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Abstract— In this paper null controllability with vanishing
energy is considered for discrete-time systems in Hilbert space.
As in the case of continuous time systems necessary and
sufficient conditions in terms of an algebraic Riccati equation
are given. Then necessary and sufficient conditions involving the
spectrum of the system operator are given. Reachability and
controllability with vanishing energy are also considered, and
necessary and sufficient conditions for them are given. Finally
applications to sampled-data systems, systems with impulse
control and periodic systems are discussed.

I. INTRODUCTION

Consider the linear system

ẋ = Ax + Bu, x(0) = x0 ∈ H, (1)

where A is the infinitesimal generator of a strongly contin-

uous semigroup S(t) in a Hilbert space H , u is a control

in some Hilbert space U and B ∈ L(U, H), the space of

bounded linear operators from U into H . For each locally

square integrable function u : [0,∞) → U define the solution

in the mild sense

x(t;x0, u) = S(t)x0 +

∫ t

0

S(t − r)Bu(r)dr, t ≥ 0.

We denote by | · | the norm of vectors and by σ(A) the

spectrum of the operator A. The following definitions are

introduced in [10].

Definition 1.1: (a) The system (1) is said to be null

controllable with vanishing energy (NCVE for short) if for

each initial x(0) = x0 there exists a sequence of pairs

(TN , uN), 0 < TN ↑ ∞, uN ∈ L2(0, TN ; U) such that

x(TN ; x0, uN) = 0 and

lim
N→∞

∫ TN

0

|uN(t)|2dt = 0. (2)

(b) The system (1) is said to be exactly controllable with van-

ishing energy (ECV E) if for any pair (x0, x1) of initial and

final states there exists a sequence of pairs (TN , uN), 0 <
TN ↑ ∞, uN ∈ L2(0, TN ; U) such that x(TN ; x0, uN) = x1

and (2) holds.

(A,B) is said to be NCVE (ECVE) if the system (1) is

NCVE (ECVE). The following theorem gives necessary and

sufficient conditions.

Theorem 1.1: (A,B) is NCVE if and only if

(a) it is null controllable on some interval [0, τ ], and
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(b) X = 0 is the unique solution of the algebraic Riccati

equation (ARE)

A∗X + XA − XBB∗X = 0

in the class of nonnegative operators.

Priola and Zabczyk [10] showed that the condition (b)

is necessary and sufficient for NCVE when (A,B) is null

controllable on some interval [0, τ ]. The necessity of (a) was

then shown by van Neerven [9].

Under the following two assumptions Priola and Zabczyk

[10] obtained more explicit necessary and sufficient condi-

tions.

Hypothesis 1. There exists a sequence {λn} ⊂ σ(A) such

that λn is isolated in σ(A) and

lim
n→∞

Re(λn) = s(A) = sup{Re(λ) : λ ∈ σ(A)}.

Hypothesis 2. There exist S(t)-invariant subspaces Hs and

Hu such that

(a) H = Hs ⊕ Hu,

(b) A on Hs is exponentially stable, and

(c) the set of all generalized eigenvectors of A contained in

Hu is linearly dense in Hu.

Theorem 1.2: Suppose that Hypotheses 1 and 2 hold.

Then (A,B) is NCVE if and only if

(a) (A,B) is null controllable on some interval [0, τ ], and

(b) Re(λ) ≤ 0 for any λ ∈ σ(A).
Theorem 1.3: Suppose that Hypotheses 1 and 2 hold.

Suppose further that S(t) is a strongly continuous group on

H . Then (A,B) is ECVE if and only if

(a) (A,B) is exactly controllable on some interval [0, τ ],
and

(b) Re(λ) = 0 for any λ ∈ σ(A).
The proof of Theorem 1.1 is based on the theory of

optimal quadratic control. For the proof of necessity of

Theorem 1.2 the relation between the Riccati equation and

the controllability gramian of the pair (−A,B) is used,

while for sufficiency the Riccati equation is directly used.

Theorem 1.3 is a consequence of Theorem 1.2 and the fact

that (−A,−B) is also NCVE.

If we fix x0 = 0 in (b) of Definition 1.1, (A,B) is said to

be reachable with vanishing energy (RVE). It is easy to see

that (A,B) is ECVE if and only if it is NCVE and RVE.

Suppose that S(t) is a strongly continuous group and let PT

be the controllability operator defined by

PT x =

∫ T

0

S(t)BB∗S∗(t)xdt.
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It is coercive (positive and boundedly invertible) for T ≥ τ ,

if (A,B) is exactly controllable on [0, τ ]. The control with

minimum norm in L2(0, T ; U) such that x(T ; 0, u) = x1 is

given by

ûT = B∗S∗(T − t)P−1
T x1

[10] and its norm by

‖ ûT ‖2= 〈x1, P
−1
T x1〉

1

2 . (3)

Lemma 1.1: (A,B) is RVE if and only if

(a) (A,B) is exactly controllable on some interval [0, τ ],
and

(b) P−1
T → 0 strongly as T → ∞.

Proof: The proof of necessity of (a) is based on the

Baire category theorem and is similar to that of Theorem

1.1, (a) given in [9]. The rest follows from (3).

In this paper we shall establish the discrete-time versions

of the theorems above. It is important in its own right but

also useful when we consider sampled-data systems with

zero-order hold, systems with impulse control and periodic

systems. In the discrete-time case the proof of necessity of

Theorem 1.2 is more involved since the Riccati equation is

more complicated for discrete-time systems. Lemma 2.4 in

Section 2 fills this gap and enables us to extend Theorem 1.2.

The extension of Theorem 1.3 requires the invertibility of A.

It is also useful to introduce reachability with vanishing en-

ergy. In Section 2 we give preliminaries concerning necessary

notions of discrete-time systems. In Section 3 we consider

necessary and sufficient conditions for NCVE and extend

Theorem 1.1 and Theorem 1.2. In Section 4 we introduce

reachability with vanishing energy and extend Theorem 1.3.

Finally in Section 5 we apply NCVE and ECVE results

to sampled-data systems, systems with impulse control and

periodic systems.

II. PRELIMINARIES

Consider the discrete-time system

x(k + 1) = Ax(k) + Bu(k), x(0) = x0, (4)

where A ∈ L(H), B ∈ L(U, H), x ∈ H and u ∈ U . We

collect basic definitions and some useful results for (4) as in

the finite dimensional case [1].

Definition 2.1: (a) (A,B) is null controllable on [0, K]
if for any x0 there is a sequence of control inputs u =
{u(0), u(1), ..., u(K − 1)} such that x(K; x0, u) = 0.

(b) (A,B) is reachable on [0, K] if for every state x1 there is

a sequence of control inputs u = {u(0), u(1), ..., u(K − 1)}
such that x(K; 0, u) = x1.

(c) (A,B) is exactly controllable on [0, K] if for every

pair (x0, x1) there is a sequence of control inputs u =
{u(0), u(1), ..., u(K − 1)} such that x(K; x0, u) = x1.

Lemma 2.1: (a) (A,B) is reachable on [0, K] if and only

if it is exactly controllable on [0, K]. In this case it is null

controllable on [0, K].
(b) If A is invertible and (A,B) is null controllable on [0, K],
then (A,B) is exactly controllable on [0, K].

Lemma 2.2: The following statements are equivalent.

(a) (A,B) is null controllable on [0, K].
(b) R(AK) ⊂ R(MK), where MK = [B, AB, ..., AK−1B]
is the reachability operator.

(c) |M∗

Kx| ≥ a|(A∗)Kx| for some a > 0.

If these conditions hold, the operator

[

B∗

λI − A∗

]

is 1 to 1

for any nonzero λ.

Proof: Consider the response of the system (4) with

initial condition x0 and control u = {u(0), u(1), ..., u(K −
1)}. Then

x(K; x0, u) = AKx0 +
k−1
∑

j=0

Ak−j−1Bu(j)

and the second term of the right hand side lies in R(MK), the

range of MK . Hence (a) is equivalent to (b). The equivalence

of (b) and (c) follows from Corollary 3.5 of [3]. If there exists

a nonzero q such that B∗q = 0 and λq = A∗q, it contradicts

to (c) with x = q.

Lemma 2.3: Suppose A is exponentially stable [7] i.e.,

|Ak| ≤ Mρk, 0 < ρ < 1 and that (A,B) is exactly

controllable on [0, K]. Then there exists a coercive operator

Y such that

Y = AY A∗ + BB∗.

Y is called the controllability gramian of (A,B).
Proof: By Lemma 2.1 (A,B) is reachable on [0, K].

Hence MK = [B, AB, ..., AK−1B] is onto and MKM∗

K ≥
aI for some a > 0. Define

Y = lim
k→∞

MkM∗

k = lim
k→∞

k−1
∑

j=0

AjBB∗(A∗)j .

The right hand side converges in the uniform operator

topology and Y ≥ MKM∗

K ≥ aI . Hence Y is coercive.

Moreover

Y = BB∗ + A

∞
∑

j=0

AjBB∗(A∗)jA∗ = BB∗ + AY A∗.

Lemma 2.4: Suppose A is invertible and (A,B) is exactly

controllable on [0, K]. Then (A−1, A−1B) is exactly con-

trollable on [0, K]. If A−1 is exponentially stable, then the

inverse of its controllability gramian Y exists and satisfies

the following algebraic Riccati equation

X = A∗XA − A∗XB(I + B∗XB)−1B∗XA. (5)

Proof: Since (A,B) is exactly controllable on [0, K],
so is (A−1, A−1B). In fact

[A−1B, A−1(A−1B), ..., (A−1)K−1(A−1B)]

= (A−1)K [AK−1B, ..., AB,B].

Now by definition

Y = A−1Y (A−1)∗ + A−1BB∗(A−1)∗,
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which implies

AY A∗ = Y + BB∗.

By Lemma 2.3 Y is coercive and hence invertible. As in

Lemma 3.18 [5], we obtain

(A−1)∗Y −1A−1

= (Y + BB∗)−1

= Y −1(I + BB∗Y −1)−1

= Y −1[I − (I + BB∗Y −1)−1BB∗Y −1]

= Y −1[I − B(I + B∗Y −1B)−1B∗Y −1]

= Y −1 − Y −1B(I + B∗Y −1B)−1B∗Y −1,

where for the second equality we have used the equality

Y +BB∗ = (I +BB∗Y −1)Y and for the fourth equality the

familiar identity M(I +NM)−1 = (I +MN)−1M is used.

Hence we obtain

Y −1 = A∗Y −1A − A∗Y −1B(I + B∗Y −1B)−1B∗Y −1A

and Y −1 is a coercive solution of the ARE (5).

III. NULL CONTROLLABILITY WITH VANISHING ENERGY

Consider the system (4)

x(k + 1) = Ax(k) + Bu(k), x(0) = x0.

We shall define NCVE for this system.

Definition 3.1: (A,B) is null controllable with vanishing

energy if for each x0 there exists a sequence of pairs

(kN , uN ), kN a positive integer ↑ ∞, uN ∈ l2(0, kN −1; U)
such that x(kN ; x0, uN ) = 0 and

lim
N→∞

‖ uN ‖2= 0,

where l2(0, kN − 1; U) is the set of vectors u =
{u(0), u(1), ..., u(kN − 1)}, u(k) ∈ U with norm

‖ u ‖2= (

kN−1
∑

k=0

|u(k)|2)
1

2 .

Lemma 3.1: If (A,B) is NCVE, then (A,B) is null

controllable on some interval [0, K]
Proof: Based on the Baire category theorem and similar

to the proof of Theorem 3.1 [9].

First we shall prove the following.

Theorem 3.1: (A,B) is NCVE if and only if

(a) (A,B) is null controllable on some interval [0, K], and

(b) X = 0 is the unique solution of the ARE (5)

X = A∗XA − A∗XB(I + B∗XB)−1B∗XA

in the class of nonnegative operators.

We modify Hypotheses 1 and 2 as follows.

Hypothesis 3. There exists a sequence {λn} ⊂ σ(A) such

that λn is isolated in σ(A) and

lim
n→∞

|λn| = s(A) = sup{|λ| : λ ∈ σ(A)}.

Hypothesis 4. There exist A-invariant subspaces Hs and

Hu such that

(a) H = Hs ⊕ Hu,

(b) A on Hs is exponentially stable, and

(c) the set of all generalized eigenvectors of A contained in

Hu is linearly dense in Hu.

Under Hypotheses 3 and 4 we shall prove the following.

Theorem 3.2: (A,B) is NCVE if and only if

(a) (A,B) is null controllable on some interval [0, K], and

(b) |λ| ≤ 1 for any λ ∈ σ(A).
Proof of Theorem 3.1.

We shall follow the proof of Theorem 1.1 in [10]. We first

show necessity. Consider the quadratic cost associated with

(4) on [0, kN − 1]

J(u; x0, kN , Q) =

kN−1
∑

k=0

|u(k)|2 + 〈x(kN ), Qx(kN )〉,

where Q ≥ 0. It is known [8], [12], [13] that the optimal

control minimizing the cost function is given by the feedback

law

ū(k) = −[I + B∗X(k + 1)B]−1B∗X(k + 1)Ax(k),

where X(k) = X(k; kN , Q) is the sequence of nonnegative

operators defined by the Riccati equation

X(k) = A∗X(k + 1)A − A∗X(k + 1)B

×[I + B∗X(k + 1)B]−1B∗X(k + 1)A, (6)

X(kN ) = Q.

Moreover,

J(ū; x0, kN , Q) = 〈x0, X(0; kN , Q)x0〉.

Now we consider the case Q = qI , q > 0 and let

q → ∞. Since (A,B) is null controllable on [0, K],
for each x0 and kN ≥ K there exists a control u ∈
l2(0, kN − 1; U) such that x(kN ; x0, u) = 0. Let uN be

the control with minimum norm among them. Then it is

given by uN = −M̄∗

N(M̄NM̄∗

N)−1AkN x0 where M̄N =
[AkN−1B, ..., AB,B]. Since (A,B) is null controllable,

limN→∞ ‖ uN ‖2
2= 0 for each x0 and hence there exists

a constant a > 0 such that ‖ uN ‖2
2≤ a|x0|

2. Notice that

J(ū; x0, kN , qI) = 〈x0, X(0; kN , qI)x0〉

≤ J(uN ; x0, kN , qI)

= ‖ uN ‖2
2≤ a|x0|

2,

which yields X(0; kN , qI) ≤ aI . Since X(0; kN , qI) is

monotone increasing in q, there exists a limit as q → ∞, de-

noted by X(0; kN), i.e., X(0; kN ) = limq→∞ X(0; kN , qI).
Let ūq be the optimal control for J(u; x0, kN , qI). Then it

is uniformly bounded in q. Hence there exists a subsequence

qj such that ūqj
converges weakly to some limit ū∞. Then

x(kN ; x0, ū∞) = 0 and ‖ ū∞ ‖2
2≤ 〈x0, X(0; kN)x0〉 ≤‖

uN ‖2
2. But uN is the control with minimum norm and

hence ‖ ū∞ ‖2
2= 〈x0, X(0; kN)x0〉 =‖ uN ‖2

2. Now suppose

that (A,B) is null controllable on [0, K], K ≤ kN . Since

X(k; kN , qI) = X(0; kN −k, qI), the following limit exists:

lim
q→∞

X(k; kN , qI) = lim
q→∞

X(0; kN − k, qI)

≡ X(k; kN) for k ≤ kN − K.
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Moreover, from equation (6) X(k; kN), k ≤ kN − K
satisfies the Riccati equation

X(k) = A∗X(k + 1)A − A∗X(k + 1)B

×[I + B∗X(k + 1)B]−1B∗X(k + 1)A,

X(kN − K) = X(kN − K; kN ).

Since 〈x0, X(0; kN)x0〉 =‖ uN ‖2
2, X(0; kN ) is decreas-

ing in N and has a nonnegative limit

X∞ = lim
N→∞

X(0; kN).

For k ≤ N − K we know X(k; kN) = X(0; kN − k) and

hence limN→∞ X(k; kN) = X∞. Letting N → ∞ in the

Riccati equation above we see that X∞ satisfies the ARE

(5). Recall that (A,B) is NCVE and hence

〈x0, X∞x0〉 ≤ 〈x0, X(0; kN)x0〉 =‖ uN ‖2
2→ 0

and X∞ = 0. Now let X be any nonnegative solution of the

ARE (5). We shall show that X ≤ X∞ to conclude X = 0.

For this purpose consider the Riccati difference equation (6)

with Q = X . Then X(k) = X is a solution. Thus

J(ūX ; x0, kN , X) = 〈x0, Xx0〉

≤ J(ūq; x0, kN , qI)

= 〈x0, X(0; kN , qI)x0〉

for q ≥‖ X ‖, where ūX and ūq denote the optimal

controls for the corresponding cost functions. Now passing

to the limit q → ∞ and to the limit N → ∞ we

obtain 〈x0, Xx0〉 ≤ 〈x0, X(0; kN)x0〉 and 〈x0, Xx0〉 ≤
〈x0, X∞x0〉 respectively. Thus we have shown X = 0, which

completes the proof of necessity.

To show sufficiency we recall that ‖ uN ‖2
2=

〈x0, X(0; kN)x0〉 → 〈x0, X∞x0〉. But by condition (b)

X∞ = 0 and hence ‖ uN ‖2→ 0 and (A,B) is NCVE.

Proof of Theorem 3.2

We shall follow the proof of Theorem 1.2 in [10]. To show

necessity we suppose that |λ| > 1 for some λ ∈ σ(A).
Then by Hypothesis 3 there exists an isolated element µ ∈
σ(A) with |µ| > 1. Consider the spectral Riesz projection

P1 associated with µ

P1x =
1

2πi

∫

γ

(λI − A)−1xdλ, x ∈ H,

where γ is a circle containing µ in its interior and σ(A)/{µ}
in its exterior. Using projections P1 and P2 = I − P1, we

can split the equation (4) into two subsystems in E1 and E2

respectively

x1(k + 1) = A1x1(k) + B1u(k),

x2(k + 1) = A2x2(k) + B2u(k),

where Ei = PiH , Ai is the restriction of A to Ei,

and Bi = PiB. The subspaces Ei are A-invariant and

H = E1 ⊕ E2. Since (4) is null controllable, (A1, B1) and

(A2, B2) are null controllable. Since σ(A1) = {µ}, it is

invertible and (A1, B1) is exactly controllable by Lemma

2.1. Hence (A−1
1 , A−1

1 B1) is exactly controllable. Since A−1
1

is exponentialy stable, by Lemma 2.3 it possesses a coercive

controllability gramian Y

Y = A−1
1 Y (A−1

1 )∗ + A−1
1 B1B

∗

1(A−1
1 )∗.

By Lemma 2.4 X1 = Y −1 is a coercive solution of the

ARE

X = A∗

1XA1 − A∗

1XB1(I + B∗

1XB1)
−1B∗

1XA1.

Then X = IHX1P1 is a nontrivial nonnegative solution

of the ARE for (5) where IH is the injection of E1 into H .

This contradicts to Theorem 3.1 and hence |λ| ≤ 1 for any

λ ∈ σ(A).
To show sufficiency let X be any nonnegative solution of

the ARE (5). Since H = Hs ⊕ Hu, it is suficient to show

X = 0 both on Hs and Hu. As in the proof of Theorem 3.1

consider (6) with Q = X and recall the inequality

〈x0, Xx0〉 = J(ūX ; x0, kN , X)

≤ J(0; x0, kN , X)

= 〈AkN x0, XAkN x0〉 → 0, x0 ∈ Hs.

Hence Xx0 = 0 for any x0 ∈ Hs. To show Xx0 = 0 for

any x0 ∈ Hu, let λ ∈ σ(A) with |λ| ≤ 1 which corresponds

to an eigenvector p i.e., Ap = λp. Then

〈p, Xp〉

= 〈p, A∗XAp〉 − 〈p, A∗XB(I + B∗XB)−1B∗XAp〉

= |λ|2[〈p,Xp〉 − 〈p, XB(I + B∗XB)−1B∗Xp〉]. (7)

If |λ| < 1, then (7) yields Xp = 0. If |λ| = 1, then it yields

B∗Xp = 0. In this case we obtain Xp = λA∗Xp from the

ARE (5). Hence
[

B∗

1
λ
I − A∗

]

Xp = 0

By Lemma 2.2 the operator above is 1 to 1 and hence Xp =
0. Thus for any eigenvector of A we have shown Xp = 0.

We shall show that Xq = 0 for any generalized eigenvector

of A, which would then conclude X = 0. Now let q ∈
N((λI − A)2) i.e., (λI − A)2q = 0. Then q1 = (λI − A)q
satisfies (λI −A)q1 = 0. Repeating the arguments above we

conclude Xq1 = 0. Hence XAq = λXq and from the ARE

(5) we obtain

〈q,Xq〉

= 〈q,A∗XAq〉 − 〈q,A∗XB(I + B∗XB)−1B∗XAq〉

= |λ|2[〈q,Xq〉 − 〈q,XB(I + B∗XB)−1B∗Xq〉].

This is the same with (7) and hence Xq = 0. Repeating this

process we conclude Xq = 0 for any generalized eigenvector

of A satisfying (λI −A)kq = 0. Hence X = 0 on Hu. Thus

X = 0 on H and by Theorem 3.1 (A,B) is NCVE.

In [9] the reproducing kernel Hilbert space associated with

the controllability operator was introduced and Theorem 1.1

was extended to the case where H is a Banach space. The

extension of Theorem 3.1 to a Banach space is also possible

using the Riccati equation directly.
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IV. EXACT CONTROLLABILITY WITH VANISHING ENERGY

First we introduce reachability with vanishing energy

(RVE), which is useful to consider ECVE.

Definition 4.1: (A,B) is reachable with vanishing energy

if for each x1 there exists a sequence of pairs (kN , uN ), kN

↑ ∞, uN ∈ l2(0, kN − 1; U) such that x(kN ; 0, uN) = x1

and

lim
N→∞

‖ uN ‖2= 0.

Lemma 4.1: Suppose (A,B) is RVE. Then 0 /∈ σp(A
∗).

If A is invertible, then (A,B) is RVE if and only if

(A−1, A−1B) is NCVE.

Proof: Suppose 0 ∈ σp(A
∗) and A∗h = 0 with |h| = 1.

If (A,B) is reachable on [0, K], then for some sequence

u = (uj)
K−1
∑

j=0

AK−j−1Buj = h.

Then

1 = 〈h, h〉 = 〈h,

K−1
∑

j=0

AK−j−1Buj〉

=
K−1
∑

j=0

〈B∗(A∗)K−j−1h, uj〉

= 〈B∗h, uK−1〉 ≤ |B∗h||uK−1|.

Hence |uK−1| ≥
1

|B∗h|
and (A,B) cannot be RVE. Now

assume that A is invertible. Then the system (4) can be

written as

x(k) = A−1x(k + 1) − A−1Bu(k).

Thus if (A,B) is RVE, then redefining u and x we can easily

see that

x̃(k + 1) = A−1x̃(k) + A−1Bũ(k).

is NCVE. The converse is also true since we can reverse the

arguments.

From Lemma 4.1 we immediately obtain the following.

Theorem 4.1: Suppose A is invertible and A−1 satisfies

Hypotheses 3 and 4. Then (A,B) is RVE if and only if

(a) (A,B) is exactly controllable on some interval [0, K],
and

(b) |λ| ≥ 1 for any λ ∈ σ(A).

Now we are ready to extend Theorem 1.3.

Theorem 4.2: Suppose A and A−1 satisfy Hypotheses 3

and 4. Then (A,B) is ECVE if and only if

(a) (A,B) is exactly controllable on some interval [0, K],
and

(b) |λ| = 1 for any λ ∈ σ(A).

Proof: Note that (A,B) is ECVE if and only if it is

NCVE and RVE. Hence the proof follows from Theorem

3.2 and Theorem 4.1.

V. APPLICATIONS

In this section we apply our theorems to sampled-data

systems, systems with impulse control and periodic systems.

First we consider a sampled-data system with zero-order hold

[2]

ẋ = Ax + Bu,

where A is the infinitesimal generator of a strongly contin-

uous semigroup S(t) ∈ L(H), B ∈ L(U, H) and u is a

control given by

u(t) = u(kτ), kτ ≤ t < (k + 1)τ.

Then at times kτ we have the following.

x((k + 1)τ) = S(τ)x(kτ) +

∫ τ

0

S(r)Bdru(kτ)

≡ Adx(kτ) + Bdu(kτ).

The sampled-data system is said to be NCVE (ECVE) if it is

NCVE (ECVE) in the sense of Definition 1.1 with TN = Nτ .

Note that the sampled-data system is NCVE (ECVE) if and

only if (Ad, Bd) is NCVE (ECVE). Hence, if Ad satisfies

Hypotheses 3 and 4, then by Theorem 3.2 the sampled-data

system is NCVE if and only if

(a) (Ad, Bd) is null controllable on some interval [0, K], and

(b) |λ| ≤ 1 for any λ ∈ σ(Ad).
If S(t) is a group and S(τ)−1 satisfies Hypotheses 3 and 4,

then the sampled-data system is ECVE if and only if

(a) (Ad, Bd) is exactly controllable on some interval [0, K],
and

(b) |λ| = 1 for any λ ∈ σ(Ad).

Next we consider the system (1) with impulse control

u(k − 1)δ(t − kτ) at time kτ , k ≥ 1. Then the state x(kτ)
after the impulse u(k − 1)δ(t − kτ) satisfies

x((k + 1)τ) = S(τ)x(kτ) + Bu(k).

Lemma 5.1: The system (2) with impulse control is

NCVE if and only if (S(τ), B) is NCVE.

Lemma 5.2: Suppose S(t) is a group and S(τ)−1 satisfies

Hypotheses 3 and 4. Then the system (2) with impulse

control is ECVE if and only if (S(τ), B) is ECVE.

Proof: Note that the system (2) with impulse control is

ECVE if and only if it is NCVE and RVE. Let Kτ ≤ T <
(K + 1)τ and consider the controllability operator

P imp
T = S(T − Kτ)(

K
∑

j=1

S(τ)K−jBB∗(S(τ)∗)K−j)

×S∗(T − Kτ)

= S(T − Kτ)P imp
Kτ S∗(T − Kτ).

Hence (P imp
T )−1 → 0 strongly if and only if (P imp

Kτ )−1 → 0
strongly and as in Lemma 1.1 the assertion follows.

Now we have the following.

Theorem 5.1: (1) The system (2) with impulse control is

NCVE if and only if

(a) (S(τ), B) is null controllable on some interval [0, K],
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and

(b) |λ| ≤ 1 for any λ ∈ σ(S(τ)).
(2) Suppose S(t) is a group and S(τ)−1 satisfies Hypotheses

3 and 4. Then the system (2) with impulse control is ECVE

if and only if

(a) (S(τ), B) is exactly controllable on some interval [0, K],
and

(b) |λ| = 1 for any λ ∈ σ(S(τ)).
Finally consider the T -periodic system

ẋ = A(t)x + B(t)u, x(t0) = x0, 0 ≤ t0 < T (8)

where A(t) is T -periodic and generates an evolution operator

S(t, s) and B(t) is T -periodic and strongly continuous. Then

x((k + 1)T + t0)

= S(T + t0, t0)x(kT + t0)

+

∫ T+t0

t0

S(T + t0, r)B(r)u(k, r)dr

≡ S(T + t0, t0)x(kT + t0) + Bdu(k), (9)

where we have used the property S((k+1)T +t0, kT +r) =
S(T + t0, r), and u(k, r) = u(kT + r), for t0 ≤ r < t0 +T ,

u(k) = u(k, ·) ∈ L2(t0, t0 + T ; U) and Bd is a bounded

linear operator in L(L2(t0, t0 + T ; U),H). Notice that the

periodic system is NCVE if and only if (S(T +t0, t0), Bd) is

NCVE. Then by Theorem 3.2 the periodic system is NCVE

if and only if

(a) it is null controllable on some interval [t0, τ ], and

(b) |λ| ≤ 1 for any λ ∈ σ(S(T + t0, t0)).

Suppose S(t, s) is a two-parameter group so that S(T +
t0, t0) is boundedly invertible.

Lemma 5.3: The periodic system (8) is ECVE if and only

if the discrete-time system (9) is ECVE.

Proof: Consider the controllability operator

PLx =

∫ L

t0

S(L, r)B(r)B(r)∗S∗(L, r)xdr.

Let KT + t0 ≤ L < (K + 1)T + t0. Then αP(K+1)T ≥
PL ≥ βPKT for some α > 0 and β > 0. Hence P−1

L → 0
strongly if and only if (PKT )−1 → 0 strongly. By a periodic

version of Lemma 1.1 the assertion follows.
Lemma 5.4:

S(T + t0, t0) = S(t0, 0)S(T, 0)S(t0, 0)−1

and σ(S(T + t0, t0)) = σ(S(T, 0)).
Suppose further S(T +t0, t0)

−1 satisfies Hypotheses 3 and

4. Then from Theorem 4.2 we obtain the following.

Theorem 5.2: The periodic system (8) is ECVE if and

only if

(a) it is exactly controllable on some interval [t0, τ ], and

(b) |λ| = 1 for any λ ∈ σ(S(T, 0)).

VI. AN EXAMPLE

The linearized equations of relative motion of a satellite

with respect to another in an elliptical orbit are known as

Tschauner-Hempel equations, and the in-plane motion is

given by

ẋ =









0 0 1 0
0 0 0 1

θ̇2 + 2µ/R3
0 −2Ṙ0θ̇/R0 0 2θ̇

2Ṙ0θ̇/R0 θ̇2 − µ/R3
0 −2θ̇ 0









x+









0 0
0 0
1 0
0 1









u,

(10)

where µ is the gravitational parameter of the Earth, R0 the

distance from the center of the Earth to the reference satellite,

θ the true anomaly, and they satisfy

R̈0 − R0θ̇
2 = −µ/R2

0,

2Ṙ0θ̇ + R0θ̈ = 0.

It is shown in [11] that the monodromy matrix S(T, 0)
has a quadruple eigenvalue 1 and that the system (10)

is NCVE. Using this property, feedback controllers with

small L1 norm are designed for the relative orbit transfer

problem. When the reference orbit is circular, Tschauner-

Hempel equations are reduced to Hill-Clohessy-Wiltshire

equations which are time-invarant. In this case the relative

orbit transfer problem by impulse control is considered in [6].

Using the NCVE property, feedback controllers with small

l1 norm are designed.

As for an infinite dimensional example, we refer to [4],

where a strongly damped wave equation with Neumann

boundary condition and a periodic damping coefficient is

considered. It is shown that all eigenvalues of S(T, 0) have

modulus less than 1.

REFERENCES

[1] F. M. Callier and C. A. Desoer, Linear System Theory, Springer-
Verlag, Berlin, 1991.

[2] T. Chen and B. A. Francis, Optimal Sampled-Data Control Systems,
Springer-Verlag, London, 1995.

[3] R. F. Curtain and A. J. Pritchard, Infinite Dimensional Linear Systems

Theory, Lecture Note in Control and Information Sciences, vol.8,
Springer-Verlag, Berlin, 1978.

[4] G. Da Prato and A. Lunardi, Floquet exponents and stabilizability
in time-periodic parabolic systems, Applied Math. Optim., vol. 22,
1990, pp. 91-113.

[5] A. Ichikawa and H. Katayama, Linear Time Varying Systems and

Sampled-data Systems, Lecture Note in Control and Information
Sciences, vol.265, Springer-Verlag, London, 2001.

[6] Y. Ichimura and A. Ichikawa, Optimal impulsive relative orbit transfer
along a circular orbit, J. Guidance, Control, Dynamics, vol. 31, 2008,
pp. 1014-1027.

[7] C. S. Kubrusly, Mean square stability for discrete bounded linear
systems in Hilbert space, SIAM J. Control Optim., vol. 23, 1985, pp.
19-29.

[8] K. Y. Lee, S. N. Chow and R. O. Barr, On the control of discrete-
time distributed parameter systems, SIAM J. Control, vol. 10, 1972,
pp. 361-376.

[9] J. M. A. M. Van Neerven, Null controllability and the algebraic
Riccati equation in Banach spaces, SIAM J. Control Optim., vol. 43,
2005, pp. 1313-1327.

[10] E. Priola and J. Zabczyk, Null controllability with vanishing energy,
SIAM J. Control Optim., vol. 42, 2003, pp. 1013-1032.

[11] M. Shibata and A. Ichikawa, Orbital rendezvous and flyaround based
on null controllability with vanishing energy, J. Guidance, Control,

Dynamics, vol. 30, 2007, pp. 934-945.
[12] J. Zabczyk, Remarks on the control of discrete-time distributed

parameter systems, SIAM J. Control, vol. 12, 1974, pp. 721-735.
[13] J. Zabczyk, On optimal stochastic control of discrete-time systems

in Hilbert space, SIAM J. Control, vol. 12, 1975, pp. 1217-1234.

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 WeB07.6

2751


