

At this point, we can state the following theorem:
Theorem 3: Suppose that Assumptions 1–3 are satisfied

and let

(AN , bN ) = RFM

LFM



MN

−MN

M̃Xo

M̃W

 ,
 0

0
m̃Xo

mW

 , 2n
 , nu

 .

Further define

PA =
1

N
diag(0nn

, · · · , 0nn
, P̄ , 0nd

, · · · , P̄ , 0nd
),

and

PB =
1

N
diag(0nn

, · · · , 0nn
, 0nd

, P̄ , · · · , 0nd
, P̄ ),

and let γmin ≥ 0 be such that

γmin ≥ max
ANx≤bN

xTPAx and γmin ≥ max
ANx≤bN

xTPBx.

(5)
Then, the systems SA and SB are (Xo,Rnu ,W )-input dis-
tinguishable in N measurements if

1

N

N∑
k=0

‖P̄ dA(k)‖2 > γmin and
1

N

N∑
k=0

‖P̄ dB(k)‖2 > γmin.

(6)

Remark 3: Notice that 5 can be interpreted as a concave
quadratic programming problem, which can be solved, for
instance, by testing the solution at the vertices of the polytope
S = {x : Ax ≤ b} (cf. [23]). �

Remark 4: The Fourier-Motzkin elimination method re-
moves the dependence of the distinguishability of systems
SA and SB on the initial state and control inputs. Hence, it
reduces the number of variables in the optimization proce-
dure. �

The constraint in (4) can be replaced by a similar condition
on the intensity of the output, y(.). To see this, we rewrite
the output sequence as

y(k) = Cx(k) +Nn(k), k = 0, 1, · · · , N

=
[
C N

] [x(k)
n(k)

]
, k = 0, 1, · · · , N

= C̄x̄(k), k = 0, 1, · · · , N,
where

x(1) = Ax(0) +Bu(0) + Ld(0),
...

x(N) = ANx(0) +AN−1Bu(0)+
+AN−1Ld(0) + · · ·+
+Bu(N − 1) + Ld(N − 1).

Hence,
x̄(0) = ĪvN ,
x̄(1) = Ā(0)vN ,

...
x̄(N) = Ā(N − 1)vN ,

where

vT
N = [xT(0), nT(0), · · · , nT(N), dT(0), · · · , dT(N − 1),

uT(0), · · · uT(N − 1)]T

and

Ī =
[

I 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0
0 I 0 · · · 0 0 0 · · · 0 0 0 · · · 0

]
,

Ā(0) =

[
A 0 0 · · · 0 L 0 · · · 0
0 0 I · · · 0 0 0 · · · 0

· · ·

· · · B 0 · · · 0
0 0 · · · 0

]
,

Ā(N − 1) =

[
AN 0 · · · 0
0 0 · · · I

AN−1L · · · L
0 · · · 0

· · ·

· · · AN−1B · · · B
0 · · · 0

]
.

Then, we have that

θ := 1
N

N∑
k=0

‖y(k)‖2

= 1
N

[
x̄T(0)C̄TC̄x̄(0) + x̄T(1)C̄TC̄x̄(1)+

+ · · ·+ x̄T(N)C̄TC̄x̄(N)
]

= 1
N (vN )T

(
ṼN

)T
C(N)ṼNvn

where

ṼN =


Ī

Ā(0)
Ā(1)

...
Ā(N − 1)

 ,
and

C(N) = diag(C̄TC̄, · · · , C̄TC̄).

Therefore, we are now in conditions of stating the follow-
ing theorem:

Theorem 4: Define P̃B = 1
N C̃

N
B , and let θmin ≥ 0 be

such that
θmin ≥ max

ÃNx≤b̃N
xTP̃Bx, (7)

where

(ÃN , b̃N ) = RFM

LFM



[
MN

A −MN
B

][
−MN

A MN
B

]
M∗X0

M∗W

 ,
 0

0
m̃X0

mW

 , n+ (N + 1)nn +N(nd + nu)

 , N(nd + nu)

 ,

C̃N
B =

(
Ṽ N
B

)T


C̄T

BC̄B 0 · · · 0
0 C̄T

BC̄B · · · 0
...

...
. . .

...
0 0 · · · C̄T

BC̄B

 Ṽ N
B ,
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Ṽ N
B =


Ī
Ā0

B

Ā1
B
...

ĀN−1
B

 ,

M∗Xo
=

[
MXo

0 0 0 0 0 0 0
0 0 0 0 MXo

0 0 0

]
,

M∗W =

 0 Dn 0 0 0 0 0 0
0 0 0 0 0 Dn 0 0
0 0 Dd 0 0 0 0 0
0 0 0 0 0 0 Dd 0

 ,

Dn = diag(Mn, · · · ,Mn), Dd = diag(Md, · · · ,Md),

and, for i ∈ {A,B},

MN
i =


Ci

CiAi

...
CiA

N
i

diag(Ni) L̃N
i B̃N

i

 ,

L̃N
i =


0 0 · · · 0

CiLi 0 · · · 0
CiAiLi CiLi · · · 0

...
...

. . .
...

CiA
N−1
i Li CiA

N−2
i Li · · · CiLi

 ,

B̃N
i =


0 0 · · · 0

CiBi 0 · · · 0
CiAiBi CiBi · · · 0

...
...

. . .
...

CiA
N−1
i Bi CiA

N−2
i Bi · · · CiBi

 .
If an SVO is designed for system SA (denoted SVOA) and
the true plant is SB , then SVOA is able to invalidate model
SA in less than N iterations if

1

N

N∑
k=1

‖y(k)‖2 > θmin. (8)

V. EXAMPLES

In this section, we illustrate the concepts introduced in this
paper with a couple of examples.

A. Example I

Consider the LTI discrete-time systems described by

SA


x(k + 1) =

[
0.1 1
0 0.2

]
x(k) +

[
1
1

]
d(k),

y(k) =

[
1 0
0 1

]
x(k) + n(k),

SB


x(k + 1) =

[
0.1 1
0 0.2

]
x(k) +

[
1
1

]
d(k),

y(k) =

[
1 0
0 0.6

]
x(k) + n(k),

(9)

where |d| ≤ 1 and |n| ≤ 0.001. Notice that system SB can
be seen as system SA with a sensor failure.

Suppose we design an SVO for system SA (denoted
SVOA), and that |x(0)| ≤ 1. Further suppose that we
simulate SVOA with the outputs coming from SB . Then,
we might want to ask: What is the minimum intensity of
the disturbances such that the SVO falsifies model SA, with
probability 1? The answer to this question can be obtained
using Theorem 3 and is illustrated in Fig. 1. Notice that in
this case we only considered the disturbances intensity, while
no assumptions have been posed regarding the intensity of
the measurement noise.

1 2 3 4 5 6 7 8
0.1

0.15

0.2

0.25

0.3

0.35

0.4

Number of iterations (N)

γ m
in

Fig. 1. Minimum disturbances intensity that guarantee the distinguishability
between systems SA and SB in Example I.

Indeed, let us consider that we simulate system SB with
SVOA. The results for 1000 Monte-Carlo runs are summa-
rized in Table I. The green cells represent the combinations
of γmin and N such that the falsification of system SA

are guaranteed. Despite the fact that, in most of the cases
analyzed in Table I, system SA is falsified in more than
90% of the simulation runs, there are, however, worst-case
disturbances that can help concealing the differences between
the two systems, and thus it may happen that SVOA does not
falsify SA. Hence, although such disturbances may have a
small probability of occurrence, they cannot be disregarded
in worst-case approaches, such as the one presented herein.

TABLE I
PERCENTAGE OF SIMULATION RUNS THAT FALSIFIED SYSTEM SA IN

EXAMPLE I.

Number of iterations (N)
γmin 1 2 3 4 5 6

0.0001 3.7 30 51.4 66.9 76.8 82.9
0.0005 78.2 95.2 99 99.6 99.9 100
0.001 97.9 99.9 99.9 100 100 100
0.01 100 100 100 100 100 100
0.1 100 100 100 100 100 100
0.2 100 100 100 100 100 100
0.5 100 100 100 100 100 100

B. Example II
In this second example we consider a harder distinguisha-

bility problem. Indeed, let us define SA and SB as in
Example I, but with the second element of the diagonal of
the C matrix of system SB being 0.9, rather than 0.6. In
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comparison with Example I, the C matrix of systems SA and
SB are much similar. In fact, while Example I can illustrate a
sensor loss-of-effectiveness of 40%, Example II can represent
a sensor loss-of-effectiveness of only 10%. Repeating the
design procedures as in Example I, we obtain the minimum
intensity of the disturbances, depicted in Fig. 2, such that the
SVO falsifies model SA, with probability 1.

1 2 3 4 5 6 7 8 9
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Number of iterations (N)

γ m
in

 

 
Example I
Example II

Fig. 2. Minimum disturbances intensity that guarantee the distinguishability
between systems SA and SB in Examples I and II. The results from
Example I are also shown for comparison purposes.

As expected, for the same intensity of the disturbances,
we require a higher number of iterations to guarantee the
distinguishability between the two systems, when compared
to Example I. Alternatively, for the same number of itera-
tions, we require a higher intensity of the disturbances to
guarantee the distinguishability.

These results are further sustained by the Monte-Carlo
simulations, summarized in Table II.

TABLE II
PERCENTAGE OF SIMULATION RUNS THAT FALSIFIED SYSTEM SA IN

EXAMPLE II.

Number of iterations (N)
γmin 1 2 3 4 5 6

0.0001 0 0 0 0 0 0
0.0005 0 0 0.9 2.3 4.4 6.2
0.001 0 6.5 19.8 32.3 42.9 50.8
0.01 84.1 96.8 99 100 100 100
0.1 100 100 100 100 100 100
0.2 100 100 100 100 100 100
0.5 100 100 100 100 100 100

VI. CONCLUSIONS

In this paper, we introduced the concept of absolutely
distinguishable discrete dynamic systems, highlighting its
applicability to linear time-invariant (LTI) models. We further
demonstrated that, in general, a persistence of excitation
condition is required on the exogenous disturbances. It turned
out that this condition can be written as a lower bound on
the intensity of the perturbations. Necessary and sufficient
conditions for the distinguishability of two systems were
derived, showing that, under mild assumptions, set-valued
observers are adequate for model falsification of LTI systems.
The theory was illustrated with a set of examples that
demonstrate the applicability of the results presented.
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