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Abstract— A common method for constructing a function
from a finite set of moments is to solve a constrained mini-
mization problem. The idea is to find, among all functions with
the given moments, that function which minimizes a physically
motivated, strictly convex functional. In the kinetic theory of
gases, this functional is the kinetic entropy; the given moments
are macroscopic densities; and the solution to the constrained
minimization problem is used to formally derive a closed
system of partial differential equations which describe how the
macroscopic densities evolve in time. Moment equations are
useful because they simplify the kinetic, phase-space description

of a gas, and with entropy-based closures, they retain many of
the fundamental properties of kinetic transport.

Unfortunately, in many situations, macroscopic densities
can take on values for which the constrained minimization
problem does not have a solution. In this paper, we give a
geometric description of these so-called degenerate densities in
a very general setting. Our key tool is the complementary
slackness condition that is derived from a dual formulation
of a minimization problem with relaxed constraints. We show
that the set of degenerate densities is a union of convex cones
defined by the complementary slackness conditions and, under
reasonable assumptions, that this set is small in both a topo-
logical and a measure-theoretic sense. This result is important

for further assessment and implementation of entropy-based
moment closures. An expanded version of this work can be
found in [Hauck et al., SIAM J. Contr. Optim., Vol. 47, 2008,
pp. 1977-2015].

I. INTRODUCTION

In gas dynamics, the kinetic description of a gas is

often simplified by using moment equations. In this reduced

setting, a gas is characterized by a finite-dimensional vector

ρ of densities that are moments of the kinetic distribution

function F with respect to polynomials of the microscopic

velocity. Evolution equations for ρ are derived by taking

moments of the Boltzmann equation which governs the
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evolution of F . The derivation requires that an approximation

for F be reconstructed from the densities ρ, giving what is

called a closure.

One well-known method for prescribing a closure is to

find a function that minimizes the kinetic entropy subject to

the constraint that its moments agree with ρ. Such closures

are called entropy-based closures. In recent years, they have

generated substantial interest due to important structural

properties which they inherit from the Boltzmann equation.

These properties were first brought to light in [2].

In cases where the moments are continuous with respect to

the relevant topology, there is always an entropy minimizer

[3], [4]. Unfortunately, in classical gas dynamics, this is

not usually the case. As a result, there are often physi-

cally relevant densities for which the constrained entropy

minimization problem does not have a solution. In such

cases, entropy-based closures are not well-defined, and these

densities are called degenerate. In this paper, we provide a

geometric description for the set of degenerate densities in

a general setting.

This is a condensed version of work that appears in [1].

The full version contains additional details, examples, and

complete proofs.

A. Moment systems and entropy-based closures

Consider a gas that is enclosed in a container, represented

mathematically by the set Ω ⊂ Rd (typically d = 3). The

kinetic distribution function F = F (v, x, t) which describes

the kinetic state of the gas is a nonnegative function that is

defined for positions x ∈ Ω, velocities v ∈ Rd, and times

t ≥ 0 so that, for any measurable set Λ ⊂ Ω × Rd,
∫

Λ

F (v, x, t) dvdx (1)

gives the number of particles at time t with positions x and

velocities v such that (v, x) ∈ Λ. The evolution of F is

governed by the Boltzmann transport equation

∂tF + v · ∇xF = C(F ) , (2)

where C is an integral operator that describes the collisions

between particles which drive the system to local thermal

equilibrium.

Solutions of (2) formally satisfy the local balance law [5]

∂tH(F ) + ∇x · J (F ) = S(F ) , (3)

where the functionals

H(g) ≡ 〈g log(g)−g〉 and J (g) ≡ 〈v(g log(g)−g)〉 (4)
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are the kinetic entropy and kinetic entropy flux, respectively,

and

S(g) ≡ 〈log(g)C(g)〉 (5)

is the kinetic entropy dissipation. Here and throughout this

paper, 〈·〉 denotes Lebesgue integration over all v ∈ Rd, and

we assume that all such integrals are well-defined. According

to Boltzmann’s “H-theorem” [5], S(g) ≤ 0, with equality if

and only if C(g) = 0. In this case, g is said to be in a

state of local thermal equilibrium, and it takes the form of a

Maxwellian distribution

Mρ,u,θ(v) ≡
ρ

(2πθ)
d/2

exp

(

−
|v − u|2

2θ

)

, (6)

where ρ and θ are positive scalars and u ∈ Rd. In this way,

H acts as a Lyapunov functional for (2).

In order to reduce computational cost, the kinetic descrip-

tion of a gas provided by F is often simplified by retaining

only a finite number of its velocity averages, or moments.

Equations which govern the evolution of these moments are

derived by integrating (2) with respect to a vector

m = (m0, . . . ,mn−1)
T (7)

whose components are (typically) homogeneous polynomials

in v. These equations take the form

∂tρ + ∇x · 〈vmF 〉 = 〈mC(F )〉, (8)

where the moments

ρ = ρ(x, t) ≡ 〈mF 〉 (9)

are the spatial densities associated with F .

In general, (8) is not a closed system because there is

no way to express the flux terms 〈vmF 〉 and collision

terms 〈mC(F )〉 in terms of ρ. Furthermore, in a moment

description, an exact expression for F is not available. An

alternative is to approximate F by an ansatz of the form

F [ρ] = F(v,ρ(x, t)). (10)

By substituting F for F in (8), the evolution of ρ can be

approximated by the closed system of balance laws

∂tρ + ∇x · f(ρ) = c(ρ), (11)

where the flux term f and collision term c are given by

f(ρ) = 〈vmF [ρ]〉 and c(ρ) = 〈mC(F [ρ])〉. (12)

One way to specify F is to invoke the principle of entropy

minimization (or maximization in the physics community,

where the term “entropy” refers to −H and has been widely

used for over a century). The probabilistic interpretation of

entropy dates back to Boltzmann [6], [7], who argued that

the entropy of a system of identical particles depends on the

number of microstates (particle arrangements in phase space)

that are consistent with the macroscopic state of the system.

This dependence is expressed by the famous logarithmic

relationship known as Boltzmann’s entropy formula [8] (and

also as Boltzmann’s equation, although distinct from (2)) and

was first presented in its popular form by Planck [9], [10].

The practical application of entropy as a tool for statistical

inference was championed by Jaynes although, in [11],

Jaynes himself attributes the original mathematical concepts

to Gibbs, who generalized Boltzmann’s entropy formula [12].

Jaynes also credits Shannon [13] for illuminating the central

role that entropy plays in the theory of information. The

relationship between statistics and information theory was

further pursued by Kullback [14]. Many of the first rigorous

results concerning entropy minimization can be found in the

work of Csiszar [15] and references therein.

Closures which are based on the entropy minimization

principle use the ansatz

F [ρ] = arg min
g∈Fm

{H(g) : 〈mg〉 = ρ} (13)

at each x and t to formally close (8). Here

Fm ≡
{

g ∈ L1(Rd) : g 	 0 and |mg| ∈ L1(Rd)
}

, (14)

and | · | is the standard Euclidean norm. The vector m is not

arbitrary; it must form a basis for an admissible polynomials

space M that satisfies certain physically motivated properties

[2].

If the minimizer in (13) exists, it is unique and the closure

is well-defined. In such cases, (11) is a hyperbolic system of

PDEs whose solutions satisfy the local dissipation law

∂th(ρ) + ∇x · j(ρ) = s(ρ), (15)

where

h(ρ) ≡ H(F [ρ]) (16)

is a strictly convex function of ρ and where

j(ρ) ≡ J (F [ρ]) , s(ρ) ≡ S(F [ρ]) ≤ 0. (17)

Although any choice for the ansatz F [ρ] will yield a

system of the form (11), it is the entropy ansatz that

gives (15). This dissipation law implies the existence of a

well-posed linear L2 (Hilbert space) theory for (11) [16].

Furthermore, h acts as a Lyapunov function for (11). To see

this, note that (15) is simply (3) evaluated at F = F [ρ]; and

like in Boltzmann’s H-theorem, s(ρ) vanishes if and only

if C(F [ρ]) = 0, in which case F [ρ] takes the form of a

Maxwellian distribution [2].

The entropy minimization procedure yields an entire hier-

archy of systems with the aforementioned properties whose

members are generated by appending an initial choice of

m with additional polynomial components. For this reason,

entropy-based closures have been applied to other areas of

kinetic theory such as radiation transport [17], [18] and

charge transport in semiconductors [19]–[21]. (Additional

references for charge transport can be found in [19].) In the

case of gas dynamics, the moment hierarchy begins with

the canonical choice m = (1, v1, . . . , vd,
1
2 |v|

2)T . For this

choice, F [ρ] is always a Maxwellian, and the entropy-based

closure generates Euler’s equations for a compressible gas.
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B. Realizability and degenerate densities

The formal structure of entropy-based closures hinges on

the assumption that for each ρ in the class of realizable

densities

Rm ≡ {ρ ∈ Rn : ρ = 〈mg〉, g ∈ Fm} , (18)

there is a minimizer for (13). However, for most choices

of m, there exist realizable values of ρ for which such a

minimizer does not exist. For these densities, which we term

degenerate, the entropy-based closure is not well-defined and

modifications must be made to the entropy-based procedure.

There are essentially two approaches:

1) Show that the set of nondegenerate densities is invari-

ant under the dynamics of the balance law (11) with the

entropy-based closure (as discussed in [22]) or impose

such a condition in a way that is physically reasonable

and mathematically justifiable.

2) Develop a modified closure that (i) is well-posed for

all physically realizable values of ρ, (ii) recovers the

entropy-based closure whenever the minimizer in (13)

exists, and (iii) generates systems of hyperbolic PDEs

that dissipate a physically meaningful, convex entropy.

This was attempted in [23].

For either approach, it is important to show that the set

Dm of degenerate densities is small in some sense, thereby

minimizing the class of physically realizable spatial densities

which require special treatment. In the first approach, this

means limiting the number of initial conditions which must

be discarded; in the second, it means limiting the number of

densities in Rm which require a modified closure.

Another reason to study Dm is that the equilibrium

densities, which are moments of a Maxwellian distribution

(6), lie on its boundary [2], [4], [22], [23]. Because the

kinetic entropy drives solutions of (3) toward local thermal

equilibrium, trajectories defined by solutions to (15) will, at

times, come very close to Dm. Thus it is very important to

have a detailed understanding of its geometry.

C. Previous work

Previous studies of the set Dm can be found in [4],

[22], [23]. In [22], Junk provides a geometric description

for Dm in a one-dimensional setting (d = 1) with m =
(1, v, v2, v3, v4)T . In turns out in this case that Dm is a

codimension one manifold. This result was discovered, in

part, by extending the definition of h given by (17) to include

cases where the minimizer in (13) does not exist. This is done

by replacing the minimum in (13) with an infimum, viz.,

hJ(ρ) ≡ inf
g∈Fm

{H(g) : 〈mg〉 = ρ} . (19)

Later, in [4], Junk considers a more general case in

which m consists of a radial component |v|N , for some

even integer N ≥ 2, plus polynomial components of lower

degree. For such cases, he provides an integrability condition

to determine whether Dm is nonempty. In practice, this

condition is easily checked and extensible to more general

choices of m. However, a description of the geometry of

Dm, as given in [22], is still lacking for the general setting.

In [23], Schneider introduces a different extension for h by

relaxing the constraints in (13). In order to state this problem

precisely, we decompose m into subvectors:

m = (mT
0 ,m

T
1 ,m

T
2 , . . . ,m

T
N )T , (20)

where the nj components of mj are the homogeneous, jth
degree polynomial components of m. Thus any polynomial

p ∈ M can be expressed as the sum of its homogeneous

components:

p = α
T
m =

N
∑

j=1

α
T
j mj, (21)

where α ∈ Rn is a vector of constant coefficients that

decomposes into subvectors

α =
(

α
T
0 ,α

T
1 ,α

T
2 , . . . ,α

T
N

)T
. (22)

With the preceding notation, the relaxed constraint problem

is

hS(ρ) ≡ min
g∈Fm

{H(g) : 〈mg〉 �◦
ρ} , (23)

where the relation 〈mg〉 �◦
ρ means that

〈mjg〉 = ρj , 0 ≤ j ≤ N − 1 , (24)

and

α
T
N 〈mNg〉 ≤ α

T
NρN whenever α

T
NmN ≥ 0. (25)

The benefit of using the relaxed constraint set in (23) is

that it is closed in the weak-L1(Rd) topology, and as a result,

the minimizer in (23) always exists. While a minimizing

sequence for H in the constraint set for (13) does converge

weakly in L1(Rd), the constraint set is not closed with

respect to this topology. Thus the infimum might not be

attained.

D. Overview of Main Results

Our main contribution is a geometrical description of the

set Dm in a general setting, based on a dual formulation of

(23). Our results, which recover and extend many previous

results from [4], [22], [23] are summarized in the following

theorems.

• In Theorem 4, we prove strong duality for both the

equality constraint problem (19) and the relaxed con-

straint problem (23). We conclude that hS = hJ, even

when the infimum in (23) is not attained. We also prove

a complementary slackness condition for (23) which

serves as the basis of our geometrical description.

• In Theorem 7, we show that the set Dm is a union

of convex cones that are defined by complementary

slackness condition from Theorem 4.

• In Theorem 9, we show that, under reasonable assump-

tions, the set Dm is a nowhere dense subset of Rm

that has Lebesgue measure zero and is restricted to

the boundary of the nondegenerate, realizable densities.

The assumptions we employ hold in all known cases.

Whether they hold in general is (to our knowledge) an

open question in analysis and algebraic geometry.
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II. ENTROPY MINIMIZATION WITH RELAXED

CONSTRAINTS

The main result from [23] for the relaxed constraint

problem is the following.

Theorem 1 (Schneider [23]): For any ρ ∈ Rm, there is a

unique minimizer for (23) of the form Gα, where

Gα ≡ exp(αT
m) (26)

and

α ∈ Am ≡ {α ∈ Rn : Gα ∈ Fm} . (27)

Conversely,

H(Gα) = min
g∈Fm

{H(g) : 〈mg〉 �◦ 〈mGα〉}

= min
g∈Fm

{H(g) : 〈mg〉 = 〈mGα〉} , (28)

for each α ∈ Am.

We define a : Rm → Am as the mapping which assigns to

ρ ∈ Rm the vector α ∈ Am such that Gα solves (23)—that

is,

Ga(ρ) ≡ arg min
g∈Fm

{H(g) : 〈mg〉 �◦
ρ} . (29)

We define r : Am → Rn as the mapping which generates

the moments of Gα:

r(α) ≡ 〈mGα〉. (30)

The image of Am under r is the set of exponentially

realizable densities:

Rexp
m

≡ r(Am) ⊂ Rm . (31)

The following theorem relates r and a.

Theorem 2: The mapping r is one-to-one from Am onto

Rexp
m

with inverse a. It is a diffeomorphism between intAm

and intRexp
m

.

Proof: We first identify a as the inverse of r. Since

r is onto Rexp
m

, we need only to show that a(r(α)) = α

for each α ∈ Am. According to Theorem 1 and the implicit

definition of a in (29)

H(Gα) = min
g∈Fm

{H(g) : 〈mg〉 �◦
r(α)} = H(Ga(r(α)))

(32)

and, since the minimizer is unique, it follows that a(r(α)) =
α. On intAm r is smooth with Jacobian

∂r

∂α
(α) =

∂2h∗

∂α2
(α,ρ) = 〈mm

TGα〉 (33)

that is a positive-definite matrix. The inverse function the-

orem implies then that r is a diffeomorphism from intAm

onto intRexp
m

.

III. DUAL FORMULATION

Because H is convex on Fm and the constraints in (23)

are linear, a dual treatment to the relaxed-constraint problem,

e.g., [24]–[26] is appropriate.

A. The dual function

The Lagrangian function L : Fm×Rn×Rm → R∪{∞}
associated to (23) is

L (g,α,ρ) ≡ H(g) + α
T (ρ − 〈mg〉) (34)

and the dual function ψ : Rn ×Rm → R ∪ {−∞} is

ψ(α,ρ) ≡ inf
g∈Fm

L (g,α,ρ) . (35)

Theorem 3: For all α ∈ Am and ρ ∈ Rm, the dual

function is

ψ(α,ρ) = L (Gα,α,ρ) = α
T
ρ − 〈Gα〉. (36)

B. Duality theorems

The following strong duality theorem is an application of

a general result from [24, Exercise 8.7] and can be proven

following the arguments found in [24, Chapter 8].

Theorem 4: Let ρ ∈ Rm, and let hJ, hS, and ψ be given

by (19), (23), and (35), respectively. Then

hJ(ρ) = hS(ρ) = max
α∈Am

ψ(α,ρ), (37)

where the maximum on the right is attained by a unique

α̂ ∈ Am. Furthermore,Gα̂ and α̂ satisfy the complementary

slackness condition

α̂
T
ρ = α̂

T 〈mGα̂〉, (38)

and Gα̂ minimizes L (g, α̂,ρ) over Fm, i.e., ψ(α̂,ρ) =
L(Gα̂, α̂,ρ).

In light of (37), the definition of h given in (16), which

applies only to ρ ∈ Rexp
m

, can be extended to all of Rm by

setting

h(ρ) ≡ max
α∈Am

ψ(α,ρ). (39)

Theorem 4 is used to prove the following result.

Theorem 5: Given ρ ∈ Rm, the minimization problem

with equality constraints (13) has a minimizer if and only if

ρ ∈ Rexp
m

. In other words,

Dm = Rm\Rexp
m
. (40)

Proof: The converse statement of Theorem 1 implies

the “if” statement of Theorem 5. To prove the “only if”

statement, let ρ ∈ Rm be such that (13) has a minimizer.

According to (37), this minimizer is also the minimizer of

(23) and is therefore given by Ga(ρ). Hence, the equality

constraint conditions in (13) imply that ρ = 〈mGa(ρ)〉,
which means ρ ∈ Rexp

m
.

The essential point of Theorem 5 is that when Dm is

nonempty, there are realizable densities ρ that cannot be

realized by a functions of the form Gα. In other words,

ρ /∈ Rexp
m

even though a(ρ) ∈ Am. It is this idea which

lays the foundation for the results in [4], [22] and for

the new results of this paper. However, we still need the

complementary slackness condition in order to find a useful

geometric description for Dm.
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IV. GEOMETRY OF Dm

The complementary slackness condition (38) which relates

α̂N and ρN is the key to characterizing Dm. Indeed, this

condition is used to define the convex cones from which Dm

is composed.

A. Motivation: Behavior of the closure near degeneracy

Even though Dm is usually nonempty, there is evidence

to suggest that if ρ ∈ Rexp
m

initially, then densities in Dm

might never be attained during the evolution of the moment

system (8). To investigate this possibility, we introduce the

function χ : Rm → R, defined by

χ(ρ) ≡

∫

Rd

|vm(v)|Ga(ρ)(v) dv. (41)

For the entropy-based closure, χ is closely related to the flux

f in (12), and we show below that χ becomes unbounded

as ρ approaches Dm. As pointed out in [22], such divergent

behavior raises the possibility that Rexp
m

is invariant under

the dynamics of the closure.

Proposition 6: Let {ρ(j)}
∞
j=1 be a sequence in Rexp

m
such

that ρ(j) → ρ∗ ∈ Dm, and for each j, let χj ≡ χ(ρ(j)).
Then {χj}∞j=1 is unbounded.

Suppose now that it can be proven that Rexp
m

is invariant

under the dynamics of the balance law (11) with the entropy-

based closure. Then if ρ ∈ Rexp
m

initially, the entropy

minimization problem with equality constraints (13) will

always have a solution, and the formal properties of the

closure will be maintained. However, it must be shown—

at a minimum—that Dm is small in some sense, thereby

limiting the number of initial conditions in Rm which must

be discarded in order to maintain a well-defined closure. In

the following subsections, we show that, under reasonable

hypotheses, Dm is indeed a Lebesgue measure zero set.

B. The complementary slackness condition and normal

cones

Because ρj = 〈mjGα̂〉 for j < N , the only nontrivial

part of the complementary slackness condition (38) is

α̂
T
NρN = α̂

T
N 〈mNGα̂〉. (42)

This condition and the inequality constraint (25) from the

primal problem imply that

(αN − α̂N )T (ρN − 〈mNGα̂〉) ≤ 0 (43)

for all α in the cone

AmN
≡ {αN ∈ RnN : α

T
NmN ≤ 0} . (44)

Thus ρN is contained in NC(AmN
, α̂N ): the normal cone

[26] of AmN
with respect to α̂N and with vertex 〈mNGα̂〉.

The converse statement is also true: Given α ∈ Am, every

element ρN of the normal cone 〈mNGα〉+NC(AmN
,αN )

is the N -th subvector of a density in Rm. To state this more

precisely, let aN (ρ) be the N -th subvector of a(ρ), and for

any y ∈ Rn and z ∈ Rn
N let

y +
N
z = (yT

0 , y
T
1 , . . . , y

T
N−1, y

T
N + zT

N )T . (45)

Theorem 7: The set Rm can be expressed as the following

union of cones:

Rm =
⋃

ρ̄∈R
exp

m

{ρ̄ +
N
NC(AmN

,aN (ρ̄))} , (46)

where the relation ‘+
N

’ is defined in (45).

For ρ̄ ∈ intRexp
m

, NC(AmN
,aN (ρ̄)) is just the origin in

RnN . In such cases, Theorem 7 is trivial, and the construction

ρ̄ +
N
NC(AmN

,aN (ρ̄)) does not generate any new densi-

ties. Therefore Dm is constructed entirely by normal cones

attached to ρ̄ ∈ Rexp
m

∩ ∂Rexp
m

.

Corollary 8: The degenerate densities are given by

Dm =
⋃

ρ̄∈R
exp

m
∩∂Rexp

m

{ρ̄ +
N
NC0(AmN

,aN (ρ̄))} (47)

=
⋃

ᾱ∈Am∩∂Am

{r(ᾱ) +
N
NC0(AmN

, ᾱN )} , (48)

where NC0(AmN
,aN (ρ̄)) ≡ NC(AmN

,aN (ρ̄))\{0}.

C. Smoothness assumptions on Am ∩ ∂Am

Corollary 8 gives the degenerate densities associated with

each ρ̄ ∈ Rexp
m

∩∂Rexp
m

. However, a clean description of Dm

requires also that Rexp
m

∩ ∂Rexp
m

itself have a nice structure.

In particular, we would like to say that Rexp
m

∩ ∂Rexp
m

is

a finite union of disjoint manifolds. At this point we are

unable to prove such a result in general, in part due to

the complicated structure of Am ∩ ∂Am (the preimage of

Rexp
m

∩ ∂Rexp
m

with respect to r). We therefore make two

assumptions: first, that Am ∩ ∂Am is a union of disjoint

manifolds with dimensional restrictions that are related to

the dimensions of the normal cones in (48) in such a way

as to ensure that Dm is a lower-dimensional subset of

Rm; and second, that the mapping r is diffeomorphic when

restricted to each of these manifolds. Thus each dimension k
manifold in Am ∩ ∂Am will be mapped to a dimension k
manifold in Rexp

m
∩ ∂Rexp

m
. Before stating our assumptions,

we define the orthogonal projections PN : Rn 7→ RnN and

PÑ : Rn 7→ Rn−nN by

PN(α) ≡ (0, . . . , 0, 0,αT
N )T , (49)

PÑ(α) ≡ α − PN (α) = (αT
0 ,α

T
1 , . . . ,α

T
N−1, 0)T . (50)

Assumption I. The set Am ∩ ∂Am can be decomposed

into a finite collection S of disjoint, smooth (C∞) manifolds

in Rn. Furthermore, if S is one such manifold, then PN

projects S onto a manifold SN ⊂ ∂AmN
with codimension

at least one in RnN and PÑ projects S onto a manifold SÑ

of codimension at least one in Rn−nN .

Assumption II. If Assumption I holds and if S is an

element of the stratification of Am ∩ ∂Am, then for each

ρ ∈ Rm, the restriction of r to S is infinitely Fréchet

differentiable.

When both Assumptions I and II hold, r is a smooth dif-

feomorphism with inverse a when restricted to any manifold

in the stratification of Am ∩ ∂Am. It should be noted that

Assumptions I and II are known to hold for the examples

considered in [4], [22], [23]. Whether or not they hold in

general is, to our knowledge, an open question.
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D. Smallness of Dm

If Assumptions I and II hold, we can show that Dm is

small in the following sense.

Theorem 9: Suppose that Assumptions I and II hold. Then

Dm has zero Lebesgue measure, intRexp
m

is a dense subset

of Rm, and Dm ⊂ ∂Rexp
m

.

Proof: The basic idea of the argument is that the

image of a smooth map from a lower-dimensional space to

a higher-dimensional space has zero Lebesgue measure. We

can construct such a map, whose image cover a portion of

Dm, and then cover Dm with the images from a countable

number of similar maps.

V. CONCLUSIONS AND DISCUSSION

We have given a description of the set Dm of degenerate

densities based on a geometric interpretation of the comple-

mentary slackness condition associated with the dual formu-

lation of (23). Roughly speaking, the set Dm is constructed

by attaching a convex cone to every point in the bound-

ary component ∂Rexp
m

∩Rexp
m

. This description recovers and

extends previous results concerning the constrained entropy

minimization problem.

Analytically, we see three important open questions that

must be solved. First, one must determine if Assumptions

I and II hold in a general setting. Concerning Assumption

I, this means understanding the structure of the set of poly-

nomials p for which v 7→ p(v)ep(v) is Lebesgue integrable.

For example, do the coefficients of such polynomials form a

semialgebraic set? Second, it must be determined whether the

sets Rexp
m

and Rm are invariant under the dynamics of the

balance law (11) with the entropy-based closure. (Although

not discussed in this paper, such a condition on Rm is

obviously necessary for entropy-based closures to have any

practical application.) Finally, it must be determined whether

the existence of degenerate densities and the dynamics of

(11) near such densities are simply artifacts of the entropy-

based closure or if they actually reflect some physically

relevant properties of the original Boltzmann equation (2).

Numerically speaking, a full implementation of entropy-

based closures for gas dynamics faces many challenges.

(An implementation has been attempted in [27], but the

issue of degenerate densities was not addressed.) Clearly a

discretization of (11) must preserve any invariant properties

of Rm and Rexp
m

with respect to the balance law (11).

As pointed out in [22], even if Rexp
m

is invariant under

(11), solving the dual optimization problem (34) becomes

extremely difficult for ρ near Dm because the function h∗

is very hard to evaluate. The reason for this is that, as

α approaches ∂Am, the function Gα can develop isolated

modes that are often overlooked in a numerical quadrature.

The result is a regularization effect in which accuracy is

lost. In addition, the matrix 〈mm
TGα〉 becomes poorly

conditioned near the boundary of Am. Any minimization

algorithm for (34) must be carefully formulated in order

to overcome these challenges. Furthermore, as with the

degenerate densities themselves, one must determine if these
difficulties are by-products of the closure or related in some

way to the dynamics of the Boltzmann equation.
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